dolphin/Source/Core/VideoCommon/Assets/MeshAsset.cpp

664 lines
23 KiB
C++

// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/Assets/MeshAsset.h"
#include <algorithm>
#include <array>
#include <utility>
#include <tinygltf/tiny_gltf.h>
#include "Common/IOFile.h"
#include "Common/Logging/Log.h"
#include "Common/StringUtil.h"
#include "VideoCommon/Assets/CustomAssetLibrary.h"
namespace VideoCommon
{
namespace
{
Common::Matrix44 BuildMatrixFromNode(const tinygltf::Node& node)
{
if (!node.matrix.empty())
{
Common::Matrix44 matrix;
for (std::size_t i = 0; i < node.matrix.size(); i++)
{
matrix.data[i] = static_cast<float>(node.matrix[i]);
}
return matrix;
}
Common::Matrix44 matrix = Common::Matrix44::Identity();
// Check individual components
if (!node.scale.empty())
{
matrix *= Common::Matrix44::FromMatrix33(Common::Matrix33::Scale(
Common::Vec3{static_cast<float>(node.scale[0]), static_cast<float>(node.scale[1]),
static_cast<float>(node.scale[2])}));
}
if (!node.rotation.empty())
{
matrix *= Common::Matrix44::FromQuaternion(Common::Quaternion(
static_cast<float>(node.rotation[3]), static_cast<float>(node.rotation[0]),
static_cast<float>(node.rotation[1]), static_cast<float>(node.rotation[2])));
}
if (!node.translation.empty())
{
matrix *= Common::Matrix44::Translate(Common::Vec3{static_cast<float>(node.translation[0]),
static_cast<float>(node.translation[1]),
static_cast<float>(node.translation[2])});
}
return matrix;
}
bool GLTFComponentTypeToAttributeFormat(int component_type, AttributeFormat* format)
{
switch (component_type)
{
case TINYGLTF_COMPONENT_TYPE_BYTE:
{
format->type = ComponentFormat::Byte;
format->integer = false;
}
break;
case TINYGLTF_COMPONENT_TYPE_DOUBLE:
{
return false;
}
break;
case TINYGLTF_COMPONENT_TYPE_FLOAT:
{
format->type = ComponentFormat::Float;
format->integer = false;
}
break;
case TINYGLTF_COMPONENT_TYPE_INT:
{
format->type = ComponentFormat::Float;
format->integer = true;
}
break;
case TINYGLTF_COMPONENT_TYPE_SHORT:
{
format->type = ComponentFormat::Short;
format->integer = false;
}
break;
case TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE:
{
format->type = ComponentFormat::UByte;
format->integer = false;
}
break;
case TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT:
{
return false;
}
break;
case TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT:
{
format->type = ComponentFormat::UShort;
format->integer = false;
}
break;
};
return true;
}
bool UpdateVertexStrideFromPrimitive(const tinygltf::Model& model, u32 accessor_index,
MeshDataChunk* chunk)
{
const tinygltf::Accessor& accessor = model.accessors[accessor_index];
const int component_count = tinygltf::GetNumComponentsInType(accessor.type);
if (component_count == -1)
{
ERROR_LOG_FMT(VIDEO, "Failed to update vertex stride, component count was invalid");
return false;
}
const int component_size =
tinygltf::GetComponentSizeInBytes(static_cast<uint32_t>(accessor.componentType));
if (component_size == -1)
{
ERROR_LOG_FMT(VIDEO, "Failed to update vertex stride, component size was invalid");
return false;
}
chunk->vertex_stride += component_size * component_count;
return true;
}
bool CopyBufferDataFromPrimitive(const tinygltf::Model& model, u32 accessor_index,
std::size_t* outbound_offset, MeshDataChunk* chunk)
{
const tinygltf::Accessor& accessor = model.accessors[accessor_index];
const int component_count = tinygltf::GetNumComponentsInType(accessor.type);
if (component_count == -1)
{
ERROR_LOG_FMT(VIDEO, "Failed to copy buffer data from primitive, component count was invalid");
return false;
}
const int component_size =
tinygltf::GetComponentSizeInBytes(static_cast<uint32_t>(accessor.componentType));
if (component_size == -1)
{
ERROR_LOG_FMT(VIDEO, "Failed to copy buffer data from primitive, component size was invalid");
return false;
}
const tinygltf::BufferView& buffer_view = model.bufferViews[accessor.bufferView];
const tinygltf::Buffer& buffer = model.buffers[buffer_view.buffer];
if (buffer_view.byteStride == 0)
{
// Data is tightly packed
const auto data = &buffer.data[accessor.byteOffset + buffer_view.byteOffset];
for (std::size_t i = 0; i < accessor.count; i++)
{
const std::size_t vertex_data_offset = i * chunk->vertex_stride + *outbound_offset;
memcpy(&chunk->vertex_data[vertex_data_offset], &data[i * component_size * component_count],
component_size * component_count);
}
}
else
{
// Data is interleaved
const auto data = &buffer.data[accessor.byteOffset + buffer_view.byteOffset];
for (std::size_t i = 0; i < accessor.count; i++)
{
const std::size_t vertex_data_offset = i * chunk->vertex_stride + *outbound_offset;
const std::size_t gltf_data_offset = i * buffer_view.byteStride;
memcpy(&chunk->vertex_data[vertex_data_offset], &data[gltf_data_offset],
component_size * component_count);
}
}
*outbound_offset += component_size * component_count;
return true;
}
bool ReadGLTFMesh(std::string_view mesh_file, const tinygltf::Model& model,
const tinygltf::Mesh& mesh, const Common::Matrix44& mat, MeshData* data)
{
for (std::size_t primitive_index = 0; primitive_index < mesh.primitives.size(); ++primitive_index)
{
MeshDataChunk chunk;
chunk.transform = mat;
const tinygltf::Primitive& primitive = mesh.primitives[primitive_index];
if (primitive.indices == -1)
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' is expected to have indices but doesn't have any", mesh_file);
return false;
}
chunk.material_name = model.materials[primitive.material].name;
const tinygltf::Accessor& index_accessor = model.accessors[primitive.indices];
const tinygltf::BufferView& index_buffer_view = model.bufferViews[index_accessor.bufferView];
const tinygltf::Buffer& index_buffer = model.buffers[index_buffer_view.buffer];
const int index_stride = index_accessor.ByteStride(index_buffer_view);
if (index_stride == -1)
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' has invalid stride", mesh_file);
return false;
}
// TODO C++23: use make_unique_overwrite
chunk.indices = std::unique_ptr<u16[]>(new u16[index_accessor.count]);
auto index_src = &index_buffer.data[index_accessor.byteOffset + index_buffer_view.byteOffset];
for (std::size_t i = 0; i < index_accessor.count; i++)
{
if (index_accessor.componentType == TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT)
{
std::memcpy(&chunk.indices[i], &index_src[i * index_stride], sizeof(u16));
}
else if (index_accessor.componentType == TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE)
{
u8 unsigned_byte;
std::memcpy(&unsigned_byte, &index_src[i * index_stride], sizeof(u8));
chunk.indices[i] = unsigned_byte;
}
else if (index_accessor.componentType == TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT)
{
// TODO: update Dolphin to support u32 indices
ERROR_LOG_FMT(
VIDEO,
"Mesh '{}' uses an indice format of unsigned int which is not currently supported",
mesh_file);
return false;
}
}
chunk.num_indices = static_cast<u32>(index_accessor.count);
if (primitive.mode == TINYGLTF_MODE_TRIANGLES)
{
chunk.primitive_type = PrimitiveType::Triangles;
}
else if (primitive.mode == TINYGLTF_MODE_TRIANGLE_STRIP)
{
chunk.primitive_type = PrimitiveType::TriangleStrip;
}
else if (primitive.mode == TINYGLTF_MODE_TRIANGLE_FAN)
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' requires triangle fan but that is not supported", mesh_file);
return false;
}
else if (primitive.mode == TINYGLTF_MODE_LINE)
{
chunk.primitive_type = PrimitiveType::Lines;
}
else if (primitive.mode == TINYGLTF_MODE_POINTS)
{
chunk.primitive_type = PrimitiveType::Points;
}
chunk.vertex_stride = 0;
static constexpr std::array<std::string_view, 12> all_names = {
"POSITION", "NORMAL", "COLOR_0", "COLOR_1", "TEXCOORD_0", "TEXCOORD_1",
"TEXCOORD_2", "TEXCOORD_3", "TEXCOORD_4", "TEXCOORD_5", "TEXCOORD_6", "TEXCOORD_7",
};
for (std::size_t i = 0; i < all_names.size(); i++)
{
const auto it = primitive.attributes.find(std::string{all_names[i]});
if (it != primitive.attributes.end())
{
if (!UpdateVertexStrideFromPrimitive(model, it->second, &chunk))
return false;
}
}
chunk.vertex_declaration.stride = chunk.vertex_stride;
const auto position_it = primitive.attributes.find("POSITION");
if (position_it == primitive.attributes.end())
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' does not provide a POSITION attribute, that is required",
mesh_file);
return false;
}
std::size_t outbound_offset = 0;
const tinygltf::Accessor& pos_accessor = model.accessors[position_it->second];
chunk.num_vertices = static_cast<u32>(pos_accessor.count);
// TODO C++23: use make_unique_overwrite
chunk.vertex_data = std::unique_ptr<u8[]>(new u8[chunk.num_vertices * chunk.vertex_stride]);
if (!CopyBufferDataFromPrimitive(model, position_it->second, &outbound_offset, &chunk))
return false;
chunk.components_available = 0;
chunk.vertex_declaration.position.enable = true;
chunk.vertex_declaration.position.components = 3;
chunk.vertex_declaration.position.offset = 0;
if (!GLTFComponentTypeToAttributeFormat(pos_accessor.componentType,
&chunk.vertex_declaration.position))
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' has invalid attribute format for position", mesh_file);
return false;
}
// Save off min and max position in case we want to compute bounds
// GLTF spec expects these values to exist but error if they don't
if (pos_accessor.minValues.size() != 3)
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' is expected to have a minimum value but it is missing",
mesh_file);
return false;
}
chunk.minimum_position.x = static_cast<float>(pos_accessor.minValues[0]);
chunk.minimum_position.y = static_cast<float>(pos_accessor.minValues[1]);
chunk.minimum_position.z = static_cast<float>(pos_accessor.minValues[2]);
if (pos_accessor.maxValues.size() != 3)
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' is expected to have a maximum value but it is missing",
mesh_file);
return false;
}
chunk.maximum_position.x = static_cast<float>(pos_accessor.maxValues[0]);
chunk.maximum_position.y = static_cast<float>(pos_accessor.maxValues[1]);
chunk.maximum_position.z = static_cast<float>(pos_accessor.maxValues[2]);
static constexpr std::array<std::string_view, 2> color_names = {
"COLOR_0",
"COLOR_1",
};
for (std::size_t i = 0; i < color_names.size(); i++)
{
const auto color_it = primitive.attributes.find(std::string{color_names[i]});
if (color_it != primitive.attributes.end())
{
chunk.vertex_declaration.colors[i].offset = static_cast<int>(outbound_offset);
if (!CopyBufferDataFromPrimitive(model, color_it->second, &outbound_offset, &chunk))
return false;
chunk.components_available |= VB_HAS_COL0 << i;
chunk.vertex_declaration.colors[i].enable = true;
chunk.vertex_declaration.colors[i].components = 3;
const tinygltf::Accessor& accessor = model.accessors[color_it->second];
if (!GLTFComponentTypeToAttributeFormat(accessor.componentType,
&chunk.vertex_declaration.colors[i]))
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' has invalid attribute format for {}", mesh_file,
color_names[i]);
return false;
}
}
else
{
chunk.vertex_declaration.colors[i].enable = false;
}
}
const auto normal_it = primitive.attributes.find("NORMAL");
if (normal_it != primitive.attributes.end())
{
chunk.vertex_declaration.normals[0].offset = static_cast<int>(outbound_offset);
if (!CopyBufferDataFromPrimitive(model, normal_it->second, &outbound_offset, &chunk))
return false;
chunk.components_available |= VB_HAS_NORMAL;
chunk.vertex_declaration.normals[0].enable = true;
chunk.vertex_declaration.normals[0].components = 3;
const tinygltf::Accessor& accessor = model.accessors[normal_it->second];
if (!GLTFComponentTypeToAttributeFormat(accessor.componentType,
&chunk.vertex_declaration.normals[0]))
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' has invalid attribute format for NORMAL", mesh_file);
return false;
}
}
else
{
chunk.vertex_declaration.normals[0].enable = false;
}
static constexpr std::array<std::string_view, 8> texcoord_names = {
"TEXCOORD_0", "TEXCOORD_1", "TEXCOORD_2", "TEXCOORD_3",
"TEXCOORD_4", "TEXCOORD_5", "TEXCOORD_6", "TEXCOORD_7",
};
for (std::size_t i = 0; i < texcoord_names.size(); i++)
{
const auto texture_it = primitive.attributes.find(std::string{texcoord_names[i]});
if (texture_it != primitive.attributes.end())
{
chunk.vertex_declaration.texcoords[i].offset = static_cast<int>(outbound_offset);
if (!CopyBufferDataFromPrimitive(model, texture_it->second, &outbound_offset, &chunk))
return false;
chunk.components_available |= VB_HAS_UV0 << i;
chunk.vertex_declaration.texcoords[i].enable = true;
chunk.vertex_declaration.texcoords[i].components = 2;
const tinygltf::Accessor& accessor = model.accessors[texture_it->second];
if (!GLTFComponentTypeToAttributeFormat(accessor.componentType,
&chunk.vertex_declaration.texcoords[i]))
{
ERROR_LOG_FMT(VIDEO, "Mesh '{}' has invalid attribute format for {}", mesh_file,
texcoord_names[i]);
return false;
}
}
else
{
chunk.vertex_declaration.texcoords[i].enable = false;
}
}
// Position matrix can be enabled if the draw that is using
// this mesh needs it
chunk.vertex_declaration.posmtx.enable = false;
data->m_mesh_chunks.push_back(std::move(chunk));
}
return true;
}
bool ReadGLTFNodes(std::string_view mesh_file, const tinygltf::Model& model,
const tinygltf::Node& node, const Common::Matrix44& mat, MeshData* data)
{
if (node.mesh != -1)
{
if (!ReadGLTFMesh(mesh_file, model, model.meshes[node.mesh], mat, data))
return false;
}
for (std::size_t i = 0; i < node.children.size(); i++)
{
const tinygltf::Node& child = model.nodes[node.children[i]];
const auto child_mat = mat * BuildMatrixFromNode(child);
if (!ReadGLTFNodes(mesh_file, model, child, child_mat, data))
return false;
}
return true;
}
bool ReadGLTFMaterials(std::string_view mesh_file, const tinygltf::Model& model, MeshData* data)
{
for (std::size_t i = 0; i < model.materials.size(); i++)
{
const tinygltf::Material& material = model.materials[i];
// TODO: support converting material data into Dolphin material assets
data->m_mesh_material_to_material_asset_id.insert_or_assign(material.name, "");
}
return true;
}
bool ReadGLTF(std::string_view mesh_file, const tinygltf::Model& model, MeshData* data)
{
int scene_index = model.defaultScene;
if (scene_index == -1)
scene_index = 0;
const auto& scene = model.scenes[scene_index];
const auto scene_node_indices = scene.nodes;
for (std::size_t i = 0; i < scene_node_indices.size(); i++)
{
const tinygltf::Node& node = model.nodes[scene_node_indices[i]];
const auto mat = BuildMatrixFromNode(node);
if (!ReadGLTFNodes(mesh_file, model, node, mat, data))
return false;
}
return ReadGLTFMaterials(mesh_file, model, data);
}
} // namespace
bool MeshData::FromJson(const VideoCommon::CustomAssetLibrary::AssetID& asset_id,
const picojson::object& json, MeshData* data)
{
if (const auto iter = json.find("material_mapping"); iter != json.end())
{
if (!iter->second.is<picojson::object>())
{
ERROR_LOG_FMT(
VIDEO,
"Asset '{}' failed to parse json, expected 'material_mapping' to be of type object",
asset_id);
return false;
}
for (const auto& [material_name, asset_id_json] : iter->second.get<picojson::object>())
{
if (!asset_id_json.is<std::string>())
{
ERROR_LOG_FMT(
VIDEO,
"Asset '{}' failed to parse json, material name '{}' linked to a non-string value",
asset_id, material_name);
return false;
}
data->m_mesh_material_to_material_asset_id[material_name] = asset_id_json.to_str();
}
}
return true;
}
void MeshData::ToJson(picojson::object& obj, const MeshData& data)
{
picojson::object material_mapping;
for (const auto& [material_name, asset_id] : data.m_mesh_material_to_material_asset_id)
{
material_mapping.emplace(material_name, asset_id);
}
obj.emplace("material_mapping", std::move(material_mapping));
}
bool MeshData::FromDolphinMesh(std::span<const u8> raw_data, MeshData* data)
{
std::size_t offset = 0;
std::size_t chunk_size = 0;
std::memcpy(&chunk_size, raw_data.data(), sizeof(std::size_t));
offset += sizeof(std::size_t);
data->m_mesh_chunks.reserve(chunk_size);
for (std::size_t i = 0; i < chunk_size; i++)
{
MeshDataChunk chunk;
std::memcpy(&chunk.num_vertices, raw_data.data() + offset, sizeof(u32));
offset += sizeof(u32);
std::memcpy(&chunk.vertex_stride, raw_data.data() + offset, sizeof(u32));
offset += sizeof(u32);
// TODO C++23: use make_unique_overwrite
chunk.vertex_data = std::unique_ptr<u8[]>(new u8[chunk.num_vertices * chunk.vertex_stride]);
std::memcpy(chunk.vertex_data.get(), raw_data.data() + offset,
chunk.num_vertices * chunk.vertex_stride);
offset += chunk.num_vertices * chunk.vertex_stride;
std::memcpy(&chunk.num_indices, raw_data.data() + offset, sizeof(u32));
offset += sizeof(u32);
// TODO C++23: use make_unique_overwrite
chunk.indices = std::unique_ptr<u16[]>(new u16[chunk.num_indices]);
std::memcpy(chunk.indices.get(), raw_data.data() + offset, chunk.num_indices * sizeof(u16));
offset += chunk.num_indices * sizeof(u16);
std::memcpy(&chunk.vertex_declaration, raw_data.data() + offset,
sizeof(PortableVertexDeclaration));
offset += sizeof(PortableVertexDeclaration);
std::memcpy(&chunk.primitive_type, raw_data.data() + offset, sizeof(PrimitiveType));
offset += sizeof(PrimitiveType);
std::memcpy(&chunk.components_available, raw_data.data() + offset, sizeof(u32));
offset += sizeof(u32);
std::memcpy(&chunk.minimum_position, raw_data.data() + offset, sizeof(Common::Vec3));
offset += sizeof(Common::Vec3);
std::memcpy(&chunk.maximum_position, raw_data.data() + offset, sizeof(Common::Vec3));
offset += sizeof(Common::Vec3);
std::memcpy(&chunk.transform.data[0], raw_data.data() + offset,
chunk.transform.data.size() * sizeof(float));
offset += chunk.transform.data.size() * sizeof(float);
std::size_t material_name_size = 0;
std::memcpy(&material_name_size, raw_data.data() + offset, sizeof(std::size_t));
offset += sizeof(std::size_t);
chunk.material_name.assign(raw_data.data() + offset,
raw_data.data() + offset + material_name_size);
offset += material_name_size * sizeof(char);
data->m_mesh_chunks.push_back(std::move(chunk));
}
return true;
}
bool MeshData::ToDolphinMesh(File::IOFile* file_data, const MeshData& data)
{
const std::size_t chunk_size = data.m_mesh_chunks.size();
file_data->WriteBytes(&chunk_size, sizeof(std::size_t));
for (const auto& chunk : data.m_mesh_chunks)
{
if (!file_data->WriteBytes(&chunk.num_vertices, sizeof(u32)))
return false;
if (!file_data->WriteBytes(&chunk.vertex_stride, sizeof(u32)))
return false;
if (!file_data->WriteBytes(chunk.vertex_data.get(), chunk.num_vertices * chunk.vertex_stride))
return false;
if (!file_data->WriteBytes(&chunk.num_indices, sizeof(u32)))
return false;
if (!file_data->WriteBytes(chunk.indices.get(), chunk.num_indices * sizeof(u16)))
return false;
if (!file_data->WriteBytes(&chunk.vertex_declaration, sizeof(PortableVertexDeclaration)))
return false;
if (!file_data->WriteBytes(&chunk.primitive_type, sizeof(PrimitiveType)))
return false;
if (!file_data->WriteBytes(&chunk.components_available, sizeof(u32)))
return false;
if (!file_data->WriteBytes(&chunk.minimum_position, sizeof(Common::Vec3)))
return false;
if (!file_data->WriteBytes(&chunk.maximum_position, sizeof(Common::Vec3)))
return false;
if (!file_data->WriteBytes(&chunk.transform.data[0],
chunk.transform.data.size() * sizeof(float)))
{
return false;
}
const std::size_t material_name_size = chunk.material_name.size();
if (!file_data->WriteBytes(&material_name_size, sizeof(std::size_t)))
return false;
if (!file_data->WriteBytes(&chunk.material_name[0], chunk.material_name.size() * sizeof(char)))
return false;
}
return true;
}
bool MeshData::FromGLTF(std::string_view gltf_file, MeshData* data)
{
if (gltf_file.ends_with(".glb"))
{
ERROR_LOG_FMT(VIDEO, "File '{}' with glb extension is not supported at this time", gltf_file);
return false;
}
if (gltf_file.ends_with(".gltf"))
{
tinygltf::Model model;
tinygltf::TinyGLTF loader;
std::string model_errors;
std::string model_warnings;
if (!loader.LoadASCIIFromFile(&model, &model_errors, &model_warnings, std::string{gltf_file}))
{
ERROR_LOG_FMT(VIDEO, "File '{}' was invalid GLTF, error: {}, warning: {}", gltf_file,
model_errors, model_warnings);
return false;
}
return ReadGLTF(gltf_file, model, data);
}
ERROR_LOG_FMT(VIDEO, "GLTF '{}' has invalid extension", gltf_file);
return false;
}
CustomAssetLibrary::LoadInfo MeshAsset::LoadImpl(const CustomAssetLibrary::AssetID& asset_id)
{
auto potential_data = std::make_shared<MeshData>();
const auto loaded_info = m_owning_library->LoadMesh(asset_id, potential_data.get());
if (loaded_info.m_bytes_loaded == 0)
return {};
{
std::lock_guard lk(m_data_lock);
m_loaded = true;
m_data = std::move(potential_data);
}
return loaded_info;
}
} // namespace VideoCommon