437 lines
12 KiB
C++
437 lines
12 KiB
C++
// Copyright 2008 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <mutex>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/ChunkFile.h"
|
|
#include "Common/FifoQueue.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/StringUtil.h"
|
|
#include "Common/Thread.h"
|
|
|
|
#include "Core/ConfigManager.h"
|
|
#include "Core/Core.h"
|
|
#include "Core/CoreTiming.h"
|
|
#include "Core/PowerPC/PowerPC.h"
|
|
|
|
#include "VideoCommon/Fifo.h"
|
|
#include "VideoCommon/VideoBackendBase.h"
|
|
|
|
namespace CoreTiming
|
|
{
|
|
struct EventType
|
|
{
|
|
TimedCallback callback;
|
|
const std::string* name;
|
|
};
|
|
|
|
struct Event
|
|
{
|
|
s64 time;
|
|
u64 fifo_order;
|
|
u64 userdata;
|
|
EventType* type;
|
|
};
|
|
|
|
// Sort by time, unless the times are the same, in which case sort by the order added to the queue
|
|
static bool operator>(const Event& left, const Event& right)
|
|
{
|
|
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
|
|
}
|
|
static bool operator<(const Event& left, const Event& right)
|
|
{
|
|
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
|
|
}
|
|
|
|
// unordered_map stores each element separately as a linked list node so pointers to elements
|
|
// remain stable regardless of rehashes/resizing.
|
|
static std::unordered_map<std::string, EventType> s_event_types;
|
|
|
|
// STATE_TO_SAVE
|
|
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
|
|
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
|
|
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
|
|
// by the standard adaptor class.
|
|
static std::vector<Event> s_event_queue;
|
|
static u64 s_event_fifo_id;
|
|
static std::mutex s_ts_write_lock;
|
|
static Common::FifoQueue<Event, false> s_ts_queue;
|
|
|
|
static float s_last_OC_factor;
|
|
float g_last_OC_factor_inverted;
|
|
int g_slice_length;
|
|
static constexpr int MAX_SLICE_LENGTH = 20000;
|
|
|
|
static s64 s_idled_cycles;
|
|
static u32 s_fake_dec_start_value;
|
|
static u64 s_fake_dec_start_ticks;
|
|
|
|
// Are we in a function that has been called from Advance()
|
|
static bool s_is_global_timer_sane;
|
|
|
|
s64 g_global_timer;
|
|
u64 g_fake_TB_start_value;
|
|
u64 g_fake_TB_start_ticks;
|
|
|
|
static EventType* s_ev_lost = nullptr;
|
|
|
|
static void EmptyTimedCallback(u64 userdata, s64 cyclesLate)
|
|
{
|
|
}
|
|
|
|
// Changing the CPU speed in Dolphin isn't actually done by changing the physical clock rate,
|
|
// but by changing the amount of work done in a particular amount of time. This tends to be more
|
|
// compatible because it stops the games from actually knowing directly that the clock rate has
|
|
// changed, and ensures that anything based on waiting a specific number of cycles still works.
|
|
//
|
|
// Technically it might be more accurate to call this changing the IPC instead of the CPU speed,
|
|
// but the effect is largely the same.
|
|
static int DowncountToCycles(int downcount)
|
|
{
|
|
return static_cast<int>(downcount * g_last_OC_factor_inverted);
|
|
}
|
|
|
|
static int CyclesToDowncount(int cycles)
|
|
{
|
|
return static_cast<int>(cycles * s_last_OC_factor);
|
|
}
|
|
|
|
EventType* RegisterEvent(const std::string& name, TimedCallback callback)
|
|
{
|
|
// check for existing type with same name.
|
|
// we want event type names to remain unique so that we can use them for serialization.
|
|
_assert_msg_(POWERPC, s_event_types.find(name) == s_event_types.end(),
|
|
"CoreTiming Event \"%s\" is already registered. Events should only be registered "
|
|
"during Init to avoid breaking save states.",
|
|
name.c_str());
|
|
|
|
auto info = s_event_types.emplace(name, EventType{callback, nullptr});
|
|
EventType* event_type = &info.first->second;
|
|
event_type->name = &info.first->first;
|
|
return event_type;
|
|
}
|
|
|
|
void UnregisterAllEvents()
|
|
{
|
|
_assert_msg_(POWERPC, s_event_queue.empty(), "Cannot unregister events with events pending");
|
|
s_event_types.clear();
|
|
}
|
|
|
|
void Init()
|
|
{
|
|
s_last_OC_factor = SConfig::GetInstance().m_OCEnable ? SConfig::GetInstance().m_OCFactor : 1.0f;
|
|
g_last_OC_factor_inverted = 1.0f / s_last_OC_factor;
|
|
PowerPC::ppcState.downcount = CyclesToDowncount(MAX_SLICE_LENGTH);
|
|
g_slice_length = MAX_SLICE_LENGTH;
|
|
g_global_timer = 0;
|
|
s_idled_cycles = 0;
|
|
|
|
// The time between CoreTiming being intialized and the first call to Advance() is considered
|
|
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
|
|
// executing the first PPC cycle of each slice to prepare the slice length and downcount for
|
|
// that slice.
|
|
s_is_global_timer_sane = true;
|
|
|
|
s_event_fifo_id = 0;
|
|
s_ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback);
|
|
}
|
|
|
|
void Shutdown()
|
|
{
|
|
std::lock_guard<std::mutex> lk(s_ts_write_lock);
|
|
MoveEvents();
|
|
ClearPendingEvents();
|
|
UnregisterAllEvents();
|
|
}
|
|
|
|
void DoState(PointerWrap& p)
|
|
{
|
|
std::lock_guard<std::mutex> lk(s_ts_write_lock);
|
|
p.Do(g_slice_length);
|
|
p.Do(g_global_timer);
|
|
p.Do(s_idled_cycles);
|
|
p.Do(s_fake_dec_start_value);
|
|
p.Do(s_fake_dec_start_ticks);
|
|
p.Do(g_fake_TB_start_value);
|
|
p.Do(g_fake_TB_start_ticks);
|
|
p.Do(s_last_OC_factor);
|
|
g_last_OC_factor_inverted = 1.0f / s_last_OC_factor;
|
|
p.Do(s_event_fifo_id);
|
|
|
|
p.DoMarker("CoreTimingData");
|
|
|
|
MoveEvents();
|
|
p.DoEachElement(s_event_queue, [](PointerWrap& pw, Event& ev) {
|
|
pw.Do(ev.time);
|
|
pw.Do(ev.fifo_order);
|
|
|
|
// this is why we can't have (nice things) pointers as userdata
|
|
pw.Do(ev.userdata);
|
|
|
|
// we can't savestate ev.type directly because events might not get registered in the same
|
|
// order (or at all) every time.
|
|
// so, we savestate the event's type's name, and derive ev.type from that when loading.
|
|
std::string name;
|
|
if (pw.GetMode() != PointerWrap::MODE_READ)
|
|
name = *ev.type->name;
|
|
|
|
pw.Do(name);
|
|
if (pw.GetMode() == PointerWrap::MODE_READ)
|
|
{
|
|
auto itr = s_event_types.find(name);
|
|
if (itr != s_event_types.end())
|
|
{
|
|
ev.type = &itr->second;
|
|
}
|
|
else
|
|
{
|
|
WARN_LOG(POWERPC,
|
|
"Lost event from savestate because its type, \"%s\", has not been registered.",
|
|
name.c_str());
|
|
ev.type = s_ev_lost;
|
|
}
|
|
}
|
|
});
|
|
p.DoMarker("CoreTimingEvents");
|
|
|
|
// When loading from a save state, we must assume the Event order is random and meaningless.
|
|
// The exact layout of the heap in memory is implementation defined, therefore it is platform
|
|
// and library version specific.
|
|
if (p.GetMode() == PointerWrap::MODE_READ)
|
|
std::make_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
|
|
}
|
|
|
|
// This should only be called from the CPU thread. If you are calling
|
|
// it from any other thread, you are doing something evil
|
|
u64 GetTicks()
|
|
{
|
|
u64 ticks = static_cast<u64>(g_global_timer);
|
|
if (!s_is_global_timer_sane)
|
|
{
|
|
int downcount = DowncountToCycles(PowerPC::ppcState.downcount);
|
|
ticks += g_slice_length - downcount;
|
|
}
|
|
return ticks;
|
|
}
|
|
|
|
u64 GetIdleTicks()
|
|
{
|
|
return static_cast<u64>(s_idled_cycles);
|
|
}
|
|
|
|
void ClearPendingEvents()
|
|
{
|
|
s_event_queue.clear();
|
|
}
|
|
|
|
void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata, FromThread from)
|
|
{
|
|
_assert_msg_(POWERPC, event_type, "Event type is nullptr, will crash now.");
|
|
|
|
bool from_cpu_thread;
|
|
if (from == FromThread::ANY)
|
|
{
|
|
from_cpu_thread = Core::IsCPUThread();
|
|
}
|
|
else
|
|
{
|
|
from_cpu_thread = from == FromThread::CPU;
|
|
_assert_msg_(POWERPC, from_cpu_thread == Core::IsCPUThread(),
|
|
"ScheduleEvent from wrong thread (%s)", from_cpu_thread ? "CPU" : "non-CPU");
|
|
}
|
|
|
|
if (from_cpu_thread)
|
|
{
|
|
s64 timeout = GetTicks() + cycles_into_future;
|
|
|
|
// If this event needs to be scheduled before the next advance(), force one early
|
|
if (!s_is_global_timer_sane)
|
|
ForceExceptionCheck(cycles_into_future);
|
|
|
|
s_event_queue.emplace_back(Event{timeout, s_event_fifo_id++, userdata, event_type});
|
|
std::push_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
|
|
}
|
|
else
|
|
{
|
|
if (Core::g_want_determinism)
|
|
{
|
|
ERROR_LOG(POWERPC, "Someone scheduled an off-thread \"%s\" event while netplay or "
|
|
"movie play/record was active. This is likely to cause a desync.",
|
|
event_type->name->c_str());
|
|
}
|
|
|
|
std::lock_guard<std::mutex> lk(s_ts_write_lock);
|
|
s_ts_queue.Push(Event{g_global_timer + cycles_into_future, 0, userdata, event_type});
|
|
}
|
|
}
|
|
|
|
void RemoveEvent(EventType* event_type)
|
|
{
|
|
auto itr = std::remove_if(s_event_queue.begin(), s_event_queue.end(),
|
|
[&](const Event& e) { return e.type == event_type; });
|
|
|
|
// Removing random items breaks the invariant so we have to re-establish it.
|
|
if (itr != s_event_queue.end())
|
|
{
|
|
s_event_queue.erase(itr, s_event_queue.end());
|
|
std::make_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
|
|
}
|
|
}
|
|
|
|
void RemoveAllEvents(EventType* event_type)
|
|
{
|
|
MoveEvents();
|
|
RemoveEvent(event_type);
|
|
}
|
|
|
|
void ForceExceptionCheck(s64 cycles)
|
|
{
|
|
cycles = std::max<s64>(0, cycles);
|
|
if (DowncountToCycles(PowerPC::ppcState.downcount) > cycles)
|
|
{
|
|
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int here.
|
|
// Account for cycles already executed by adjusting the g_slice_length
|
|
g_slice_length -= DowncountToCycles(PowerPC::ppcState.downcount) - static_cast<int>(cycles);
|
|
PowerPC::ppcState.downcount = CyclesToDowncount(static_cast<int>(cycles));
|
|
}
|
|
}
|
|
|
|
void MoveEvents()
|
|
{
|
|
for (Event ev; s_ts_queue.Pop(ev);)
|
|
{
|
|
ev.fifo_order = s_event_fifo_id++;
|
|
s_event_queue.emplace_back(std::move(ev));
|
|
std::push_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
|
|
}
|
|
}
|
|
|
|
void Advance()
|
|
{
|
|
MoveEvents();
|
|
|
|
int cyclesExecuted = g_slice_length - DowncountToCycles(PowerPC::ppcState.downcount);
|
|
g_global_timer += cyclesExecuted;
|
|
s_last_OC_factor = SConfig::GetInstance().m_OCEnable ? SConfig::GetInstance().m_OCFactor : 1.0f;
|
|
g_last_OC_factor_inverted = 1.0f / s_last_OC_factor;
|
|
g_slice_length = MAX_SLICE_LENGTH;
|
|
|
|
s_is_global_timer_sane = true;
|
|
|
|
while (!s_event_queue.empty() && s_event_queue.front().time <= g_global_timer)
|
|
{
|
|
Event evt = std::move(s_event_queue.front());
|
|
std::pop_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
|
|
s_event_queue.pop_back();
|
|
// NOTICE_LOG(POWERPC, "[Scheduler] %-20s (%lld, %lld)", evt.type->name->c_str(),
|
|
// g_global_timer, evt.time);
|
|
evt.type->callback(evt.userdata, g_global_timer - evt.time);
|
|
}
|
|
|
|
s_is_global_timer_sane = false;
|
|
|
|
// Still events left (scheduled in the future)
|
|
if (!s_event_queue.empty())
|
|
{
|
|
g_slice_length = static_cast<int>(
|
|
std::min<s64>(s_event_queue.front().time - g_global_timer, MAX_SLICE_LENGTH));
|
|
}
|
|
|
|
PowerPC::ppcState.downcount = CyclesToDowncount(g_slice_length);
|
|
|
|
// Check for any external exceptions.
|
|
// It's important to do this after processing events otherwise any exceptions will be delayed
|
|
// until the next slice:
|
|
// Pokemon Box refuses to boot if the first exception from the audio DMA is received late
|
|
PowerPC::CheckExternalExceptions();
|
|
}
|
|
|
|
void LogPendingEvents()
|
|
{
|
|
auto clone = s_event_queue;
|
|
std::sort(clone.begin(), clone.end());
|
|
for (const Event& ev : clone)
|
|
{
|
|
INFO_LOG(POWERPC, "PENDING: Now: %" PRId64 " Pending: %" PRId64 " Type: %s", g_global_timer,
|
|
ev.time, ev.type->name->c_str());
|
|
}
|
|
}
|
|
|
|
void Idle()
|
|
{
|
|
if (SConfig::GetInstance().bSyncGPUOnSkipIdleHack)
|
|
{
|
|
// When the FIFO is processing data we must not advance because in this way
|
|
// the VI will be desynchronized. So, We are waiting until the FIFO finish and
|
|
// while we process only the events required by the FIFO.
|
|
Fifo::FlushGpu();
|
|
}
|
|
|
|
s_idled_cycles += DowncountToCycles(PowerPC::ppcState.downcount);
|
|
PowerPC::ppcState.downcount = 0;
|
|
}
|
|
|
|
std::string GetScheduledEventsSummary()
|
|
{
|
|
std::string text = "Scheduled events\n";
|
|
text.reserve(1000);
|
|
|
|
auto clone = s_event_queue;
|
|
std::sort(clone.begin(), clone.end());
|
|
for (const Event& ev : clone)
|
|
{
|
|
text += StringFromFormat("%s : %" PRIi64 " %016" PRIx64 "\n", ev.type->name->c_str(), ev.time,
|
|
ev.userdata);
|
|
}
|
|
return text;
|
|
}
|
|
|
|
u32 GetFakeDecStartValue()
|
|
{
|
|
return s_fake_dec_start_value;
|
|
}
|
|
|
|
void SetFakeDecStartValue(u32 val)
|
|
{
|
|
s_fake_dec_start_value = val;
|
|
}
|
|
|
|
u64 GetFakeDecStartTicks()
|
|
{
|
|
return s_fake_dec_start_ticks;
|
|
}
|
|
|
|
void SetFakeDecStartTicks(u64 val)
|
|
{
|
|
s_fake_dec_start_ticks = val;
|
|
}
|
|
|
|
u64 GetFakeTBStartValue()
|
|
{
|
|
return g_fake_TB_start_value;
|
|
}
|
|
|
|
void SetFakeTBStartValue(u64 val)
|
|
{
|
|
g_fake_TB_start_value = val;
|
|
}
|
|
|
|
u64 GetFakeTBStartTicks()
|
|
{
|
|
return g_fake_TB_start_ticks;
|
|
}
|
|
|
|
void SetFakeTBStartTicks(u64 val)
|
|
{
|
|
g_fake_TB_start_ticks = val;
|
|
}
|
|
|
|
} // namespace
|