dolphin/Source/Core/VideoBackends/Vulkan/main.cpp

276 lines
9.8 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <vector>
#include "Common/Logging/LogManager.h"
#include "Common/MsgHandler.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/Constants.h"
#include "VideoBackends/Vulkan/FramebufferManager.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/PerfQuery.h"
#include "VideoBackends/Vulkan/Renderer.h"
#include "VideoBackends/Vulkan/StateTracker.h"
#include "VideoBackends/Vulkan/SwapChain.h"
#include "VideoBackends/Vulkan/TextureCache.h"
#include "VideoBackends/Vulkan/VertexManager.h"
#include "VideoBackends/Vulkan/VideoBackend.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoConfig.h"
namespace Vulkan
{
void VideoBackend::InitBackendInfo()
{
VulkanContext::PopulateBackendInfo(&g_Config);
if (LoadVulkanLibrary())
{
VkInstance temp_instance = VulkanContext::CreateVulkanInstance(false, false, false);
if (temp_instance)
{
if (LoadVulkanInstanceFunctions(temp_instance))
{
VulkanContext::GPUList gpu_list = VulkanContext::EnumerateGPUs(temp_instance);
VulkanContext::PopulateBackendInfoAdapters(&g_Config, gpu_list);
if (!gpu_list.empty())
{
// Use the selected adapter, or the first to fill features.
size_t device_index = static_cast<size_t>(g_Config.iAdapter);
if (device_index >= gpu_list.size())
device_index = 0;
VkPhysicalDevice gpu = gpu_list[device_index];
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(gpu, &properties);
VkPhysicalDeviceFeatures features;
vkGetPhysicalDeviceFeatures(gpu, &features);
VulkanContext::PopulateBackendInfoFeatures(&g_Config, gpu, properties, features);
VulkanContext::PopulateBackendInfoMultisampleModes(&g_Config, gpu, properties);
}
}
vkDestroyInstance(temp_instance, nullptr);
}
else
{
PanicAlert("Failed to create Vulkan instance.");
}
UnloadVulkanLibrary();
}
else
{
PanicAlert("Failed to load Vulkan library.");
}
}
// Helper method to check whether the Host GPU logging category is enabled.
static bool IsHostGPULoggingEnabled()
{
return LogManager::GetInstance()->IsEnabled(LogTypes::HOST_GPU, LogTypes::LERROR);
}
// Helper method to determine whether to enable the debug report extension.
static bool ShouldEnableDebugReports(bool enable_validation_layers)
{
// Enable debug reports if the Host GPU log option is checked, or validation layers are enabled.
// The only issue here is that if Host GPU is not checked when the instance is created, the debug
// report extension will not be enabled, requiring the game to be restarted before any reports
// will be logged. Otherwise, we'd have to enable debug reports on every instance, when most
// users will never check the Host GPU logging category.
return enable_validation_layers || IsHostGPULoggingEnabled();
}
bool VideoBackend::Initialize(const WindowSystemInfo& wsi)
{
if (!LoadVulkanLibrary())
{
PanicAlert("Failed to load Vulkan library.");
return false;
}
// Check for presence of the validation layers before trying to enable it
bool enable_validation_layer = g_Config.bEnableValidationLayer;
if (enable_validation_layer && !VulkanContext::CheckValidationLayerAvailablility())
{
WARN_LOG(VIDEO, "Validation layer requested but not available, disabling.");
enable_validation_layer = false;
}
// Create Vulkan instance, needed before we can create a surface, or enumerate devices.
// We use this instance to fill in backend info, then re-use it for the actual device.
bool enable_surface = wsi.render_surface != nullptr;
bool enable_debug_reports = ShouldEnableDebugReports(enable_validation_layer);
VkInstance instance = VulkanContext::CreateVulkanInstance(enable_surface, enable_debug_reports,
enable_validation_layer);
if (instance == VK_NULL_HANDLE)
{
PanicAlert("Failed to create Vulkan instance.");
UnloadVulkanLibrary();
return false;
}
// Load instance function pointers.
if (!LoadVulkanInstanceFunctions(instance))
{
PanicAlert("Failed to load Vulkan instance functions.");
vkDestroyInstance(instance, nullptr);
UnloadVulkanLibrary();
return false;
}
// Obtain a list of physical devices (GPUs) from the instance.
// We'll re-use this list later when creating the device.
VulkanContext::GPUList gpu_list = VulkanContext::EnumerateGPUs(instance);
if (gpu_list.empty())
{
PanicAlert("No Vulkan physical devices available.");
vkDestroyInstance(instance, nullptr);
UnloadVulkanLibrary();
return false;
}
// Populate BackendInfo with as much information as we can at this point.
VulkanContext::PopulateBackendInfo(&g_Config);
VulkanContext::PopulateBackendInfoAdapters(&g_Config, gpu_list);
// We need the surface before we can create a device, as some parameters depend on it.
VkSurfaceKHR surface = VK_NULL_HANDLE;
if (enable_surface)
{
surface = SwapChain::CreateVulkanSurface(instance, wsi.display_connection, wsi.render_surface);
if (surface == VK_NULL_HANDLE)
{
PanicAlert("Failed to create Vulkan surface.");
vkDestroyInstance(instance, nullptr);
UnloadVulkanLibrary();
return false;
}
}
// Since we haven't called InitializeShared yet, iAdapter may be out of range,
// so we have to check it ourselves.
size_t selected_adapter_index = static_cast<size_t>(g_Config.iAdapter);
if (selected_adapter_index >= gpu_list.size())
{
WARN_LOG(VIDEO, "Vulkan adapter index out of range, selecting first adapter.");
selected_adapter_index = 0;
}
// Now we can create the Vulkan device. VulkanContext takes ownership of the instance and surface.
g_vulkan_context = VulkanContext::Create(instance, gpu_list[selected_adapter_index], surface,
enable_debug_reports, enable_validation_layer);
if (!g_vulkan_context)
{
PanicAlert("Failed to create Vulkan device");
UnloadVulkanLibrary();
return false;
}
// Since VulkanContext maintains a copy of the device features and properties, we can use this
// to initialize the backend information, so that we don't need to enumerate everything again.
VulkanContext::PopulateBackendInfoFeatures(&g_Config, g_vulkan_context->GetPhysicalDevice(),
g_vulkan_context->GetDeviceProperties(),
g_vulkan_context->GetDeviceFeatures());
VulkanContext::PopulateBackendInfoMultisampleModes(
&g_Config, g_vulkan_context->GetPhysicalDevice(), g_vulkan_context->GetDeviceProperties());
// With the backend information populated, we can now initialize videocommon.
InitializeShared();
// Create command buffers. We do this separately because the other classes depend on it.
g_command_buffer_mgr = std::make_unique<CommandBufferManager>(g_Config.bBackendMultithreading);
if (!g_command_buffer_mgr->Initialize())
{
PanicAlert("Failed to create Vulkan command buffers");
Shutdown();
return false;
}
// Remaining classes are also dependent on object/shader cache.
g_object_cache = std::make_unique<ObjectCache>();
g_shader_cache = std::make_unique<ShaderCache>();
if (!g_object_cache->Initialize() || !g_shader_cache->Initialize())
{
PanicAlert("Failed to initialize Vulkan object cache.");
Shutdown();
return false;
}
// Create swap chain. This has to be done early so that the target size is correct for auto-scale.
std::unique_ptr<SwapChain> swap_chain;
if (surface != VK_NULL_HANDLE)
{
swap_chain =
SwapChain::Create(wsi.display_connection, wsi.render_surface, surface, g_Config.IsVSync());
if (!swap_chain)
{
PanicAlert("Failed to create Vulkan swap chain.");
Shutdown();
return false;
}
}
// Create main wrapper instances.
g_framebuffer_manager = std::make_unique<FramebufferManager>();
g_renderer = std::make_unique<Renderer>(std::move(swap_chain));
g_vertex_manager = std::make_unique<VertexManager>();
g_texture_cache = std::make_unique<TextureCache>();
::g_shader_cache = std::make_unique<VideoCommon::ShaderCache>();
g_perf_query = std::make_unique<PerfQuery>();
// Invoke init methods on main wrapper classes.
// These have to be done before the others because the destructors
// for the remaining classes may call methods on these.
if (!StateTracker::CreateInstance() || !FramebufferManager::GetInstance()->Initialize() ||
!Renderer::GetInstance()->Initialize() || !VertexManager::GetInstance()->Initialize() ||
!TextureCache::GetInstance()->Initialize() || !PerfQuery::GetInstance()->Initialize() ||
!::g_shader_cache->Initialize())
{
PanicAlert("Failed to initialize Vulkan classes.");
Shutdown();
return false;
}
// Display the name so the user knows which device was actually created.
INFO_LOG(VIDEO, "Vulkan Device: %s", g_vulkan_context->GetDeviceProperties().deviceName);
return true;
}
void VideoBackend::Shutdown()
{
if (g_command_buffer_mgr)
g_command_buffer_mgr->WaitForGPUIdle();
if (::g_shader_cache)
::g_shader_cache->Shutdown();
if (g_renderer)
g_renderer->Shutdown();
g_perf_query.reset();
::g_shader_cache.reset();
g_texture_cache.reset();
g_vertex_manager.reset();
g_renderer.reset();
g_framebuffer_manager.reset();
StateTracker::DestroyInstance();
if (g_shader_cache)
g_shader_cache->Shutdown();
g_shader_cache.reset();
g_object_cache.reset();
g_command_buffer_mgr.reset();
g_vulkan_context.reset();
ShutdownShared();
UnloadVulkanLibrary();
}
} // namespace Vulkan