dolphin/Source/Plugins/Plugin_VideoOGL/Src/VertexLoader.cpp

776 lines
29 KiB
C++

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Globals.h"
#include <fstream>
#include <assert.h>
#include "Common.h"
#include "ImageWrite.h"
#include "x64Emitter.h"
#include "ABI.h"
#include "Profiler.h"
#include "StringUtil.h"
#include "Render.h"
#include "VertexManager.h"
#include "VertexLoader.h"
#include "BPStructs.h"
#include "DataReader.h"
#include "VertexShaderManager.h"
#include "PixelShaderManager.h"
#include "TextureMngr.h"
#include "MemoryUtil.h"
#include <fstream>
extern void (*fnSetupVertexPointers)();
//these don't need to be saved
static float posScale;
static int colElements[2];
static float tcScaleU[8];
static float tcScaleV[8];
static int tcIndex;
static int colIndex;
#ifndef _WIN32
#undef inline
#define inline
#endif
TVtxDesc VertexManager::s_GlobalVtxDesc;
// ==============================================================================
// Direct
// ==============================================================================
static u8 s_curposmtx;
static u8 s_curtexmtx[8];
static int s_texmtxwrite = 0;
static int s_texmtxread = 0;
void LOADERDECL PosMtx_ReadDirect_UByte(void* _p)
{
s_curposmtx = DataReadU8()&0x3f;
PRIM_LOG("posmtx: %d, ", s_curposmtx);
}
void LOADERDECL PosMtx_Write(void* _p)
{
*VertexManager::s_pCurBufferPointer++ = s_curposmtx;
//*VertexManager::s_pCurBufferPointer++ = 0;
//*VertexManager::s_pCurBufferPointer++ = 0;
//*VertexManager::s_pCurBufferPointer++ = 0;
}
void LOADERDECL TexMtx_ReadDirect_UByte(void* _p)
{
s_curtexmtx[s_texmtxread] = DataReadU8()&0x3f;
PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]);
s_texmtxread++;
}
void LOADERDECL TexMtx_Write_Float(void* _p)
{
*(float*)VertexManager::s_pCurBufferPointer = (float)s_curtexmtx[s_texmtxwrite++];
VertexManager::s_pCurBufferPointer += 4;
}
void LOADERDECL TexMtx_Write_Float2(void* _p)
{
((float*)VertexManager::s_pCurBufferPointer)[0] = 0;
((float*)VertexManager::s_pCurBufferPointer)[1] = (float)s_curtexmtx[s_texmtxwrite++];
VertexManager::s_pCurBufferPointer += 8;
}
void LOADERDECL TexMtx_Write_Short3(void* _p)
{
((s16*)VertexManager::s_pCurBufferPointer)[0] = 0;
((s16*)VertexManager::s_pCurBufferPointer)[1] = 0;
((s16*)VertexManager::s_pCurBufferPointer)[2] = s_curtexmtx[s_texmtxwrite++];
VertexManager::s_pCurBufferPointer += 6;
}
#include "VertexLoader_Position.h"
#include "VertexLoader_Normal.h"
#include "VertexLoader_Color.h"
#include "VertexLoader_TextCoord.h"
VertexLoader g_VertexLoaders[8];
#define COMPILED_CODE_SIZE 4096
VertexLoader::VertexLoader()
{
m_numPipelineStages = 0;
m_VertexSize = 0;
m_AttrDirty = 1;
VertexLoader_Normal::Init();
m_compiledCode = (u8 *)AllocateExecutableMemory(COMPILED_CODE_SIZE, false);
if (m_compiledCode) {
memset(m_compiledCode, 0, COMPILED_CODE_SIZE);
}
}
VertexLoader::~VertexLoader()
{
FreeMemoryPages(m_compiledCode, COMPILED_CODE_SIZE);
}
int VertexLoader::ComputeVertexSize()
{
if (!m_AttrDirty) {
// Compare the 33 desc bits.
if (m_VtxDesc.Hex0 == VertexManager::GetVtxDesc().Hex0 &&
(m_VtxDesc.Hex1 & 1) == (VertexManager::GetVtxDesc().Hex1 & 1))
return m_VertexSize;
m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex;
}
else {
// Attributes are dirty so we have to recompute everything anyway.
m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex;
}
if (fnSetupVertexPointers != NULL && fnSetupVertexPointers == (void (*)())(void*)m_compiledCode)
VertexManager::Flush();
m_AttrDirty = 1;
m_VertexSize = 0;
// Position Matrix Index
if (m_VtxDesc.PosMatIdx)
m_VertexSize += 1;
// Texture matrix indices
if (m_VtxDesc.Tex0MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex1MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex2MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex3MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex4MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex5MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex6MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex7MatIdx) m_VertexSize += 1;
switch (m_VtxDesc.Position) {
case NOT_PRESENT: {_assert_("Vertex descriptor without position!");} break;
case DIRECT:
{
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE:
case FORMAT_BYTE: m_VertexSize += m_VtxAttr.PosElements?3:2; break;
case FORMAT_USHORT:
case FORMAT_SHORT: m_VertexSize += m_VtxAttr.PosElements?6:4; break;
case FORMAT_FLOAT: m_VertexSize += m_VtxAttr.PosElements?12:8; break;
default: _assert_(0); break;
}
}
break;
case INDEX8:
m_VertexSize += 1;
break;
case INDEX16:
m_VertexSize += 2;
break;
}
VertexLoader_Normal::index3 = m_VtxAttr.NormalIndex3 ? true : false;
if (m_VtxDesc.Normal != NOT_PRESENT)
m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
// Colors
int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++) {
switch (col[i])
{
case NOT_PRESENT:
break;
case DIRECT:
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: m_VertexSize += 2; break;
case FORMAT_24B_888: m_VertexSize += 3; break;
case FORMAT_32B_888x: m_VertexSize += 4; break;
case FORMAT_16B_4444: m_VertexSize += 2; break;
case FORMAT_24B_6666: m_VertexSize += 3; break;
case FORMAT_32B_8888: m_VertexSize += 4; break;
default: _assert_(0); break;
}
break;
case INDEX8:
m_VertexSize += 1;
break;
case INDEX16:
m_VertexSize += 2;
break;
}
}
// TextureCoord
int tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
for (int i = 0; i < 8; i++) {
switch (tc[i]) {
case NOT_PRESENT:
break;
case DIRECT:
{
switch (m_VtxAttr.texCoord[i].Format)
{
case FORMAT_UBYTE:
case FORMAT_BYTE: m_VertexSize += m_VtxAttr.texCoord[i].Elements?2:1; break;
case FORMAT_USHORT:
case FORMAT_SHORT: m_VertexSize += m_VtxAttr.texCoord[i].Elements?4:2; break;
case FORMAT_FLOAT: m_VertexSize += m_VtxAttr.texCoord[i].Elements?8:4; break;
default: _assert_(0); break;
}
}
break;
case INDEX8:
m_VertexSize += 1;
break;
case INDEX16:
m_VertexSize += 2;
break;
}
}
return m_VertexSize;
}
// Note the use of CallCdeclFunction3I etc.
// This is a horrible hack that is necessary because in 64-bit mode, Opengl32.dll is based way, way above the 32-bit
// address space that is within reach of a CALL, and just doing &fn gives us these high uncallable addresses. So we
// want to grab the function pointers from the import table instead.
// This problem does not apply to glew functions, only core opengl32 functions.
DECLARE_IMPORT(glNormalPointer);
DECLARE_IMPORT(glVertexPointer);
DECLARE_IMPORT(glColorPointer);
DECLARE_IMPORT(glTexCoordPointer);
void VertexLoader::ProcessFormat()
{
using namespace Gen;
//_assert_( VertexManager::s_pCurBufferPointer == s_pBaseBufferPointer );
if (!m_AttrDirty)
{
// Check if local cached desc (in this VL) matches global desc
if (m_VtxDesc.Hex0 == VertexManager::GetVtxDesc().Hex0 && (m_VtxDesc.Hex1 & 1)==(VertexManager::GetVtxDesc().Hex1 & 1))
return; // same
}
else
m_AttrDirty = 0;
m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex;
DVSTARTPROFILE();
// Reset pipeline
m_VBStridePad = 0;
m_VBVertexStride = 0;
m_numPipelineStages = 0;
m_components = 0;
// m_VBVertexStride for texmtx and posmtx is computed later when writing.
// Position Matrix Index
if (m_VtxDesc.PosMatIdx) {
m_PipelineStages[m_numPipelineStages++] = PosMtx_ReadDirect_UByte;
m_components |= VB_HAS_POSMTXIDX;
}
if (m_VtxDesc.Tex0MatIdx) {m_components|=VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex1MatIdx) {m_components|=VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex2MatIdx) {m_components|=VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex3MatIdx) {m_components|=VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex4MatIdx) {m_components|=VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex5MatIdx) {m_components|=VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex6MatIdx) {m_components|=VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex7MatIdx) {m_components|=VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); }
// Position
if (m_VtxDesc.Position != NOT_PRESENT)
m_VBVertexStride += 12;
switch (m_VtxDesc.Position) {
case NOT_PRESENT: {_assert_msg_(0,"Vertex descriptor without position!","WTF?");} break;
case DIRECT:
{
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE: WriteCall(Pos_ReadDirect_UByte); break;
case FORMAT_BYTE: WriteCall(Pos_ReadDirect_Byte); break;
case FORMAT_USHORT: WriteCall(Pos_ReadDirect_UShort); break;
case FORMAT_SHORT: WriteCall(Pos_ReadDirect_Short); break;
case FORMAT_FLOAT: WriteCall(Pos_ReadDirect_Float); break;
default: _assert_(0); break;
}
}
break;
case INDEX8:
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE: WriteCall(Pos_ReadIndex8_UByte); break; //WTF?
case FORMAT_BYTE: WriteCall(Pos_ReadIndex8_Byte); break;
case FORMAT_USHORT: WriteCall(Pos_ReadIndex8_UShort); break;
case FORMAT_SHORT: WriteCall(Pos_ReadIndex8_Short); break;
case FORMAT_FLOAT: WriteCall(Pos_ReadIndex8_Float); break;
default: _assert_(0); break;
}
break;
case INDEX16:
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE: WriteCall(Pos_ReadIndex16_UByte); break;
case FORMAT_BYTE: WriteCall(Pos_ReadIndex16_Byte); break;
case FORMAT_USHORT: WriteCall(Pos_ReadIndex16_UShort); break;
case FORMAT_SHORT: WriteCall(Pos_ReadIndex16_Short); break;
case FORMAT_FLOAT: WriteCall(Pos_ReadIndex16_Float); break;
default: _assert_(0); break;
}
break;
}
// Normals
if (m_VtxDesc.Normal != NOT_PRESENT) {
VertexLoader_Normal::index3 = m_VtxAttr.NormalIndex3 ? true : false;
TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
if (pFunc == 0)
{
char temp[256];
sprintf(temp,"%i %i %i", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
g_VideoInitialize.pSysMessage("VertexLoader_Normal::GetFunction returned zero!");
}
WriteCall(pFunc);
int sizePro = 0;
switch (m_VtxAttr.NormalFormat)
{
case FORMAT_UBYTE: sizePro=1; break;
case FORMAT_BYTE: sizePro=1; break;
case FORMAT_USHORT: sizePro=2; break;
case FORMAT_SHORT: sizePro=2; break;
case FORMAT_FLOAT: sizePro=4; break;
default: _assert_(0); break;
}
m_VBVertexStride += sizePro * 3 * (m_VtxAttr.NormalElements?3:1);
int m_numNormals = (m_VtxAttr.NormalElements==1) ? NRM_THREE : NRM_ONE;
m_components |= VB_HAS_NRM0;
if (m_numNormals == NRM_THREE)
m_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
// Colors
int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++) {
SetupColor(i, col[i], m_VtxAttr.color[i].Comp, m_VtxAttr.color[i].Elements);
if (col[i] != NOT_PRESENT)
m_VBVertexStride+=4;
}
// TextureCoord
int tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
// Texture matrix indices (remove if corresponding texture coordinate isn't enabled)
for (int i = 0; i < 8; i++) {
SetupTexCoord(i, tc[i], m_VtxAttr.texCoord[i].Format, m_VtxAttr.texCoord[i].Elements, m_VtxAttr.texCoord[i].Frac);
if (m_components & (VB_HAS_TEXMTXIDX0 << i)) {
if (tc[i] != NOT_PRESENT) {
// if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index
WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2);
m_VBVertexStride += 12;
}
else {
WriteCall(TexMtx_Write_Short3);
m_VBVertexStride += 6; // still include the texture coordinate, but this time as 6 bytes
m_components |= VB_HAS_UV0 << i; // have to include since using now
}
}
else {
if (tc[i] != NOT_PRESENT)
m_VBVertexStride += 4 * (m_VtxAttr.texCoord[i].Elements ? 2 : 1);
}
if (tc[i] == NOT_PRESENT) {
// if there's more tex coords later, have to write a dummy call
int j = i + 1;
for (; j < 8; ++j) {
if (tc[j] != NOT_PRESENT) {
WriteCall(TexCoord_Read_Dummy); // important to get indices right!
break;
}
}
if (j == 8 && !((m_components&VB_HAS_TEXMTXIDXALL)&(VB_HAS_TEXMTXIDXALL<<(i+1)))) // no more tex coords and tex matrices, so exit loop
break;
}
}
if (m_VtxDesc.PosMatIdx) {
WriteCall(PosMtx_Write);
m_VBVertexStride += 1;
}
if (m_VBVertexStride & 3) {
// make sure all strides are at least divisible by 4 (some gfx cards experience a 3x speed boost)
m_VBStridePad = 4 - (m_VBVertexStride&3);
m_VBVertexStride += m_VBStridePad;
}
// compile the pointer set function
u8 *old_code_ptr = GetWritableCodePtr();
SetCodePtr(m_compiledCode);
Util::EmitPrologue(6);
int offset = 0;
// Position
if (m_VtxDesc.Position != NOT_PRESENT) {
CallCdeclFunction4_I(glVertexPointer, 3, GL_FLOAT, m_VBVertexStride, offset);
offset += 12;
}
// Normals
if (m_VtxDesc.Normal != NOT_PRESENT) {
switch (m_VtxAttr.NormalFormat) {
case FORMAT_UBYTE:
case FORMAT_BYTE:
CallCdeclFunction3_I(glNormalPointer, GL_BYTE, m_VBVertexStride, offset); offset += 3;
if (m_VtxAttr.NormalElements) {
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM1_ATTRIB, 3, GL_BYTE, GL_TRUE, m_VBVertexStride, offset); offset += 3;
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM2_ATTRIB, 3, GL_BYTE, GL_TRUE, m_VBVertexStride, offset); offset += 3;
}
break;
case FORMAT_USHORT:
case FORMAT_SHORT:
CallCdeclFunction3_I(glNormalPointer, GL_SHORT, m_VBVertexStride, offset); offset += 6;
if (m_VtxAttr.NormalElements) {
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM1_ATTRIB, 3, GL_SHORT, GL_TRUE, m_VBVertexStride, offset); offset += 6;
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM2_ATTRIB, 3, GL_SHORT, GL_TRUE, m_VBVertexStride, offset); offset += 6;
}
break;
case FORMAT_FLOAT:
CallCdeclFunction3_I(glNormalPointer, GL_FLOAT, m_VBVertexStride, offset); offset += 12;
if (m_VtxAttr.NormalElements) {
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM1_ATTRIB, 3, GL_FLOAT, GL_TRUE, m_VBVertexStride, offset); offset += 12;
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM2_ATTRIB, 3, GL_FLOAT, GL_TRUE, m_VBVertexStride, offset); offset += 12;
}
break;
default: _assert_(0); break;
}
}
for (int i = 0; i < 2; i++) {
if (col[i] != NOT_PRESENT) {
if (i)
CallCdeclFunction4((void *)glSecondaryColorPointer, 4, GL_UNSIGNED_BYTE, m_VBVertexStride, offset);
else
CallCdeclFunction4_I(glColorPointer, 4, GL_UNSIGNED_BYTE, m_VBVertexStride, offset);
offset += 4;
}
}
// TextureCoord
for (int i = 0; i < 8; i++) {
if (tc[i] != NOT_PRESENT || (m_components&(VB_HAS_TEXMTXIDX0<<i))) {
int id = GL_TEXTURE0+i;
#ifdef _M_X64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(id));
#else
MOV(32, R(RDI), Imm32(id));
#endif
#else
ABI_AlignStack(1 * 4);
PUSH(32, Imm32(id));
#endif
CALL((void *)glClientActiveTexture);
#ifndef _M_X64
#ifdef _WIN32
// don't inc stack on windows, stdcall
#else
ABI_RestoreStack(1 * 4);
#endif
#endif
if (m_components & (VB_HAS_TEXMTXIDX0 << i)) {
if (tc[i] != NOT_PRESENT) {
CallCdeclFunction4_I(glTexCoordPointer, 3, GL_FLOAT, m_VBVertexStride, offset);
offset += 12;
}
else {
CallCdeclFunction4_I(glTexCoordPointer, 3, GL_SHORT, m_VBVertexStride, offset);
offset += 6;
}
}
else {
CallCdeclFunction4_I(glTexCoordPointer, m_VtxAttr.texCoord[i].Elements?2:1, GL_FLOAT, m_VBVertexStride, offset);
offset += 4 * (m_VtxAttr.texCoord[i].Elements?2:1);
}
}
}
if (m_VtxDesc.PosMatIdx) {
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_POSMTX_ATTRIB,1,GL_UNSIGNED_BYTE, GL_FALSE, m_VBVertexStride, offset);
offset += 1;
}
_assert_(offset+m_VBStridePad == m_VBVertexStride);
Util::EmitEpilogue(6);
if (Gen::GetCodePtr() - (u8*)m_compiledCode > COMPILED_CODE_SIZE)
{
assert(0);
Crash();
}
SetCodePtr(old_code_ptr);
}
void VertexLoader::PrepareRun()
{
posScale = shiftLookup[m_VtxAttr.PosFrac];
if (m_components & VB_HAS_UVALL) {
for (int i = 0; i < 8; i++) {
tcScaleU[i] = shiftLookup[m_VtxAttr.texCoord[i].Frac];
tcScaleV[i] = shiftLookup[m_VtxAttr.texCoord[i].Frac];
}
}
for (int i = 0; i < 2; i++)
colElements[i] = m_VtxAttr.color[i].Elements;
}
void VertexLoader::SetupColor(int num, int mode, int format, int elements)
{
// if COL0 not present, then embed COL1 into COL0
if (num == 1 && !(m_components & VB_HAS_COL0))
num = 0;
m_components |= VB_HAS_COL0 << num;
switch (mode)
{
case NOT_PRESENT:
m_components &= ~(VB_HAS_COL0 << num);
break;
case DIRECT:
switch (format)
{
case FORMAT_16B_565: WriteCall(Color_ReadDirect_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadDirect_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadDirect_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadDirect_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadDirect_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadDirect_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX8:
switch (format)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX16:
switch (format)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break;
default: _assert_(0); break;
}
break;
}
}
void VertexLoader::SetupTexCoord(int num, int mode, int format, int elements, int _iFrac)
{
m_components |= VB_HAS_UV0 << num;
switch (mode)
{
case NOT_PRESENT:
m_components &= ~(VB_HAS_UV0 << num);
break;
case DIRECT:
switch (format)
{
case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadDirect_UByte2:TexCoord_ReadDirect_UByte1); break;
case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadDirect_Byte2:TexCoord_ReadDirect_Byte1); break;
case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadDirect_UShort2:TexCoord_ReadDirect_UShort1); break;
case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadDirect_Short2:TexCoord_ReadDirect_Short1); break;
case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadDirect_Float2:TexCoord_ReadDirect_Float1); break;
default: _assert_(0); break;
}
break;
case INDEX8:
switch (format)
{
case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex8_UByte2:TexCoord_ReadIndex8_UByte1); break;
case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex8_Byte2:TexCoord_ReadIndex8_Byte1); break;
case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex8_UShort2:TexCoord_ReadIndex8_UShort1); break;
case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex8_Short2:TexCoord_ReadIndex8_Short1); break;
case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex8_Float2:TexCoord_ReadIndex8_Float1); break;
default: _assert_(0); break;
}
break;
case INDEX16:
switch (format)
{
case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex16_UByte2:TexCoord_ReadIndex16_UByte1); break;
case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex16_Byte2:TexCoord_ReadIndex16_Byte1); break;
case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex16_UShort2:TexCoord_ReadIndex16_UShort1); break;
case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex16_Short2:TexCoord_ReadIndex16_Short1); break;
case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex16_Float2:TexCoord_ReadIndex16_Float1); break;
default: _assert_(0);
}
break;
}
}
void VertexLoader::WriteCall(void (LOADERDECL *func)(void *))
{
m_PipelineStages[m_numPipelineStages++] = func;
}
void VertexLoader::RunVertices(int primitive, int count)
{
DVSTARTPROFILE();
ComputeVertexSize(); // HACK for underruns in Super Monkey Ball etc. !!!! dirty handling must be wrong.
if (count <= 0)
return;
if (fnSetupVertexPointers != NULL && fnSetupVertexPointers != (void (*)())(void*)m_compiledCode)
VertexManager::Flush();
if (bpmem.genMode.cullmode == 3 && primitive < 5)
{
// if cull mode is none, ignore triangles and quads
DataSkip(count*m_VertexSize);
return;
}
ProcessFormat();
fnSetupVertexPointers = (void (*)())(void*)m_compiledCode;
VertexManager::EnableComponents(m_components);
PrepareRun();
// if strips or fans, make sure all vertices can fit in buffer, otherwise flush
int granularity = 1;
switch(primitive) {
case 3: // strip
case 4: // fan
if (VertexManager::GetRemainingSize() < 3*m_VBVertexStride )
VertexManager::Flush();
break;
case 6: // line strip
if (VertexManager::GetRemainingSize() < 2*m_VBVertexStride )
VertexManager::Flush();
break;
case 0: // quads
granularity = 4;
break;
case 2: // tris
granularity = 3;
break;
case 5: // lines
granularity = 2;
break;
}
int startv = 0, extraverts = 0;
for (int v = 0; v < count; v++)
{
if ((v % granularity) == 0)
{
if (VertexManager::GetRemainingSize() < granularity*m_VBVertexStride) {
// This buffer full - break current primitive and flush, to switch to the next buffer.
u8* plastptr = VertexManager::s_pCurBufferPointer;
if (v - startv > 0)
VertexManager::AddVertices(primitive, v - startv + extraverts);
VertexManager::Flush();
// Why does this need to be so complicated?
switch (primitive) {
case 3: // triangle strip, copy last two vertices
// a little trick since we have to keep track of signs
if (v & 1) {
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-2*m_VBVertexStride, m_VBVertexStride);
memcpy_gc(VertexManager::s_pCurBufferPointer+m_VBVertexStride, plastptr-m_VBVertexStride*2, 2*m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_VBVertexStride*3;
extraverts = 3;
}
else {
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride*2, m_VBVertexStride*2);
VertexManager::s_pCurBufferPointer += m_VBVertexStride*2;
extraverts = 2;
}
break;
case 4: // tri fan, copy first and last vert
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride*(v-startv+extraverts), m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_VBVertexStride;
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride, m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_VBVertexStride;
extraverts = 2;
break;
case 6: // line strip
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride, m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_VBVertexStride;
extraverts = 1;
break;
default:
extraverts = 0;
break;
}
startv = v;
}
}
tcIndex = 0;
colIndex = 0;
s_texmtxwrite = s_texmtxread = 0;
for (int i = 0; i < m_numPipelineStages; i++)
m_PipelineStages[i](&m_VtxAttr);
VertexManager::s_pCurBufferPointer += m_VBStridePad;
PRIM_LOG("\n");
}
if (startv < count)
VertexManager::AddVertices(primitive, count - startv + extraverts);
}