dolphin/Source/Core/Common/Debug/CodeTrace.cpp

393 lines
13 KiB
C++

// Copyright 2022 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/Debug/CodeTrace.h"
#include <algorithm>
#include <chrono>
#include <regex>
#include "Common/Event.h"
#include "Core/Debugger/PPCDebugInterface.h"
#include "Core/HW/CPU.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
namespace
{
bool IsInstructionLoadStore(std::string_view ins)
{
return (ins.starts_with('l') && !ins.starts_with("li")) || ins.starts_with("st") ||
ins.starts_with("psq_l") || ins.starts_with("psq_s");
}
u32 GetMemoryTargetSize(std::string_view instr)
{
// Word-size operations are taken as the default, check the others.
auto op = instr.substr(0, 4);
constexpr char BYTE_TAG = 'b';
constexpr char HALF_TAG = 'h';
constexpr char DOUBLE_WORD_TAG = 'd';
constexpr char PAIRED_TAG = 'p';
// Actual range is 0 to size - 1;
if (op.find(BYTE_TAG) != std::string::npos)
{
return 1;
}
else if (op.find(HALF_TAG) != std::string::npos)
{
return 2;
}
else if (op.find(DOUBLE_WORD_TAG) != std::string::npos ||
op.find(PAIRED_TAG) != std::string::npos)
{
return 8;
}
return 4;
}
bool CompareMemoryTargetToTracked(const std::string& instr, const u32 mem_target,
const std::set<u32>& mem_tracked)
{
// This function is hit often and should be optimized.
auto it_lower = std::lower_bound(mem_tracked.begin(), mem_tracked.end(), mem_target);
if (it_lower == mem_tracked.end())
return false;
else if (*it_lower == mem_target)
return true;
// If the base value doesn't hit, still need to check if longer values overlap.
return *it_lower < mem_target + GetMemoryTargetSize(instr);
}
} // namespace
void CodeTrace::SetRegTracked(const std::string& reg)
{
m_reg_autotrack.push_back(reg);
}
InstructionAttributes CodeTrace::GetInstructionAttributes(const TraceOutput& instruction) const
{
auto& system = Core::System::GetInstance();
// Slower process of breaking down saved instruction. Only used when stepping through code if a
// decision has to be made, otherwise used afterwards on a log file.
InstructionAttributes tmp_attributes;
tmp_attributes.instruction = instruction.instruction;
tmp_attributes.address = system.GetPPCState().pc;
std::string instr = instruction.instruction;
std::smatch match;
// Convert sp, rtoc, and ps to r1, r2, and F#. ps is handled like a float operation.
static const std::regex replace_sp("(\\W)sp");
instr = std::regex_replace(instr, replace_sp, "$1r1");
static const std::regex replace_rtoc("rtoc");
instr = std::regex_replace(instr, replace_rtoc, "r2");
static const std::regex replace_ps("(\\W)p(\\d+)");
instr = std::regex_replace(instr, replace_ps, "$1f$2");
// Pull all register numbers out and store them. Limited to Reg0 if ps operation, as ps get
// too complicated to track easily.
// ex: add r4, r5, r6 -> r4 = Reg0, r5 = Reg1, r6 = Reg2. Reg0 is always the target register.
static const std::regex regis(
"\\W([rfp]\\d+)[^r^f]*(?:([rf]\\d+))?[^r^f\\d]*(?:([rf]\\d+))?[^r^f\\d]*(?:([rf]\\d+))?",
std::regex::optimize);
if (std::regex_search(instr, match, regis))
{
tmp_attributes.reg0 = match.str(1);
if (match[2].matched)
tmp_attributes.reg1 = match.str(2);
if (match[3].matched)
tmp_attributes.reg2 = match.str(3);
if (match[4].matched)
tmp_attributes.reg3 = match.str(4);
if (instruction.memory_target)
{
tmp_attributes.memory_target = instruction.memory_target;
tmp_attributes.memory_target_size = GetMemoryTargetSize(instr);
if (instr.starts_with("st") || instr.starts_with("psq_s"))
tmp_attributes.is_store = true;
else
tmp_attributes.is_load = true;
}
}
return tmp_attributes;
}
TraceOutput CodeTrace::SaveCurrentInstruction(const Core::CPUThreadGuard* guard) const
{
auto& system = Core::System::GetInstance();
auto& ppc_state = system.GetPPCState();
// Quickly save instruction and memory target for fast logging.
TraceOutput output;
const std::string instr = PowerPC::debug_interface.Disassemble(guard, ppc_state.pc);
output.instruction = instr;
output.address = ppc_state.pc;
if (IsInstructionLoadStore(output.instruction))
output.memory_target = PowerPC::debug_interface.GetMemoryAddressFromInstruction(instr);
return output;
}
AutoStepResults CodeTrace::AutoStepping(const Core::CPUThreadGuard& guard, bool continue_previous,
AutoStop stop_on)
{
AutoStepResults results;
if (m_recording)
return results;
TraceOutput pc_instr = SaveCurrentInstruction(&guard);
const InstructionAttributes instr = GetInstructionAttributes(pc_instr);
// Not an instruction we should start autostepping from (ie branches).
if (instr.reg0.empty() && !continue_previous)
return results;
m_recording = true;
// Once autostep stops, it can be told to continue running without resetting the tracked
// registers and memory.
if (!continue_previous)
{
m_reg_autotrack.clear();
m_mem_autotrack.clear();
m_reg_autotrack.push_back(instr.reg0);
// It wouldn't necessarily be wrong to also record the memory of a load operation, as the
// value exists there too. May or may not be desirable depending on task. Leaving it out.
if (instr.is_store)
{
const u32 size = GetMemoryTargetSize(instr.instruction);
for (u32 i = 0; i < size; i++)
m_mem_autotrack.insert(instr.memory_target.value() + i);
}
}
// Count is important for feedback on how much work was done.
HitType hit = HitType::SKIP;
HitType stop_condition = HitType::SAVELOAD;
// Could use bit flags, but I organized it to have decreasing levels of verbosity, so the
// less-than comparison ignores what is needed for the current usage.
if (stop_on == AutoStop::Always)
stop_condition = HitType::SAVELOAD;
else if (stop_on == AutoStop::Used)
stop_condition = HitType::PASSIVE;
else if (stop_on == AutoStop::Changed)
stop_condition = HitType::ACTIVE;
PowerPC::breakpoints.ClearAllTemporary();
using clock = std::chrono::steady_clock;
clock::time_point timeout = clock::now() + std::chrono::seconds(4);
PowerPC::CoreMode old_mode = PowerPC::GetMode();
PowerPC::SetMode(PowerPC::CoreMode::Interpreter);
do
{
PowerPC::SingleStep();
pc_instr = SaveCurrentInstruction(&guard);
hit = TraceLogic(pc_instr);
results.count += 1;
} while (clock::now() < timeout && hit < stop_condition &&
!(m_reg_autotrack.empty() && m_mem_autotrack.empty()));
// Report the timeout to the caller.
if (clock::now() >= timeout)
results.timed_out = true;
PowerPC::SetMode(old_mode);
m_recording = false;
results.reg_tracked = m_reg_autotrack;
results.mem_tracked = m_mem_autotrack;
// Doesn't currently need to report the hit type to the caller. Denoting when the reg and mem
// trackers are both empty is important, as it means our target was overwritten and can no longer
// be tracked. Different actions can be taken on a timeout vs empty trackers, so they are reported
// individually.
return results;
}
HitType CodeTrace::TraceLogic(const TraceOutput& current_instr, bool first_hit)
{
// Tracks the original value that is in the targeted register or memory through loads, stores,
// register moves, and value changes. Also finds when it is used. ps operations are not fully
// supported. -ux memory instructions may need special cases.
// Should not be called if reg and mem tracked are empty.
// Using a std::set because it can easily insert the memory range being accessed without
// causing duplicates, and quickly erases all members of the memory range without caring if the
// element actually exists.
bool mem_hit = false;
if (current_instr.memory_target && !m_mem_autotrack.empty())
{
mem_hit = CompareMemoryTargetToTracked(current_instr.instruction, *current_instr.memory_target,
m_mem_autotrack);
}
// Optimization for tracking a memory target when no registers are being tracked.
if (m_reg_autotrack.empty() && !mem_hit)
return HitType::SKIP;
// Break instruction down into parts to be analyzed.
const InstructionAttributes instr = GetInstructionAttributes(current_instr);
// Not an instruction we care about (branches).
if (instr.reg0.empty())
return HitType::SKIP;
// The reg_itr will be used later for erasing.
auto reg_itr = std::find(m_reg_autotrack.begin(), m_reg_autotrack.end(), instr.reg0);
const bool match_reg123 =
(!instr.reg1.empty() && std::find(m_reg_autotrack.begin(), m_reg_autotrack.end(),
instr.reg1) != m_reg_autotrack.end()) ||
(!instr.reg2.empty() && std::find(m_reg_autotrack.begin(), m_reg_autotrack.end(),
instr.reg2) != m_reg_autotrack.end()) ||
(!instr.reg3.empty() && std::find(m_reg_autotrack.begin(), m_reg_autotrack.end(),
instr.reg3) != m_reg_autotrack.end());
const bool match_reg0 = reg_itr != m_reg_autotrack.end();
if (!match_reg0 && !match_reg123 && !mem_hit)
return HitType::SKIP;
// Checks if the intstruction is a type that needs special handling.
const auto CompareInstruction = [](std::string_view instruction, const auto& type_compare) {
return std::any_of(type_compare.begin(), type_compare.end(),
[&instruction](std::string_view s) { return instruction.starts_with(s); });
};
// Exclusions from updating tracking logic. mt operations are too complex and specialized.
// Combiner used later.
static const std::array<std::string_view, 3> exclude{"dc", "ic", "mt"};
static const std::array<std::string_view, 2> compare{"c", "fc"};
// rlwimi, at least, can preserve parts of the target register. Not sure if rldimi can too or if
// there are any others like this.
static const std::array<std::string_view, 1> combiner{"rlwimi"};
static const std::array<std::string_view, 2> mover{"mr", "fmr"};
// Link register for when r0 gets overwritten
if (instr.instruction.starts_with("mflr") && match_reg0)
{
m_reg_autotrack.erase(reg_itr);
return HitType::OVERWRITE;
}
if (instr.instruction.starts_with("mtlr") && match_reg0)
{
// LR is not something tracked
return HitType::MOVED;
}
if (CompareInstruction(instr.instruction, exclude))
return HitType::SKIP;
else if (CompareInstruction(instr.instruction, compare))
return HitType::PASSIVE;
else if (match_reg123 && !match_reg0 && (instr.is_store || instr.is_load))
return HitType::POINTER;
// Update tracking logic. At this point a memory or register hit happened.
// Save/Load
if (instr.memory_target)
{
if (mem_hit)
{
// If hit a tracked memory. Load -> Add register to tracked. Store -> Remove tracked memory
// if overwritten.
if (instr.is_load && !match_reg0)
{
m_reg_autotrack.push_back(instr.reg0);
return HitType::SAVELOAD;
}
else if (instr.is_store && !match_reg0)
{
// On First Hit it wouldn't necessarily be wrong to track the register, which contains the
// same value. A matter of preference.
if (first_hit)
return HitType::SAVELOAD;
for (u32 i = 0; i < instr.memory_target_size; i++)
m_mem_autotrack.erase(*instr.memory_target + i);
return HitType::OVERWRITE;
}
else
{
// If reg0 and store/load are both already tracked, do nothing.
return HitType::SAVELOAD;
}
}
else if (instr.is_store && match_reg0)
{
// If store to untracked memory, then track memory.
for (u32 i = 0; i < instr.memory_target_size; i++)
m_mem_autotrack.insert(*instr.memory_target + i);
return HitType::SAVELOAD;
}
else if (instr.is_load && match_reg0)
{
// Not wrong to track load memory_target here. Preference.
if (first_hit)
return HitType::SAVELOAD;
// If untracked load is overwriting tracked register, then remove register
m_reg_autotrack.erase(reg_itr);
return HitType::OVERWRITE;
}
}
else if (!match_reg0 && !match_reg123)
{
// Skip if no matches. Happens most often.
return HitType::SKIP;
}
else
{
// If tracked register data is being stored in a new register, save new register.
if (match_reg123 && !match_reg0)
{
m_reg_autotrack.push_back(instr.reg0);
// This should include any instruction that can reach this point and is not ACTIVE. Can only
// think of mr at this time.
if (CompareInstruction(instr.instruction, mover))
return HitType::MOVED;
return HitType::ACTIVE;
}
// If tracked register is overwritten, stop tracking.
else if (match_reg0 && !match_reg123)
{
if (CompareInstruction(instr.instruction, combiner) || first_hit)
return HitType::UPDATED;
m_reg_autotrack.erase(reg_itr);
return HitType::OVERWRITE;
}
else if (match_reg0 && match_reg123)
{
// Or moved
return HitType::UPDATED;
}
}
// Should not reach this
return HitType::SKIP;
}