dolphin/Source/Core/VideoCommon/RenderBase.h

298 lines
12 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#pragma once
#include <array>
#include <memory>
#include <mutex>
#include <string>
#include <string_view>
#include <thread>
#include <tuple>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/Flag.h"
#include "Common/MathUtil.h"
#include "VideoCommon/GraphicsModSystem/Runtime/GraphicsModManager.h"
#include "VideoCommon/RenderState.h"
class AbstractFramebuffer;
class AbstractPipeline;
class AbstractShader;
class AbstractTexture;
class AbstractStagingTexture;
class BoundingBox;
class NativeVertexFormat;
class PixelShaderManager;
class PointerWrap;
struct ComputePipelineConfig;
struct AbstractPipelineConfig;
struct PortableVertexDeclaration;
struct TextureConfig;
enum class AbstractTextureFormat : u32;
enum class ShaderStage;
enum class EFBAccessType;
enum class EFBReinterpretType;
enum class StagingTextureType;
namespace VideoCommon
{
class AsyncShaderCompiler;
}
struct EfbPokeData
{
u16 x, y;
u32 data;
};
// Renderer really isn't a very good name for this class - it's more like "Misc".
// The long term goal is to get rid of this class and replace it with others that make
// more sense.
class Renderer
{
public:
Renderer(int backbuffer_width, int backbuffer_height, float backbuffer_scale,
AbstractTextureFormat backbuffer_format);
virtual ~Renderer();
using ClearColor = std::array<float, 4>;
virtual bool IsHeadless() const = 0;
virtual bool Initialize();
virtual void Shutdown();
virtual void SetPipeline(const AbstractPipeline* pipeline) {}
virtual void SetScissorRect(const MathUtil::Rectangle<int>& rc) {}
virtual void SetTexture(u32 index, const AbstractTexture* texture) {}
virtual void SetSamplerState(u32 index, const SamplerState& state) {}
virtual void SetComputeImageTexture(AbstractTexture* texture, bool read, bool write) {}
virtual void UnbindTexture(const AbstractTexture* texture) {}
virtual void SetViewport(float x, float y, float width, float height, float near_depth,
float far_depth)
{
}
virtual void SetFullscreen(bool enable_fullscreen) {}
virtual bool IsFullscreen() const { return false; }
virtual void BeginUtilityDrawing();
virtual void EndUtilityDrawing();
virtual std::unique_ptr<AbstractTexture> CreateTexture(const TextureConfig& config,
std::string_view name = "") = 0;
virtual std::unique_ptr<AbstractStagingTexture>
CreateStagingTexture(StagingTextureType type, const TextureConfig& config) = 0;
virtual std::unique_ptr<AbstractFramebuffer>
CreateFramebuffer(AbstractTexture* color_attachment, AbstractTexture* depth_attachment) = 0;
// Framebuffer operations.
virtual void SetFramebuffer(AbstractFramebuffer* framebuffer);
virtual void SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer);
virtual void SetAndClearFramebuffer(AbstractFramebuffer* framebuffer,
const ClearColor& color_value = {}, float depth_value = 0.0f);
// Drawing with currently-bound pipeline state.
virtual void Draw(u32 base_vertex, u32 num_vertices) {}
virtual void DrawIndexed(u32 base_index, u32 num_indices, u32 base_vertex) {}
// Dispatching compute shaders with currently-bound state.
virtual void DispatchComputeShader(const AbstractShader* shader, u32 groupsize_x, u32 groupsize_y,
u32 groupsize_z, u32 groups_x, u32 groups_y, u32 groups_z)
{
}
// Binds the backbuffer for rendering. The buffer will be cleared immediately after binding.
// This is where any window size changes are detected, therefore m_backbuffer_width and/or
// m_backbuffer_height may change after this function returns.
virtual void BindBackbuffer(const ClearColor& clear_color = {}) {}
// Presents the backbuffer to the window system, or "swaps buffers".
virtual void PresentBackbuffer() {}
// Shader modules/objects.
virtual std::unique_ptr<AbstractShader> CreateShaderFromSource(ShaderStage stage,
std::string_view source,
std::string_view name = "") = 0;
virtual std::unique_ptr<AbstractShader> CreateShaderFromBinary(ShaderStage stage,
const void* data, size_t length,
std::string_view name = "") = 0;
virtual std::unique_ptr<NativeVertexFormat>
CreateNativeVertexFormat(const PortableVertexDeclaration& vtx_decl) = 0;
virtual std::unique_ptr<AbstractPipeline> CreatePipeline(const AbstractPipelineConfig& config,
const void* cache_data = nullptr,
size_t cache_data_length = 0) = 0;
AbstractFramebuffer* GetCurrentFramebuffer() const { return m_current_framebuffer; }
// Ideal internal resolution - multiple of the native EFB resolution
int GetTargetWidth() const { return m_target_width; }
int GetTargetHeight() const { return m_target_height; }
// Sets viewport and scissor to the specified rectangle. rect is assumed to be in framebuffer
// coordinates, i.e. lower-left origin in OpenGL.
void SetViewportAndScissor(const MathUtil::Rectangle<int>& rect, float min_depth = 0.0f,
float max_depth = 1.0f);
// Scales a GPU texture using a copy shader.
virtual void ScaleTexture(AbstractFramebuffer* dst_framebuffer,
const MathUtil::Rectangle<int>& dst_rect,
const AbstractTexture* src_texture,
const MathUtil::Rectangle<int>& src_rect);
// Converts an upper-left to lower-left if required by the backend, optionally
// clamping to the framebuffer size.
MathUtil::Rectangle<int> ConvertFramebufferRectangle(const MathUtil::Rectangle<int>& rect,
u32 fb_width, u32 fb_height) const;
MathUtil::Rectangle<int>
ConvertFramebufferRectangle(const MathUtil::Rectangle<int>& rect,
const AbstractFramebuffer* framebuffer) const;
// EFB coordinate conversion functions
// Use this to convert a whole native EFB rect to backbuffer coordinates
MathUtil::Rectangle<int> ConvertEFBRectangle(const MathUtil::Rectangle<int>& rc) const;
unsigned int GetEFBScale() const;
// Use this to upscale native EFB coordinates to IDEAL internal resolution
int EFBToScaledX(int x) const;
int EFBToScaledY(int y) const;
// Floating point versions of the above - only use them if really necessary
float EFBToScaledXf(float x) const;
float EFBToScaledYf(float y) const;
virtual void ClearScreen(const MathUtil::Rectangle<int>& rc, bool colorEnable, bool alphaEnable,
bool zEnable, u32 color, u32 z);
virtual void ReinterpretPixelData(EFBReinterpretType convtype);
void RenderToXFB(u32 xfbAddr, const MathUtil::Rectangle<int>& sourceRc, u32 fbStride,
u32 fbHeight, float Gamma = 1.0f);
virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data);
virtual void PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points);
bool IsBBoxEnabled() const;
void BBoxEnable(PixelShaderManager& pixel_shader_manager);
void BBoxDisable(PixelShaderManager& pixel_shader_manager);
u16 BBoxRead(u32 index);
void BBoxWrite(u32 index, u16 value);
void BBoxFlush();
virtual void Flush() {}
virtual void WaitForGPUIdle() {}
// Finish up the current frame, print some stats
void Swap(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks);
void UpdateWidescreenHeuristic();
bool IsGameWidescreen() const { return m_is_game_widescreen; }
// A simple presentation fallback, only used by video software
virtual void ShowImage(const AbstractTexture* source_texture,
const MathUtil::Rectangle<int>& source_rc)
{
}
// For opengl's glDrawBuffer
virtual void SelectLeftBuffer() {}
virtual void SelectRightBuffer() {}
virtual void SelectMainBuffer() {}
// Called when the configuration changes, and backend structures need to be updated.
virtual void OnConfigChanged(u32 bits) {}
PixelFormat GetPrevPixelFormat() const { return m_prev_efb_format; }
void StorePixelFormat(PixelFormat new_format) { m_prev_efb_format = new_format; }
bool EFBHasAlphaChannel() const;
bool UseVertexDepthRange() const;
void DoState(PointerWrap& p);
virtual std::unique_ptr<VideoCommon::AsyncShaderCompiler> CreateAsyncShaderCompiler();
// Returns true if a layer-expanding geometry shader should be used when rendering the user
// interface and final XFB.
bool UseGeometryShaderForUI() const;
// Will forcibly reload all textures on the next swap
void ForceReloadTextures();
const GraphicsModManager& GetGraphicsModManager() const;
// Bitmask containing information about which configuration has changed for the backend.
enum ConfigChangeBits : u32
{
CONFIG_CHANGE_BIT_HOST_CONFIG = (1 << 0),
CONFIG_CHANGE_BIT_MULTISAMPLES = (1 << 1),
CONFIG_CHANGE_BIT_STEREO_MODE = (1 << 2),
CONFIG_CHANGE_BIT_TARGET_SIZE = (1 << 3),
CONFIG_CHANGE_BIT_ANISOTROPY = (1 << 4),
CONFIG_CHANGE_BIT_FORCE_TEXTURE_FILTERING = (1 << 5),
CONFIG_CHANGE_BIT_VSYNC = (1 << 6),
CONFIG_CHANGE_BIT_BBOX = (1 << 7)
};
protected:
std::tuple<int, int> CalculateTargetScale(int x, int y) const;
bool CalculateTargetSize();
void CheckForConfigChanges();
void CheckFifoRecording();
void RecordVideoMemory();
virtual std::unique_ptr<BoundingBox> CreateBoundingBox() const = 0;
AbstractFramebuffer* m_current_framebuffer = nullptr;
const AbstractPipeline* m_current_pipeline = nullptr;
bool m_is_game_widescreen = false;
bool m_was_orthographically_anamorphic = false;
// The framebuffer size
int m_target_width = 1;
int m_target_height = 1;
int m_frame_count = 0;
private:
PixelFormat m_prev_efb_format = PixelFormat::INVALID_FMT;
unsigned int m_efb_scale = 1;
u64 m_last_xfb_ticks = 0;
u32 m_last_xfb_addr = 0;
u32 m_last_xfb_width = 0;
u32 m_last_xfb_stride = 0;
u32 m_last_xfb_height = 0;
std::unique_ptr<BoundingBox> m_bounding_box;
// Nintendo's SDK seems to write "default" bounding box values before every draw (1023 0 1023 0
// are the only values encountered so far, which happen to be the extents allowed by the BP
// registers) to reset the registers for comparison in the pixel engine, and presumably to detect
// whether GX has updated the registers with real values.
//
// We can store these values when Bounding Box emulation is disabled and return them on read,
// which the game will interpret as "no pixels have been drawn"
//
// This produces much better results than just returning garbage, which can cause games like
// Ultimate Spider-Man to crash
std::array<u16, 4> m_bounding_box_fallback = {};
Common::Flag m_force_reload_textures;
GraphicsModManager m_graphics_mod_manager;
};
extern std::unique_ptr<Renderer> g_renderer;