dolphin/Source/Core/VideoCommon/Src/TextureDecoder.cpp

3256 lines
127 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Common.h"
//#include "VideoCommon.h" // to get debug logs
#include "CPUDetect.h"
#include "TextureDecoder.h"
#include "OpenCL.h"
#include "OpenCL/OCLTextureDecoder.h"
#include "VideoConfig.h"
#include "LookUpTables.h"
#include <cmath>
#ifdef _OPENMP
#include <omp.h>
#else
#pragma GCC diagnostic ignored "-Wunknown-pragmas"
#endif
#if _M_SSE >= 0x401
#include <smmintrin.h>
#include <emmintrin.h>
#elif _M_SSE >= 0x301 && !(defined __GNUC__ && !defined __SSSE3__)
#include <tmmintrin.h>
#endif
bool TexFmt_Overlay_Enable=false;
bool TexFmt_Overlay_Center=false;
extern const char* texfmt[];
extern const unsigned char sfont_map[];
extern const unsigned char sfont_raw[][9*10];
// TRAM
// STATE_TO_SAVE
GC_ALIGNED16(u8 texMem[TMEM_SIZE]);
// Gamecube/Wii texture decoder
// Decodes all known Gamecube/Wii texture formats.
// by ector
int TexDecoder_GetTexelSizeInNibbles(int format)
{
switch (format & 0x3f) {
case GX_TF_I4: return 1;
case GX_TF_I8: return 2;
case GX_TF_IA4: return 2;
case GX_TF_IA8: return 4;
case GX_TF_RGB565: return 4;
case GX_TF_RGB5A3: return 4;
case GX_TF_RGBA8: return 8;
case GX_TF_C4: return 1;
case GX_TF_C8: return 2;
case GX_TF_C14X2: return 4;
case GX_TF_CMPR: return 1;
case GX_CTF_R4: return 1;
case GX_CTF_RA4: return 2;
case GX_CTF_RA8: return 4;
case GX_CTF_YUVA8: return 8;
case GX_CTF_A8: return 2;
case GX_CTF_R8: return 2;
case GX_CTF_G8: return 2;
case GX_CTF_B8: return 2;
case GX_CTF_RG8: return 4;
case GX_CTF_GB8: return 4;
case GX_TF_Z8: return 2;
case GX_TF_Z16: return 4;
case GX_TF_Z24X8: return 8;
case GX_CTF_Z4: return 1;
case GX_CTF_Z8M: return 2;
case GX_CTF_Z8L: return 2;
case GX_CTF_Z16L: return 4;
default: return 1;
}
}
int TexDecoder_GetTextureSizeInBytes(int width, int height, int format)
{
return (width * height * TexDecoder_GetTexelSizeInNibbles(format)) / 2;
}
int TexDecoder_GetBlockWidthInTexels(u32 format)
{
switch (format)
{
case GX_TF_I4: return 8;
case GX_TF_I8: return 8;
case GX_TF_IA4: return 8;
case GX_TF_IA8: return 4;
case GX_TF_RGB565: return 4;
case GX_TF_RGB5A3: return 4;
case GX_TF_RGBA8: return 4;
case GX_TF_C4: return 8;
case GX_TF_C8: return 8;
case GX_TF_C14X2: return 4;
case GX_TF_CMPR: return 8;
case GX_CTF_R4: return 8;
case GX_CTF_RA4: return 8;
case GX_CTF_RA8: return 4;
case GX_CTF_A8: return 8;
case GX_CTF_R8: return 8;
case GX_CTF_G8: return 8;
case GX_CTF_B8: return 8;
case GX_CTF_RG8: return 4;
case GX_CTF_GB8: return 4;
case GX_TF_Z8: return 8;
case GX_TF_Z16: return 4;
case GX_TF_Z24X8: return 4;
case GX_CTF_Z4: return 8;
case GX_CTF_Z8M: return 8;
case GX_CTF_Z8L: return 8;
case GX_CTF_Z16L: return 4;
default:
ERROR_LOG(VIDEO, "Unsupported Texture Format (%08x)! (GetBlockWidthInTexels)", format);
return 8;
}
}
int TexDecoder_GetBlockHeightInTexels(u32 format)
{
switch (format)
{
case GX_TF_I4: return 8;
case GX_TF_I8: return 4;
case GX_TF_IA4: return 4;
case GX_TF_IA8: return 4;
case GX_TF_RGB565: return 4;
case GX_TF_RGB5A3: return 4;
case GX_TF_RGBA8: return 4;
case GX_TF_C4: return 8;
case GX_TF_C8: return 4;
case GX_TF_C14X2: return 4;
case GX_TF_CMPR: return 8;
case GX_CTF_R4: return 8;
case GX_CTF_RA4: return 4;
case GX_CTF_RA8: return 4;
case GX_CTF_A8: return 4;
case GX_CTF_R8: return 4;
case GX_CTF_G8: return 4;
case GX_CTF_B8: return 4;
case GX_CTF_RG8: return 4;
case GX_CTF_GB8: return 4;
case GX_TF_Z8: return 4;
case GX_TF_Z16: return 4;
case GX_TF_Z24X8: return 4;
case GX_CTF_Z4: return 8;
case GX_CTF_Z8M: return 4;
case GX_CTF_Z8L: return 4;
case GX_CTF_Z16L: return 4;
default:
ERROR_LOG(VIDEO, "Unsupported Texture Format (%08x)! (GetBlockHeightInTexels)", format);
return 4;
}
}
//returns bytes
int TexDecoder_GetPaletteSize(int format)
{
switch (format)
{
case GX_TF_C4: return 16 * 2;
case GX_TF_C8: return 256 * 2;
case GX_TF_C14X2: return 16384 * 2;
default:
return 0;
}
}
static inline u32 decodeIA8(u16 val)
{
int a = val >> 8;
int i = val & 0xFF;
return (a << 24) | (i << 16) | (i << 8) | i;
}
static inline u32 decode5A3(u16 val)
{
int r,g,b,a;
if ((val & 0x8000))
{
a = 0xFF;
r = Convert5To8((val >> 10) & 0x1F);
g = Convert5To8((val >> 5) & 0x1F);
b = Convert5To8(val & 0x1F);
}
else
{
a = Convert3To8((val >> 12) & 0x7);
r = Convert4To8((val >> 8) & 0xF);
g = Convert4To8((val >> 4) & 0xF);
b = Convert4To8(val & 0xF);
}
return (a << 24) | (r << 16) | (g << 8) | b;
}
static inline u32 decode5A3RGBA(u16 val)
{
int r,g,b,a;
if ((val&0x8000))
{
r=Convert5To8((val>>10) & 0x1f);
g=Convert5To8((val>>5 ) & 0x1f);
b=Convert5To8((val ) & 0x1f);
a=0xFF;
}
else
{
a=Convert3To8((val>>12) & 0x7);
r=Convert4To8((val>>8 ) & 0xf);
g=Convert4To8((val>>4 ) & 0xf);
b=Convert4To8((val ) & 0xf);
}
return r | (g<<8) | (b << 16) | (a << 24);
}
static inline u32 decode565RGBA(u16 val)
{
int r,g,b,a;
r=Convert5To8((val>>11) & 0x1f);
g=Convert6To8((val>>5 ) & 0x3f);
b=Convert5To8((val ) & 0x1f);
a=0xFF;
return r | (g<<8) | (b << 16) | (a << 24);
}
static inline u32 decodeIA8Swapped(u16 val)
{
int a = val & 0xFF;
int i = val >> 8;
return i | (i<<8) | (i<<16) | (a<<24);
}
struct DXTBlock
{
u16 color1;
u16 color2;
u8 lines[4];
};
//inline void decodebytesC4(u32 *dst, const u8 *src, int numbytes, int tlutaddr, int tlutfmt)
inline void decodebytesC4_5A3_To_BGRA32(u32 *dst, const u8 *src, int tlutaddr)
{
u16 *tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 4; x++)
{
u8 val = src[x];
*dst++ = decode5A3(Common::swap16(tlut[val >> 4]));
*dst++ = decode5A3(Common::swap16(tlut[val & 0xF]));
}
}
inline void decodebytesC4_5A3_To_rgba32(u32 *dst, const u8 *src, int tlutaddr)
{
u16 *tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 4; x++)
{
u8 val = src[x];
*dst++ = decode5A3RGBA(Common::swap16(tlut[val >> 4]));
*dst++ = decode5A3RGBA(Common::swap16(tlut[val & 0xF]));
}
}
inline void decodebytesC4_To_Raw16(u16* dst, const u8* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem+tlutaddr);
for (int x = 0; x < 4; x++)
{
u8 val = src[x];
*dst++ = Common::swap16(tlut[val >> 4]);
*dst++ = Common::swap16(tlut[val & 0xF]);
}
}
inline void decodebytesC4IA8_To_RGBA(u32* dst, const u8* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem+tlutaddr);
for (int x = 0; x < 4; x++)
{
u8 val = src[x];
*dst++ = decodeIA8Swapped(tlut[val >> 4]);
*dst++ = decodeIA8Swapped(tlut[val & 0xF]);
}
}
inline void decodebytesC4RGB565_To_RGBA(u32* dst, const u8* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem+tlutaddr);
for (int x = 0; x < 4; x++)
{
u8 val = src[x];
*dst++ = decode565RGBA(Common::swap16(tlut[val >> 4]));
*dst++ = decode565RGBA(Common::swap16(tlut[val & 0xF]));
}
}
//inline void decodebytesC8(u32 *dst, const u8 *src, int numbytes, int tlutaddr, int tlutfmt)
inline void decodebytesC8_5A3_To_BGRA32(u32 *dst, const u8 *src, int tlutaddr)
{
u16 *tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 8; x++)
{
u8 val = src[x];
*dst++ = decode5A3(Common::swap16(tlut[val]));
}
}
inline void decodebytesC8_5A3_To_RGBA32(u32 *dst, const u8 *src, int tlutaddr)
{
u16 *tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 8; x++)
{
u8 val = src[x];
*dst++ = decode5A3RGBA(Common::swap16(tlut[val]));
}
}
inline void decodebytesC8_To_Raw16(u16* dst, const u8* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 8; x++)
{
u8 val = src[x];
*dst++ = Common::swap16(tlut[val]);
}
}
inline void decodebytesC8IA8_To_RGBA(u32* dst, const u8* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 8; x++)
{
*dst++ = decodeIA8Swapped(tlut[src[x]]);
}
}
inline void decodebytesC8RGB565_To_RGBA(u32* dst, const u8* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 8; x++)
{
*dst++ = decode565RGBA(Common::swap16(tlut[src[x]]));
}
}
#if _M_SSE >= 0x301
static const __m128i kMaskSwap16 = _mm_set_epi32(0x0E0F0C0DL, 0x0A0B0809L, 0x06070405L, 0x02030001L);
inline void decodebytesC8_To_Raw16_SSSE3(u16* dst, const u8* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem + tlutaddr);
// Make 8 16-bits unsigned integer values
__m128i a = _mm_setzero_si128();
a = _mm_insert_epi16(a, tlut[src[0]], 0);
a = _mm_insert_epi16(a, tlut[src[1]], 1);
a = _mm_insert_epi16(a, tlut[src[2]], 2);
a = _mm_insert_epi16(a, tlut[src[3]], 3);
a = _mm_insert_epi16(a, tlut[src[4]], 4);
a = _mm_insert_epi16(a, tlut[src[5]], 5);
a = _mm_insert_epi16(a, tlut[src[6]], 6);
a = _mm_insert_epi16(a, tlut[src[7]], 7);
// Apply Common::swap16() to 16-bits unsigned integers at once
const __m128i b = _mm_shuffle_epi8(a, kMaskSwap16);
// Store values to dst without polluting the caches
_mm_stream_si128((__m128i*)dst, b);
}
#endif
inline void decodebytesC14X2_5A3_To_BGRA32(u32 *dst, const u16 *src, int tlutaddr)
{
u16 *tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 4; x++)
{
u16 val = Common::swap16(src[x]);
*dst++ = decode5A3(Common::swap16(tlut[(val & 0x3FFF)]));
}
}
inline void decodebytesC14X2_5A3_To_RGBA(u32 *dst, const u16 *src, int tlutaddr)
{
u16 *tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 4; x++)
{
u16 val = Common::swap16(src[x]);
*dst++ = decode5A3RGBA(Common::swap16(tlut[(val & 0x3FFF)]));
}
}
inline void decodebytesC14X2_To_Raw16(u16* dst, const u16* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 4; x++)
{
u16 val = Common::swap16(src[x]);
*dst++ = Common::swap16(tlut[(val & 0x3FFF)]);
}
}
inline void decodebytesC14X2IA8_To_RGBA(u32* dst, const u16* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 4; x++)
{
u16 val = Common::swap16(src[x]);
*dst++ = decodeIA8Swapped(tlut[(val & 0x3FFF)]);
}
}
inline void decodebytesC14X2rgb565_To_RGBA(u32* dst, const u16* src, int tlutaddr)
{
u16* tlut = (u16*)(texMem + tlutaddr);
for (int x = 0; x < 4; x++)
{
u16 val = Common::swap16(src[x]);
*dst++ = decode565RGBA(Common::swap16(tlut[(val & 0x3FFF)]));
}
}
// Needs more speed.
inline void decodebytesIA4(u16 *dst, const u8 *src)
{
for (int x = 0; x < 8; x++)
{
const u8 val = src[x];
u8 a = Convert4To8(val >> 4);
u8 l = Convert4To8(val & 0xF);
dst[x] = (a << 8) | l;
}
}
inline void decodebytesIA4RGBA(u32 *dst, const u8 *src)
{
for (int x = 0; x < 8; x++)
{
const u8 val = src[x];
u8 a = Convert4To8(val >> 4);
u8 l = Convert4To8(val & 0xF);
dst[x] = (a << 24) | l << 16 | l << 8 | l;
}
}
inline void decodebytesRGB5A3(u32 *dst, const u16 *src)
{
#if 0
for (int x = 0; x < 4; x++)
dst[x] = decode5A3(Common::swap16(src[x]));
#else
dst[0] = decode5A3(Common::swap16(src[0]));
dst[1] = decode5A3(Common::swap16(src[1]));
dst[2] = decode5A3(Common::swap16(src[2]));
dst[3] = decode5A3(Common::swap16(src[3]));
#endif
}
inline void decodebytesRGB5A3rgba(u32 *dst, const u16 *src)
{
#if 0
for (int x = 0; x < 4; x++)
dst[x] = decode5A3RGBA(Common::swap16(src[x]));
#else
dst[0] = decode5A3RGBA(Common::swap16(src[0]));
dst[1] = decode5A3RGBA(Common::swap16(src[1]));
dst[2] = decode5A3RGBA(Common::swap16(src[2]));
dst[3] = decode5A3RGBA(Common::swap16(src[3]));
#endif
}
// This one is used by many video formats. It'd therefore be good if it was fast.
// Needs more speed.
inline void decodebytesARGB8_4(u32 *dst, const u16 *src, const u16 *src2)
{
#if 0
for (int x = 0; x < 4; x++)
dst[x] = Common::swap32((src2[x] << 16) | src[x]);
#else
dst[0] = Common::swap32((src2[0] << 16) | src[0]);
dst[1] = Common::swap32((src2[1] << 16) | src[1]);
dst[2] = Common::swap32((src2[2] << 16) | src[2]);
dst[3] = Common::swap32((src2[3] << 16) | src[3]);
#endif
// This can probably be done in a few SSE pack/unpack instructions + pshufb
// some unpack instruction x2:
// ABABABABABABABAB 1212121212121212 ->
// AB12AB12AB12AB12 AB12AB12AB12AB12
// 2x pshufb->
// 21BA21BA21BA21BA 21BA21BA21BA21BA
// and we are done.
}
inline void decodebytesARGB8_4ToRgba(u32 *dst, const u16 *src, const u16 * src2)
{
#if 0
for (int x = 0; x < 4; x++) {
dst[x] = ((src[x] & 0xFF) << 24) | ((src[x] & 0xFF00)>>8) | (src2[x] << 8);
}
#else
dst[0] = ((src[0] & 0xFF) << 24) | ((src[0] & 0xFF00)>>8) | (src2[0] << 8);
dst[1] = ((src[1] & 0xFF) << 24) | ((src[1] & 0xFF00)>>8) | (src2[1] << 8);
dst[2] = ((src[2] & 0xFF) << 24) | ((src[2] & 0xFF00)>>8) | (src2[2] << 8);
dst[3] = ((src[3] & 0xFF) << 24) | ((src[3] & 0xFF00)>>8) | (src2[3] << 8);
#endif
}
inline u32 makecol(int r, int g, int b, int a)
{
return (a << 24)|(r << 16)|(g << 8)|b;
}
inline u32 makeRGBA(int r, int g, int b, int a)
{
return (a<<24)|(b<<16)|(g<<8)|r;
}
void decodeDXTBlock(u32 *dst, const DXTBlock *src, int pitch)
{
// S3TC Decoder (Note: GCN decodes differently from PC so we can't use native support)
// Needs more speed.
u16 c1 = Common::swap16(src->color1);
u16 c2 = Common::swap16(src->color2);
int blue1 = Convert5To8(c1 & 0x1F);
int blue2 = Convert5To8(c2 & 0x1F);
int green1 = Convert6To8((c1 >> 5) & 0x3F);
int green2 = Convert6To8((c2 >> 5) & 0x3F);
int red1 = Convert5To8((c1 >> 11) & 0x1F);
int red2 = Convert5To8((c2 >> 11) & 0x1F);
int colors[4];
colors[0] = makecol(red1, green1, blue1, 255);
colors[1] = makecol(red2, green2, blue2, 255);
if (c1 > c2)
{
int blue3 = ((blue2 - blue1) >> 1) - ((blue2 - blue1) >> 3);
int green3 = ((green2 - green1) >> 1) - ((green2 - green1) >> 3);
int red3 = ((red2 - red1) >> 1) - ((red2 - red1) >> 3);
colors[2] = makecol(red1 + red3, green1 + green3, blue1 + blue3, 255);
colors[3] = makecol(red2 - red3, green2 - green3, blue2 - blue3, 255);
}
else
{
colors[2] = makecol((red1 + red2 + 1) / 2, // Average
(green1 + green2 + 1) / 2,
(blue1 + blue2 + 1) / 2, 255);
colors[3] = makecol(red2, green2, blue2, 0); // Color2 but transparent
}
for (int y = 0; y < 4; y++)
{
int val = src->lines[y];
for (int x = 0; x < 4; x++)
{
dst[x] = colors[(val >> 6) & 3];
val <<= 2;
}
dst += pitch;
}
}
void decodeDXTBlockRGBA(u32 *dst, const DXTBlock *src, int pitch)
{
// S3TC Decoder (Note: GCN decodes differently from PC so we can't use native support)
// Needs more speed.
u16 c1 = Common::swap16(src->color1);
u16 c2 = Common::swap16(src->color2);
int blue1 = Convert5To8(c1 & 0x1F);
int blue2 = Convert5To8(c2 & 0x1F);
int green1 = Convert6To8((c1 >> 5) & 0x3F);
int green2 = Convert6To8((c2 >> 5) & 0x3F);
int red1 = Convert5To8((c1 >> 11) & 0x1F);
int red2 = Convert5To8((c2 >> 11) & 0x1F);
int colors[4];
colors[0] = makeRGBA(red1, green1, blue1, 255);
colors[1] = makeRGBA(red2, green2, blue2, 255);
if (c1 > c2)
{
int blue3 = ((blue2 - blue1) >> 1) - ((blue2 - blue1) >> 3);
int green3 = ((green2 - green1) >> 1) - ((green2 - green1) >> 3);
int red3 = ((red2 - red1) >> 1) - ((red2 - red1) >> 3);
colors[2] = makeRGBA(red1 + red3, green1 + green3, blue1 + blue3, 255);
colors[3] = makeRGBA(red2 - red3, green2 - green3, blue2 - blue3, 255);
}
else
{
colors[2] = makeRGBA((red1 + red2 + 1) / 2, // Average
(green1 + green2 + 1) / 2,
(blue1 + blue2 + 1) / 2, 255);
colors[3] = makeRGBA(red2, green2, blue2, 0); // Color2 but transparent
}
for (int y = 0; y < 4; y++)
{
int val = src->lines[y];
for (int x = 0; x < 4; x++)
{
dst[x] = colors[(val >> 6) & 3];
val <<= 2;
}
dst += pitch;
}
}
#if 0 // TODO - currently does not handle transparency correctly and causes problems when texture dimensions are not multiples of 8
static void copyDXTBlock(u8* dst, const u8* src)
{
((u16*)dst)[0] = Common::swap16(((u16*)src)[0]);
((u16*)dst)[1] = Common::swap16(((u16*)src)[1]);
u32 pixels = ((u32*)src)[1];
// A bit of trickiness here: the row are in the same order
// between the two formats, but the ordering within the rows
// is reversed.
pixels = ((pixels >> 4) & 0x0F0F0F0F) | ((pixels << 4) & 0xF0F0F0F0);
pixels = ((pixels >> 2) & 0x33333333) | ((pixels << 2) & 0xCCCCCCCC);
((u32*)dst)[1] = pixels;
}
#endif
static PC_TexFormat GetPCFormatFromTLUTFormat(int tlutfmt)
{
switch (tlutfmt)
{
case 0: return PC_TEX_FMT_IA8; // IA8
case 1: return PC_TEX_FMT_RGB565; // RGB565
case 2: return PC_TEX_FMT_BGRA32; // RGB5A3: This TLUT format requires
// extra work to decode.
}
return PC_TEX_FMT_NONE; // Error
}
PC_TexFormat GetPC_TexFormat(int texformat, int tlutfmt)
{
switch (texformat)
{
case GX_TF_C4:
return GetPCFormatFromTLUTFormat(tlutfmt);
case GX_TF_I4:
return PC_TEX_FMT_IA8;
case GX_TF_I8: // speed critical
return PC_TEX_FMT_IA8;
case GX_TF_C8:
return GetPCFormatFromTLUTFormat(tlutfmt);
case GX_TF_IA4:
return PC_TEX_FMT_IA4_AS_IA8;
case GX_TF_IA8:
return PC_TEX_FMT_IA8;
case GX_TF_C14X2:
return GetPCFormatFromTLUTFormat(tlutfmt);
case GX_TF_RGB565:
return PC_TEX_FMT_RGB565;
case GX_TF_RGB5A3:
return PC_TEX_FMT_BGRA32;
case GX_TF_RGBA8: // speed critical
return PC_TEX_FMT_BGRA32;
case GX_TF_CMPR: // speed critical
// The metroid games use this format almost exclusively.
{
return PC_TEX_FMT_BGRA32;
}
}
// The "copy" texture formats, too?
return PC_TEX_FMT_NONE;
}
inline void SetOpenMPThreadCount(int width, int height)
{
#ifdef _OPENMP
// Dont use multithreading in small Textures
if (g_ActiveConfig.bOMPDecoder && width > 127 && height > 127)
{
// don't span to many threads they will kill the rest of the emu :)
omp_set_num_threads((cpu_info.num_cores + 2) / 3);
}
else
{
omp_set_num_threads(1);
}
#endif
}
//switch endianness, unswizzle
//TODO: to save memory, don't blindly convert everything to argb8888
//also ARGB order needs to be swapped later, to accommodate modern hardware better
//need to add DXT support too
PC_TexFormat TexDecoder_Decode_real(u8 *dst, const u8 *src, int width, int height, int texformat, int tlutaddr, int tlutfmt)
{
SetOpenMPThreadCount(width, height);
const int Wsteps4 = (width + 3) / 4;
const int Wsteps8 = (width + 7) / 8;
switch (texformat)
{
case GX_TF_C4:
if (tlutfmt == 2)
{
// Special decoding is required for TLUT format 5A3
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = yStep * 8; iy < 8; iy++, xStep++)
decodebytesC4_5A3_To_BGRA32((u32*)dst + (y + iy) * width + x, src + 4 * xStep, tlutaddr);
}
else
{
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = yStep * 8; iy < 8; iy++, xStep++)
decodebytesC4_To_Raw16((u16*)dst + (y + iy) * width + x, src + 4 * xStep, tlutaddr);
}
return GetPCFormatFromTLUTFormat(tlutfmt);
case GX_TF_I4:
{
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = yStep * 8 ; iy < 8; iy++,xStep++)
for (int ix = 0; ix < 4; ix++)
{
int val = src[4 * xStep + ix];
dst[(y + iy) * width + x + ix * 2] = Convert4To8(val >> 4);
dst[(y + iy) * width + x + ix * 2 + 1] = Convert4To8(val & 0xF);
}
}
return PC_TEX_FMT_I4_AS_I8;
case GX_TF_I8: // speed critical
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
{
((u64*)(dst + (y + iy) * width + x))[0] = ((u64*)(src + 8 * xStep))[0];
}
}
return PC_TEX_FMT_I8;
case GX_TF_C8:
if (tlutfmt == 2)
{
// Special decoding is required for TLUT format 5A3
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC8_5A3_To_BGRA32((u32*)dst + (y + iy) * width + x, src + 8 * xStep, tlutaddr);
}
else
{
#if _M_SSE >= 0x301
if (cpu_info.bSSSE3) {
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC8_To_Raw16_SSSE3((u16*)dst + (y + iy) * width + x, src + 8 * xStep, tlutaddr);
} else
#endif
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC8_To_Raw16((u16*)dst + (y + iy) * width + x, src + 8 * xStep, tlutaddr);
}
}
return GetPCFormatFromTLUTFormat(tlutfmt);
case GX_TF_IA4:
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesIA4((u16*)dst + (y + iy) * width + x, src + 8 * xStep);
}
return PC_TEX_FMT_IA4_AS_IA8;
case GX_TF_IA8:
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = yStep * 4; iy < 4; iy++, xStep++)
{
u16 *ptr = (u16 *)dst + (y + iy) * width + x;
u16 *s = (u16 *)(src + 8 * xStep);
for(int j = 0; j < 4; j++)
*ptr++ = Common::swap16(*s++);
}
}
return PC_TEX_FMT_IA8;
case GX_TF_C14X2:
if (tlutfmt == 2)
{
// Special decoding is required for TLUT format 5A3
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC14X2_5A3_To_BGRA32((u32*)dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlutaddr);
}
else
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC14X2_To_Raw16((u16*)dst + (y + iy) * width + x,(u16*)(src + 8 * xStep), tlutaddr);
}
return GetPCFormatFromTLUTFormat(tlutfmt);
case GX_TF_RGB565:
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
{
u16 *ptr = (u16 *)dst + (y + iy) * width + x;
u16 *s = (u16 *)(src + 8 * xStep);
for(int j = 0; j < 4; j++)
*ptr++ = Common::swap16(*s++);
}
}
return PC_TEX_FMT_RGB565;
case GX_TF_RGB5A3:
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
//decodebytesRGB5A3((u32*)dst+(y+iy)*width+x, (u16*)src, 4);
decodebytesRGB5A3((u32*)dst+(y+iy)*width+x, (u16*)(src + 8 * xStep));
}
return PC_TEX_FMT_BGRA32;
case GX_TF_RGBA8: // speed critical
{
#if _M_SSE >= 0x301
if (cpu_info.bSSSE3) {
#pragma omp parallel for
for (int y = 0; y < height; y += 4) {
__m128i* p = (__m128i*)(src + y * width * 4);
for (int x = 0; x < width; x += 4) {
// We use _mm_loadu_si128 instead of _mm_load_si128
// because "p" may not be aligned in 16-bytes alignment.
// See Issue 3493.
const __m128i a0 = _mm_loadu_si128(p++);
const __m128i a1 = _mm_loadu_si128(p++);
const __m128i a2 = _mm_loadu_si128(p++);
const __m128i a3 = _mm_loadu_si128(p++);
// Shuffle 16-bit integeres by _mm_unpacklo_epi16()/_mm_unpackhi_epi16(),
// apply Common::swap32() by _mm_shuffle_epi8() and
// store them by _mm_stream_si128().
// See decodebytesARGB8_4() about the idea.
static const __m128i kMaskSwap32 = _mm_set_epi32(0x0C0D0E0FL, 0x08090A0BL, 0x04050607L, 0x00010203L);
const __m128i b0 = _mm_unpacklo_epi16(a0, a2);
const __m128i c0 = _mm_shuffle_epi8(b0, kMaskSwap32);
_mm_stream_si128((__m128i*)((u32*)dst + (y + 0) * width + x), c0);
const __m128i b1 = _mm_unpackhi_epi16(a0, a2);
const __m128i c1 = _mm_shuffle_epi8(b1, kMaskSwap32);
_mm_stream_si128((__m128i*)((u32*)dst + (y + 1) * width + x), c1);
const __m128i b2 = _mm_unpacklo_epi16(a1, a3);
const __m128i c2 = _mm_shuffle_epi8(b2, kMaskSwap32);
_mm_stream_si128((__m128i*)((u32*)dst + (y + 2) * width + x), c2);
const __m128i b3 = _mm_unpackhi_epi16(a1, a3);
const __m128i c3 = _mm_shuffle_epi8(b3, kMaskSwap32);
_mm_stream_si128((__m128i*)((u32*)dst + (y + 3) * width + x), c3);
}
}
} else
#endif
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
{
const u8* src2 = src + 64 * yStep;
for (int iy = 0; iy < 4; iy++)
decodebytesARGB8_4((u32*)dst + (y+iy)*width + x, (u16*)src2 + 4 * iy, (u16*)src2 + 4 * iy + 16);
}
}
}
return PC_TEX_FMT_BGRA32;
case GX_TF_CMPR: // speed critical
// The metroid games use this format almost exclusively.
{
#if 0 // TODO - currently does not handle transparency correctly and causes problems when texture dimensions are not multiples of 8
// 11111111 22222222 55555555 66666666
// 33333333 44444444 77777777 88888888
for (int y = 0; y < height; y += 8)
{
for (int x = 0; x < width; x += 8)
{
copyDXTBlock(dst+(y/2)*width+x*2, src);
src += 8;
copyDXTBlock(dst+(y/2)*width+x*2+8, src);
src += 8;
copyDXTBlock(dst+(y/2+2)*width+x*2, src);
src += 8;
copyDXTBlock(dst+(y/2+2)*width+x*2+8, src);
src += 8;
}
}
return PC_TEX_FMT_DXT1;
#else
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
{
for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
{
const u8* src2 = src + 4 * sizeof(DXTBlock) * yStep;
decodeDXTBlock((u32*)dst + y * width + x, (DXTBlock*)src2, width);
src2 += sizeof(DXTBlock);
decodeDXTBlock((u32*)dst + y * width + x + 4, (DXTBlock*)src2, width);
src2 += sizeof(DXTBlock);
decodeDXTBlock((u32*)dst + (y + 4) * width + x, (DXTBlock*)src2, width);
src2 += sizeof(DXTBlock);
decodeDXTBlock((u32*)dst + (y + 4) * width + x + 4, (DXTBlock*)src2, width);
}
}
#endif
return PC_TEX_FMT_BGRA32;
}
}
// The "copy" texture formats, too?
return PC_TEX_FMT_NONE;
}
// JSD 01/06/11:
// TODO: we really should ensure BOTH the source and destination addresses are aligned to 16-byte boundaries to
// squeeze out a little more performance. _mm_loadu_si128/_mm_storeu_si128 is slower than _mm_load_si128/_mm_store_si128
// because they work on unaligned addresses. The processor is free to make the assumption that addresses are multiples
// of 16 in the aligned case.
// TODO: complete SSE2 optimization of less often used texture formats.
// TODO: refactor algorithms using _mm_loadl_epi64 unaligned loads to prefer 128-bit aligned loads.
PC_TexFormat TexDecoder_Decode_RGBA(u32 * dst, const u8 * src, int width, int height, int texformat, int tlutaddr, int tlutfmt)
{
SetOpenMPThreadCount(width, height);
const int Wsteps4 = (width + 3) / 4;
const int Wsteps8 = (width + 7) / 8;
switch (texformat)
{
case GX_TF_C4:
if (tlutfmt == 2)
{
// Special decoding is required for TLUT format 5A3
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8,yStep++)
for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++,xStep++)
decodebytesC4_5A3_To_rgba32(dst + (y + iy) * width + x, src + 4 * xStep, tlutaddr);
}
else if(tlutfmt == 0)
{
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8,yStep++)
for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++,xStep++)
decodebytesC4IA8_To_RGBA(dst + (y + iy) * width + x, src + 4 * xStep, tlutaddr);
}
else
{
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8,yStep++)
for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++,xStep++)
decodebytesC4RGB565_To_RGBA(dst + (y + iy) * width + x, src + 4 * xStep, tlutaddr);
}
break;
case GX_TF_I4:
{
const __m128i kMask_x0f = _mm_set1_epi32(0x0f0f0f0fL);
const __m128i kMask_xf0 = _mm_set1_epi32(0xf0f0f0f0L);
#if _M_SSE >= 0x301
// xsacha optimized with SSSE3 intrinsics
// Produces a ~40% speed improvement over SSE2 implementation
if (cpu_info.bSSSE3) {
const __m128i mask9180 = _mm_set_epi8(9,9,9,9,1,1,1,1,8,8,8,8,0,0,0,0);
const __m128i maskB3A2 = _mm_set_epi8(11,11,11,11,3,3,3,3,10,10,10,10,2,2,2,2);
const __m128i maskD5C4 = _mm_set_epi8(13,13,13,13,5,5,5,5,12,12,12,12,4,4,4,4);
const __m128i maskF7E6 = _mm_set_epi8(15,15,15,15,7,7,7,7,14,14,14,14,6,6,6,6);
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8,yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 8; iy += 2,xStep++)
{
const __m128i r0 = _mm_loadl_epi64((const __m128i *)(src + 8 * xStep));
// We want the hi 4 bits of each 8-bit word replicated to 32-bit words:
// (00000000 00000000 HhGgFfEe DdCcBbAa) -> (00000000 00000000 HHGGFFEE DDCCBBAA)
const __m128i i1 = _mm_and_si128(r0, kMask_xf0);
const __m128i i11 = _mm_or_si128(i1, _mm_srli_epi16(i1, 4));
// Now we do same as above for the second half of the byte
const __m128i i2 = _mm_and_si128(r0, kMask_x0f);
const __m128i i22 = _mm_or_si128(i2, _mm_slli_epi16(i2,4));
// Combine both sides
const __m128i base = _mm_unpacklo_epi64(i11,i22);
// Achieve the pattern visible in the masks.
const __m128i o1 = _mm_shuffle_epi8(base, mask9180);
const __m128i o2 = _mm_shuffle_epi8(base, maskB3A2);
const __m128i o3 = _mm_shuffle_epi8(base, maskD5C4);
const __m128i o4 = _mm_shuffle_epi8(base, maskF7E6);
// Write row 0:
_mm_storeu_si128( (__m128i*)( dst+(y + iy) * width + x ), o1 );
_mm_storeu_si128( (__m128i*)( dst+(y + iy) * width + x + 4 ), o2 );
// Write row 1:
_mm_storeu_si128( (__m128i*)( dst+(y + iy+1) * width + x ), o3 );
_mm_storeu_si128( (__m128i*)( dst+(y + iy+1) * width + x + 4 ), o4 );
}
} else
#endif
// JSD optimized with SSE2 intrinsics.
// Produces a ~76% speed improvement over reference C implementation.
{
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
for (int x = 0, yStep = (y / 8) * Wsteps8 ; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 8; iy += 2, xStep++)
{
const __m128i r0 = _mm_loadl_epi64((const __m128i *)(src + 8 * xStep));
// Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc bbaa)
const __m128i r1 = _mm_unpacklo_epi8(r0, r0);
// We want the hi 4 bits of each 8-bit word replicated to 32-bit words:
// (HhHhGgGg FfFfEeEe DdDdCcCc BbBbAaAa) & kMask_xf0 -> (H0H0G0G0 F0F0E0E0 D0D0C0C0 B0B0A0A0)
const __m128i i1 = _mm_and_si128(r1, kMask_xf0);
// -> (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA)
const __m128i i11 = _mm_or_si128(i1, _mm_srli_epi16(i1, 4));
// Shuffle low 64-bits with itself to expand from (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA) to (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA)
const __m128i i15 = _mm_unpacklo_epi8(i11, i11);
// (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) -> (BBBBBBBB BBBBBBBB AAAAAAAA AAAAAAAA)
const __m128i i151 = _mm_unpacklo_epi8(i15, i15);
// (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) -> (DDDDDDDD DDDDDDDD CCCCCCCC CCCCCCCC)
const __m128i i152 = _mm_unpackhi_epi8(i15, i15);
// Shuffle hi 64-bits with itself to expand from (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA) to (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE)
const __m128i i16 = _mm_unpackhi_epi8(i11, i11);
// (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) -> (FFFFFFFF FFFFFFFF EEEEEEEE EEEEEEEE)
const __m128i i161 = _mm_unpacklo_epi8(i16, i16);
// (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) -> (HHHHHHHH HHHHHHHH GGGGGGGG GGGGGGGG)
const __m128i i162 = _mm_unpackhi_epi8(i16, i16);
// Now find the lo 4 bits of each input 8-bit word:
const __m128i i2 = _mm_and_si128(r1, kMask_x0f);
const __m128i i22 = _mm_or_si128(i2, _mm_slli_epi16(i2,4));
const __m128i i25 = _mm_unpacklo_epi8(i22, i22);
const __m128i i251 = _mm_unpacklo_epi8(i25, i25);
const __m128i i252 = _mm_unpackhi_epi8(i25, i25);
const __m128i i26 = _mm_unpackhi_epi8(i22, i22);
const __m128i i261 = _mm_unpacklo_epi8(i26, i26);
const __m128i i262 = _mm_unpackhi_epi8(i26, i26);
// _mm_and_si128(i151, kMask_x00000000ffffffff) takes i151 and masks off 1st and 3rd 32-bit words
// (BBBBBBBB BBBBBBBB AAAAAAAA AAAAAAAA) -> (00000000 BBBBBBBB 00000000 AAAAAAAA)
// _mm_and_si128(i251, kMask_xffffffff00000000) takes i251 and masks off 2nd and 4th 32-bit words
// (bbbbbbbb bbbbbbbb aaaaaaaa aaaaaaaa) -> (bbbbbbbb 00000000 aaaaaaaa 00000000)
// And last but not least, _mm_or_si128 ORs those two together, giving us the interleaving we desire:
// (00000000 BBBBBBBB 00000000 AAAAAAAA) | (bbbbbbbb 00000000 aaaaaaaa 00000000) -> (bbbbbbbb BBBBBBBB aaaaaaaa AAAAAAAA)
const __m128i kMask_x00000000ffffffff = _mm_set_epi32(0x00000000L, 0xffffffffL, 0x00000000L, 0xffffffffL);
const __m128i kMask_xffffffff00000000 = _mm_set_epi32(0xffffffffL, 0x00000000L, 0xffffffffL, 0x00000000L);
const __m128i o1 = _mm_or_si128(_mm_and_si128(i151, kMask_x00000000ffffffff), _mm_and_si128(i251, kMask_xffffffff00000000));
const __m128i o2 = _mm_or_si128(_mm_and_si128(i152, kMask_x00000000ffffffff), _mm_and_si128(i252, kMask_xffffffff00000000));
// These two are for the next row; same pattern as above. We batched up two rows because our input was 64 bits.
const __m128i o3 = _mm_or_si128(_mm_and_si128(i161, kMask_x00000000ffffffff), _mm_and_si128(i261, kMask_xffffffff00000000));
const __m128i o4 = _mm_or_si128(_mm_and_si128(i162, kMask_x00000000ffffffff), _mm_and_si128(i262, kMask_xffffffff00000000));
// Write row 0:
_mm_storeu_si128( (__m128i*)( dst+(y + iy) * width + x ), o1 );
_mm_storeu_si128( (__m128i*)( dst+(y + iy) * width + x + 4 ), o2 );
// Write row 1:
_mm_storeu_si128( (__m128i*)( dst+(y + iy+1) * width + x ), o3 );
_mm_storeu_si128( (__m128i*)( dst+(y + iy+1) * width + x + 4 ), o4 );
}
}
#if 0
// Reference C implementation:
for (int y = 0; y < height; y += 8)
for (int x = 0; x < width; x += 8)
for (int iy = 0; iy < 8; iy++, src += 4)
for (int ix = 0; ix < 4; ix++)
{
int val = src[ix];
u8 i1 = Convert4To8(val >> 4);
u8 i2 = Convert4To8(val & 0xF);
memset(dst+(y + iy) * width + x + ix * 2 , i1,4);
memset(dst+(y + iy) * width + x + ix * 2 + 1 , i2,4);
}
#endif
}
break;
case GX_TF_I8: // speed critical
{
#if _M_SSE >= 0x301
// xsacha optimized with SSSE3 intrinsics
// Produces a ~10% speed improvement over SSE2 implementation
if (cpu_info.bSSSE3)
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8,yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; ++iy, xStep++)
{
const __m128i mask3210 = _mm_set_epi8(3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0);
const __m128i mask7654 = _mm_set_epi8(7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4);
__m128i *quaddst, r, rgba0, rgba1;
// Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba)
r = _mm_loadl_epi64((const __m128i *)(src + 8 * xStep));
// Shuffle select bytes to expand from (0000 0000 hgfe dcba) to:
rgba0 = _mm_shuffle_epi8(r, mask3210); // (dddd cccc bbbb aaaa)
rgba1 = _mm_shuffle_epi8(r, mask7654); // (hhhh gggg ffff eeee)
quaddst = (__m128i *)(dst + (y + iy)*width + x);
_mm_storeu_si128(quaddst, rgba0);
_mm_storeu_si128(quaddst+1, rgba1);
}
} else
#endif
// JSD optimized with SSE2 intrinsics.
// Produces an ~86% speed improvement over reference C implementation.
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8,yStep++)
{
// Each loop iteration processes 4 rows from 4 64-bit reads.
const u8* src2 = src + 32 * yStep;
// TODO: is it more efficient to group the loads together sequentially and also the stores at the end?
// _mm_stream instead of _mm_store on my AMD Phenom II x410 made performance significantly WORSE, so I
// went with _mm_stores. Perhaps there is some edge case here creating the terrible performance or we're
// not aligned to 16-byte boundaries. I don't know.
__m128i *quaddst;
// Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba)
const __m128i r0 = _mm_loadl_epi64((const __m128i *)src2);
// Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc bbaa)
const __m128i r1 = _mm_unpacklo_epi8(r0, r0);
// Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb aaaa)
const __m128i rgba0 = _mm_unpacklo_epi8(r1, r1);
// Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff eeee)
const __m128i rgba1 = _mm_unpackhi_epi8(r1, r1);
// Store (dddd cccc bbbb aaaa) out:
quaddst = (__m128i *)(dst + (y + 0)*width + x);
_mm_storeu_si128(quaddst, rgba0);
// Store (hhhh gggg ffff eeee) out:
_mm_storeu_si128(quaddst+1, rgba1);
// Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba)
src2 += 8;
const __m128i r2 = _mm_loadl_epi64((const __m128i *)src2);
// Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc bbaa)
const __m128i r3 = _mm_unpacklo_epi8(r2, r2);
// Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb aaaa)
const __m128i rgba2 = _mm_unpacklo_epi8(r3, r3);
// Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff eeee)
const __m128i rgba3 = _mm_unpackhi_epi8(r3, r3);
// Store (dddd cccc bbbb aaaa) out:
quaddst = (__m128i *)(dst + (y + 1)*width + x);
_mm_storeu_si128(quaddst, rgba2);
// Store (hhhh gggg ffff eeee) out:
_mm_storeu_si128(quaddst+1, rgba3);
// Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba)
src2 += 8;
const __m128i r4 = _mm_loadl_epi64((const __m128i *)src2);
// Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc bbaa)
const __m128i r5 = _mm_unpacklo_epi8(r4, r4);
// Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb aaaa)
const __m128i rgba4 = _mm_unpacklo_epi8(r5, r5);
// Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff eeee)
const __m128i rgba5 = _mm_unpackhi_epi8(r5, r5);
// Store (dddd cccc bbbb aaaa) out:
quaddst = (__m128i *)(dst + (y + 2)*width + x);
_mm_storeu_si128(quaddst, rgba4);
// Store (hhhh gggg ffff eeee) out:
_mm_storeu_si128(quaddst+1, rgba5);
// Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba)
src2 += 8;
const __m128i r6 = _mm_loadl_epi64((const __m128i *)src2);
// Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc bbaa)
const __m128i r7 = _mm_unpacklo_epi8(r6, r6);
// Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb aaaa)
const __m128i rgba6 = _mm_unpacklo_epi8(r7, r7);
// Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff eeee)
const __m128i rgba7 = _mm_unpackhi_epi8(r7, r7);
// Store (dddd cccc bbbb aaaa) out:
quaddst = (__m128i *)(dst + (y + 3)*width + x);
_mm_storeu_si128(quaddst, rgba6);
// Store (hhhh gggg ffff eeee) out:
_mm_storeu_si128(quaddst+1, rgba7);
}
}
#if 0
// Reference C implementation
for (int y = 0; y < height; y += 4)
for (int x = 0; x < width; x += 8)
for (int iy = 0; iy < 4; ++iy, src += 8)
{
u32 * newdst = dst + (y + iy)*width+x;
const u8 * newsrc = src;
u8 srcval;
srcval = (newsrc++)[0]; (newdst++)[0] = srcval | (srcval << 8) | (srcval << 16) | (srcval << 24);
srcval = (newsrc++)[0]; (newdst++)[0] = srcval | (srcval << 8) | (srcval << 16) | (srcval << 24);
srcval = (newsrc++)[0]; (newdst++)[0] = srcval | (srcval << 8) | (srcval << 16) | (srcval << 24);
srcval = (newsrc++)[0]; (newdst++)[0] = srcval | (srcval << 8) | (srcval << 16) | (srcval << 24);
srcval = (newsrc++)[0]; (newdst++)[0] = srcval | (srcval << 8) | (srcval << 16) | (srcval << 24);
srcval = (newsrc++)[0]; (newdst++)[0] = srcval | (srcval << 8) | (srcval << 16) | (srcval << 24);
srcval = (newsrc++)[0]; (newdst++)[0] = srcval | (srcval << 8) | (srcval << 16) | (srcval << 24);
srcval = newsrc[0]; newdst[0] = srcval | (srcval << 8) | (srcval << 16) | (srcval << 24);
}
#endif
}
break;
case GX_TF_C8:
if (tlutfmt == 2)
{
// Special decoding is required for TLUT format 5A3
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC8_5A3_To_RGBA32((u32*)dst + (y + iy) * width + x, src + 8 * xStep, tlutaddr);
}
else if(tlutfmt == 0)
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC8IA8_To_RGBA(dst + (y + iy) * width + x, src + 8 * xStep, tlutaddr);
}
else
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC8RGB565_To_RGBA(dst + (y + iy) * width + x, src + 8 * xStep, tlutaddr);
}
break;
case GX_TF_IA4:
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesIA4RGBA(dst + (y + iy) * width + x, src + 8 * xStep);
}
break;
case GX_TF_IA8:
{
#if _M_SSE >= 0x301
// xsacha optimized with SSSE3 intrinsics.
// Produces an ~50% speed improvement over SSE2 implementation.
if (cpu_info.bSSSE3)
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
{
const __m128i mask = _mm_set_epi8(6, 7, 7, 7, 4, 5, 5, 5, 2, 3, 3, 3, 0, 1, 1, 1);
// Load 4x 16-bit IA8 samples from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba)
const __m128i r0 = _mm_loadl_epi64((const __m128i *)(src + 8 * xStep));
// Shuffle to (ghhh efff cddd abbb)
const __m128i r1 = _mm_shuffle_epi8(r0, mask);
_mm_storeu_si128( (__m128i*)(dst + (y + iy) * width + x), r1 );
}
} else
#endif
// JSD optimized with SSE2 intrinsics.
// Produces an ~80% speed improvement over reference C implementation.
{
const __m128i kMask_xf0 = _mm_set_epi32(0x00000000L, 0x00000000L, 0xff00ff00L, 0xff00ff00L);
const __m128i kMask_x0f = _mm_set_epi32(0x00000000L, 0x00000000L, 0x00ff00ffL, 0x00ff00ffL);
const __m128i kMask_xf000 = _mm_set_epi32(0xff000000L, 0xff000000L, 0xff000000L, 0xff000000L);
const __m128i kMask_x0fff = _mm_set_epi32(0x00ffffffL, 0x00ffffffL, 0x00ffffffL, 0x00ffffffL);
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
{
// Expands a 16-bit "IA" to a 32-bit "AIII". Each char is an 8-bit value.
// Load 4x 16-bit IA8 samples from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba)
const __m128i r0 = _mm_loadl_epi64((const __m128i *)(src+ 8 * xStep));
// Logical shift all 16-bit words right by 8 bits (0000 0000 hgfe dcba) to (0000 0000 0h0f 0d0b)
// This gets us only the I components.
const __m128i i0 = _mm_srli_epi16(r0, 8);
// Now join up the I components from their original positions but mask out the A components.
// (0000 0000 hgfe dcba) & kMask_xFF00 -> (0000 0000 h0f0 d0b0)
// (0000 0000 h0f0 d0b0) | (0000 0000 0h0f 0d0b) -> (0000 0000 hhff ddbb)
const __m128i i1 = _mm_or_si128(_mm_and_si128(r0, kMask_xf0), i0);
// Shuffle low 64-bits with itself to expand from (0000 0000 hhff ddbb) to (hhhh ffff dddd bbbb)
const __m128i i2 = _mm_unpacklo_epi8(i1, i1);
// (hhhh ffff dddd bbbb) & kMask_x0fff -> (0hhh 0fff 0ddd 0bbb)
const __m128i i3 = _mm_and_si128(i2, kMask_x0fff);
// Now that we have the I components in 32-bit word form, time work out the A components into
// their final positions.
// (0000 0000 hgfe dcba) & kMask_x00FF -> (0000 0000 0g0e 0c0a)
const __m128i a0 = _mm_and_si128(r0, kMask_x0f);
// (0000 0000 0g0e 0c0a) -> (00gg 00ee 00cc 00aa)
const __m128i a1 = _mm_unpacklo_epi8(a0, a0);
// (00gg 00ee 00cc 00aa) << 16 -> (gg00 ee00 cc00 aa00)
const __m128i a2 = _mm_slli_epi32(a1, 16);
// (gg00 ee00 cc00 aa00) & kMask_xf000 -> (g000 e000 c000 a000)
const __m128i a3 = _mm_and_si128(a2, kMask_xf000);
// Simply OR up i3 and a3 now and that's our result:
// (0hhh 0fff 0ddd 0bbb) | (g000 e000 c000 a000) -> (ghhh efff cddd abbb)
const __m128i r1 = _mm_or_si128(i3, a3);
// write out the 128-bit result:
_mm_storeu_si128( (__m128i*)(dst + (y + iy) * width + x), r1 );
}
}
#if 0
// Reference C implementation:
for (int y = 0; y < height; y += 4)
for (int x = 0; x < width; x += 4)
for (int iy = 0; iy < 4; iy++, src += 8)
{
u32 *ptr = dst + (y + iy) * width + x;
u16 *s = (u16 *)src;
ptr[0] = decodeIA8Swapped(s[0]);
ptr[1] = decodeIA8Swapped(s[1]);
ptr[2] = decodeIA8Swapped(s[2]);
ptr[3] = decodeIA8Swapped(s[3]);
}
#endif
}
break;
case GX_TF_C14X2:
if (tlutfmt == 2)
{
// Special decoding is required for TLUT format 5A3
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC14X2_5A3_To_BGRA32(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlutaddr);
}
else if (tlutfmt == 0)
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC14X2IA8_To_RGBA(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlutaddr);
}
else
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
decodebytesC14X2rgb565_To_RGBA(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlutaddr);
}
break;
case GX_TF_RGB565:
{
// JSD optimized with SSE2 intrinsics.
// Produces an ~78% speed improvement over reference C implementation.
const __m128i kMaskR0 = _mm_set1_epi32(0x000000F8);
const __m128i kMaskG0 = _mm_set1_epi32(0x0000FC00);
const __m128i kMaskG1 = _mm_set1_epi32(0x00000300);
const __m128i kMaskB0 = _mm_set1_epi32(0x00F80000);
const __m128i kAlpha = _mm_set1_epi32(0xFF000000);
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
{
__m128i *dxtsrc = (__m128i *)(src + 8 * xStep);
// Load 4x 16-bit colors: (0000 0000 hgfe dcba)
// where hg, fe, ba, and dc are 16-bit colors in big-endian order
const __m128i rgb565x4 = _mm_loadl_epi64(dxtsrc);
// The big-endian 16-bit colors `ba` and `dc` look like 0b_gggBBBbb_RRRrrGGg in a little endian xmm register
// Unpack `hgfe dcba` to `hhgg ffee ddcc bbaa`, where each 32-bit word is now 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg
const __m128i c0 = _mm_unpacklo_epi16(rgb565x4, rgb565x4);
// swizzle 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg
// to 0b_11111111_BBBbbBBB_GGggggGG_RRRrrRRR
// 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg &
// 0b_00000000_00000000_00000000_11111000 =
// 0b_00000000_00000000_00000000_RRRrr000
const __m128i r0 = _mm_and_si128(c0, kMaskR0);
// 0b_00000000_00000000_00000000_RRRrr000 >> 5 [32] =
// 0b_00000000_00000000_00000000_00000RRR
const __m128i r1 = _mm_srli_epi32(r0, 5);
// 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg >> 3 [32] =
// 0b_000gggBB_BbbRRRrr_GGggggBB_BbbRRRrr &
// 0b_00000000_00000000_11111100_00000000 =
// 0b_00000000_00000000_GGgggg00_00000000
const __m128i gtmp = _mm_srli_epi32(c0, 3);
const __m128i g0 = _mm_and_si128(gtmp, kMaskG0);
// 0b_GGggggBB_BbbRRRrr_GGggggBB_Bbb00000 >> 6 [32] =
// 0b_000000GG_ggggBBBb_bRRRrrGG_ggggBBBb &
// 0b_00000000_00000000_00000011_00000000 =
// 0b_00000000_00000000_000000GG_00000000 =
const __m128i g1 = _mm_and_si128(_mm_srli_epi32(gtmp, 6), kMaskG1);
// 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg >> 5 [32] =
// 0b_00000ggg_BBBbbRRR_rrGGgggg_BBBbbRRR &
// 0b_00000000_11111000_00000000_00000000 =
// 0b_00000000_BBBbb000_00000000_00000000
const __m128i b0 = _mm_and_si128(_mm_srli_epi32(c0, 5), kMaskB0);
// 0b_00000000_BBBbb000_00000000_00000000 >> 5 [16] =
// 0b_00000000_00000BBB_00000000_00000000
const __m128i b1 = _mm_srli_epi16(b0, 5);
// OR together the final RGB bits and the alpha component:
const __m128i abgr888x4 = _mm_or_si128(
_mm_or_si128(
_mm_or_si128(r0, r1),
_mm_or_si128(g0, g1)
),
_mm_or_si128(
_mm_or_si128(b0, b1),
kAlpha
)
);
__m128i *ptr = (__m128i *)(dst + (y + iy) * width + x);
_mm_storeu_si128(ptr, abgr888x4);
}
#if 0
// Reference C implementation.
for (int y = 0; y < height; y += 4)
for (int x = 0; x < width; x += 4)
for (int iy = 0; iy < 4; iy++, src += 8)
{
u32 *ptr = dst + (y + iy) * width + x;
u16 *s = (u16 *)src;
for(int j = 0; j < 4; j++)
*ptr++ = decode565RGBA(Common::swap16(*s++));
}
#endif
}
break;
case GX_TF_RGB5A3:
{
const __m128i kMask_x1f = _mm_set1_epi32(0x0000001fL);
const __m128i kMask_x0f = _mm_set1_epi32(0x0000000fL);
const __m128i kMask_x07 = _mm_set1_epi32(0x00000007L);
// This is the hard-coded 0xFF alpha constant that is ORed in place after the RGB are calculated
// for the RGB555 case when (s[x] & 0x8000) is true for all pixels.
const __m128i aVxff00 = _mm_set1_epi32(0xFF000000L);
#if _M_SSE >= 0x301
// xsacha optimized with SSSE3 intrinsics (2 in 4 cases)
// Produces a ~10% speed improvement over SSE2 implementation
if (cpu_info.bSSSE3)
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
{
u32 *newdst = dst+(y+iy)*width+x;
const __m128i mask = _mm_set_epi8(128,128,6,7,128,128,4,5,128,128,2,3,128,128,0,1);
const __m128i valV = _mm_shuffle_epi8(_mm_loadl_epi64((const __m128i*)(src + 8 * xStep)),mask);
int cmp = _mm_movemask_epi8(valV); //MSB: 0x2 = val0; 0x20=val1; 0x200 = val2; 0x2000=val3
if ((cmp&0x2222)==0x2222) // SSSE3 case #1: all 4 pixels are in RGB555 and alpha = 0xFF.
{
// Swizzle bits: 00012345 -> 12345123
//r0 = (((val0>>10) & 0x1f) << 3) | (((val0>>10) & 0x1f) >> 2);
const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 10), kMask_x1f);
const __m128i rV = _mm_or_si128( _mm_slli_epi16(tmprV, 3), _mm_srli_epi16(tmprV, 2) );
//g0 = (((val0>>5 ) & 0x1f) << 3) | (((val0>>5 ) & 0x1f) >> 2);
const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 5), kMask_x1f);
const __m128i gV = _mm_or_si128( _mm_slli_epi16(tmpgV, 3), _mm_srli_epi16(tmpgV, 2) );
//b0 = (((val0 ) & 0x1f) << 3) | (((val0 ) & 0x1f) >> 2);
const __m128i tmpbV = _mm_and_si128(valV, kMask_x1f);
const __m128i bV = _mm_or_si128( _mm_slli_epi16(tmpbV, 3), _mm_srli_epi16(tmpbV, 2) );
//newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24);
const __m128i final = _mm_or_si128( _mm_or_si128(rV,_mm_slli_epi32(gV, 8)),
_mm_or_si128(_mm_slli_epi32(bV, 16), aVxff00));
_mm_storeu_si128( (__m128i*)newdst, final );
}
else if (!(cmp&0x2222)) // SSSE3 case #2: all 4 pixels are in RGBA4443.
{
// Swizzle bits: 00001234 -> 12341234
//r0 = (((val0>>8 ) & 0xf) << 4) | ((val0>>8 ) & 0xf);
const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 8), kMask_x0f);
const __m128i rV = _mm_or_si128( _mm_slli_epi16(tmprV, 4), tmprV );
//g0 = (((val0>>4 ) & 0xf) << 4) | ((val0>>4 ) & 0xf);
const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 4), kMask_x0f);
const __m128i gV = _mm_or_si128( _mm_slli_epi16(tmpgV, 4), tmpgV );
//b0 = (((val0 ) & 0xf) << 4) | ((val0 ) & 0xf);
const __m128i tmpbV = _mm_and_si128(valV, kMask_x0f);
const __m128i bV = _mm_or_si128( _mm_slli_epi16(tmpbV, 4), tmpbV );
//a0 = (((val0>>12) & 0x7) << 5) | (((val0>>12) & 0x7) << 2) | (((val0>>12) & 0x7) >> 1);
const __m128i tmpaV = _mm_and_si128(_mm_srli_epi16(valV, 12), kMask_x07);
const __m128i aV = _mm_or_si128(
_mm_slli_epi16(tmpaV, 5),
_mm_or_si128(
_mm_slli_epi16(tmpaV, 2),
_mm_srli_epi16(tmpaV, 1)
)
);
//newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24);
const __m128i final = _mm_or_si128( _mm_or_si128(rV,_mm_slli_epi32(gV, 8)),
_mm_or_si128(_mm_slli_epi32(bV, 16), _mm_slli_epi32(aV, 24)));
_mm_storeu_si128( (__m128i*)newdst, final );
}
else
{
// TODO: Vectorise (Either 4-way branch or do both and select is better than this)
u32 *vals = (u32*) &valV;
int r,g,b,a;
for (int i=0; i < 4; ++i)
{
if (vals[i] & 0x8000)
{
// Swizzle bits: 00012345 -> 12345123
r = (((vals[i]>>10) & 0x1f) << 3) | (((vals[i]>>10) & 0x1f) >> 2);
g = (((vals[i]>>5 ) & 0x1f) << 3) | (((vals[i]>>5 ) & 0x1f) >> 2);
b = (((vals[i] ) & 0x1f) << 3) | (((vals[i] ) & 0x1f) >> 2);
a = 0xFF;
}
else
{
a = (((vals[i]>>12) & 0x7) << 5) | (((vals[i]>>12) & 0x7) << 2) | (((vals[i]>>12) & 0x7) >> 1);
// Swizzle bits: 00001234 -> 12341234
r = (((vals[i]>>8 ) & 0xf) << 4) | ((vals[i]>>8 ) & 0xf);
g = (((vals[i]>>4 ) & 0xf) << 4) | ((vals[i]>>4 ) & 0xf);
b = (((vals[i] ) & 0xf) << 4) | ((vals[i] ) & 0xf);
}
newdst[i] = r | (g << 8) | (b << 16) | (a << 24);
}
}
}
} else
#endif
// JSD optimized with SSE2 intrinsics (2 in 4 cases)
// Produces a ~25% speed improvement over reference C implementation.
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
{
u32 *newdst = dst+(y+iy)*width+x;
const u16 *newsrc = (const u16*)(src + 8 * xStep);
// TODO: weak point
const u16 val0 = Common::swap16(newsrc[0]);
const u16 val1 = Common::swap16(newsrc[1]);
const u16 val2 = Common::swap16(newsrc[2]);
const u16 val3 = Common::swap16(newsrc[3]);
const __m128i valV = _mm_set_epi16(0, val3, 0, val2, 0, val1, 0, val0);
// Need to check all 4 pixels' MSBs to ensure we can do data-parallelism:
if (((val0 & 0x8000) & (val1 & 0x8000) & (val2 & 0x8000) & (val3 & 0x8000)) == 0x8000)
{
// SSE2 case #1: all 4 pixels are in RGB555 and alpha = 0xFF.
// Swizzle bits: 00012345 -> 12345123
//r0 = (((val0>>10) & 0x1f) << 3) | (((val0>>10) & 0x1f) >> 2);
const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 10), kMask_x1f);
const __m128i rV = _mm_or_si128( _mm_slli_epi16(tmprV, 3), _mm_srli_epi16(tmprV, 2) );
//g0 = (((val0>>5 ) & 0x1f) << 3) | (((val0>>5 ) & 0x1f) >> 2);
const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 5), kMask_x1f);
const __m128i gV = _mm_or_si128( _mm_slli_epi16(tmpgV, 3), _mm_srli_epi16(tmpgV, 2) );
//b0 = (((val0 ) & 0x1f) << 3) | (((val0 ) & 0x1f) >> 2);
const __m128i tmpbV = _mm_and_si128(valV, kMask_x1f);
const __m128i bV = _mm_or_si128( _mm_slli_epi16(tmpbV, 3), _mm_srli_epi16(tmpbV, 2) );
//newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24);
const __m128i final = _mm_or_si128( _mm_or_si128(rV,_mm_slli_epi32(gV, 8)),
_mm_or_si128(_mm_slli_epi32(bV, 16), aVxff00));
// write the final result:
_mm_storeu_si128( (__m128i*)newdst, final );
}
else if (((val0 & 0x8000) | (val1 & 0x8000) | (val2 & 0x8000) | (val3 & 0x8000)) == 0x0000)
{
// SSE2 case #2: all 4 pixels are in RGBA4443.
// Swizzle bits: 00001234 -> 12341234
//r0 = (((val0>>8 ) & 0xf) << 4) | ((val0>>8 ) & 0xf);
const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 8), kMask_x0f);
const __m128i rV = _mm_or_si128( _mm_slli_epi16(tmprV, 4), tmprV );
//g0 = (((val0>>4 ) & 0xf) << 4) | ((val0>>4 ) & 0xf);
const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 4), kMask_x0f);
const __m128i gV = _mm_or_si128( _mm_slli_epi16(tmpgV, 4), tmpgV );
//b0 = (((val0 ) & 0xf) << 4) | ((val0 ) & 0xf);
const __m128i tmpbV = _mm_and_si128(valV, kMask_x0f);
const __m128i bV = _mm_or_si128( _mm_slli_epi16(tmpbV, 4), tmpbV );
//a0 = (((val0>>12) & 0x7) << 5) | (((val0>>12) & 0x7) << 2) | (((val0>>12) & 0x7) >> 1);
const __m128i tmpaV = _mm_and_si128(_mm_srli_epi16(valV, 12), kMask_x07);
const __m128i aV = _mm_or_si128(
_mm_slli_epi16(tmpaV, 5),
_mm_or_si128(
_mm_slli_epi16(tmpaV, 2),
_mm_srli_epi16(tmpaV, 1)
)
);
//newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24);
const __m128i final = _mm_or_si128( _mm_or_si128(rV,_mm_slli_epi32(gV, 8)),
_mm_or_si128(_mm_slli_epi32(bV, 16), _mm_slli_epi32(aV, 24)));
// write the final result:
_mm_storeu_si128( (__m128i*)newdst, final );
}
else
{
// TODO: Vectorise (Either 4-way branch or do both and select is better than this)
u32 *vals = (u32*) &valV;
int r,g,b,a;
for (int i=0; i < 4; ++i)
{
if (vals[i] & 0x8000)
{
// Swizzle bits: 00012345 -> 12345123
r = (((vals[i]>>10) & 0x1f) << 3) | (((vals[i]>>10) & 0x1f) >> 2);
g = (((vals[i]>>5 ) & 0x1f) << 3) | (((vals[i]>>5 ) & 0x1f) >> 2);
b = (((vals[i] ) & 0x1f) << 3) | (((vals[i] ) & 0x1f) >> 2);
a = 0xFF;
}
else
{
a = (((vals[i]>>12) & 0x7) << 5) | (((vals[i]>>12) & 0x7) << 2) | (((vals[i]>>12) & 0x7) >> 1);
// Swizzle bits: 00001234 -> 12341234
r = (((vals[i]>>8 ) & 0xf) << 4) | ((vals[i]>>8 ) & 0xf);
g = (((vals[i]>>4 ) & 0xf) << 4) | ((vals[i]>>4 ) & 0xf);
b = (((vals[i] ) & 0xf) << 4) | ((vals[i] ) & 0xf);
}
newdst[i] = r | (g << 8) | (b << 16) | (a << 24);
}
}
}
}
#if 0
// Reference C implementation:
for (int y = 0; y < height; y += 4)
for (int x = 0; x < width; x += 4)
for (int iy = 0; iy < 4; iy++, src += 8)
decodebytesRGB5A3rgba(dst+(y+iy)*width+x, (u16*)src);
#endif
}
break;
case GX_TF_RGBA8: // speed critical
{
#if _M_SSE >= 0x301
// xsacha optimized with SSSE3 instrinsics
// Produces a ~30% speed improvement over SSE2 implementation
if (cpu_info.bSSSE3)
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
{
const u8* src2 = src + 64 * yStep;
const __m128i mask0312 = _mm_set_epi8(12,15,13,14,8,11,9,10,4,7,5,6,0,3,1,2);
const __m128i ar0 = _mm_loadu_si128((__m128i*)src2);
const __m128i ar1 = _mm_loadu_si128((__m128i*)src2+1);
const __m128i gb0 = _mm_loadu_si128((__m128i*)src2+2);
const __m128i gb1 = _mm_loadu_si128((__m128i*)src2+3);
const __m128i rgba00 = _mm_shuffle_epi8(_mm_unpacklo_epi8(ar0,gb0),mask0312);
const __m128i rgba01 = _mm_shuffle_epi8(_mm_unpackhi_epi8(ar0,gb0),mask0312);
const __m128i rgba10 = _mm_shuffle_epi8(_mm_unpacklo_epi8(ar1,gb1),mask0312);
const __m128i rgba11 = _mm_shuffle_epi8(_mm_unpackhi_epi8(ar1,gb1),mask0312);
__m128i *dst128 = (__m128i*)( dst + (y + 0) * width + x );
_mm_storeu_si128(dst128, rgba00);
dst128 = (__m128i*)( dst + (y + 1) * width + x );
_mm_storeu_si128(dst128, rgba01);
dst128 = (__m128i*)( dst + (y + 2) * width + x );
_mm_storeu_si128(dst128, rgba10);
dst128 = (__m128i*)( dst + (y + 3) * width + x );
_mm_storeu_si128(dst128, rgba11);
}
} else
#endif
// JSD optimized with SSE2 intrinsics
// Produces a ~68% speed improvement over reference C implementation.
{
#pragma omp parallel for
for (int y = 0; y < height; y += 4)
for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
{
// Input is divided up into 16-bit words. The texels are split up into AR and GB components where all
// AR components come grouped up first in 32 bytes followed by the GB components in 32 bytes. We are
// processing 16 texels per each loop iteration, numbered from 0-f.
//
// Convention is:
// one byte is [component-name texel-number]
// __m128i is (4-bytes 4-bytes 4-bytes 4-bytes)
//
// Input is ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0])
// ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8])
// ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0])
// ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8])
//
// Output is (RGBA3 RGBA2 RGBA1 RGBA0)
// (RGBA7 RGBA6 RGBA5 RGBA4)
// (RGBAb RGBAa RGBA9 RGBA8)
// (RGBAf RGBAe RGBAd RGBAc)
const u8* src2 = src + 64 * yStep;
// Loads the 1st half of AR components ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0])
const __m128i ar0 = _mm_loadu_si128((__m128i*)src2);
// Loads the 2nd half of AR components ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8])
const __m128i ar1 = _mm_loadu_si128((__m128i*)src2+1);
// Loads the 1st half of GB components ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0])
const __m128i gb0 = _mm_loadu_si128((__m128i*)src2+2);
// Loads the 2nd half of GB components ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8])
const __m128i gb1 = _mm_loadu_si128((__m128i*)src2+3);
__m128i rgba00, rgba01, rgba10, rgba11;
const __m128i kMask_x000f = _mm_set_epi32(0x000000FFL, 0x000000FFL, 0x000000FFL, 0x000000FFL);
const __m128i kMask_xf000 = _mm_set_epi32(0xFF000000L, 0xFF000000L, 0xFF000000L, 0xFF000000L);
const __m128i kMask_x0ff0 = _mm_set_epi32(0x00FFFF00L, 0x00FFFF00L, 0x00FFFF00L, 0x00FFFF00L);
// Expand the AR components to fill out 32-bit words:
// ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0]) -> ([A 3][A 3][R 3][R 3] [A 2][A 2][R 2][R 2] [A 1][A 1][R 1][R 1] [A 0][A 0][R 0][R 0])
const __m128i aarr00 = _mm_unpacklo_epi8(ar0, ar0);
// ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0]) -> ([A 7][A 7][R 7][R 7] [A 6][A 6][R 6][R 6] [A 5][A 5][R 5][R 5] [A 4][A 4][R 4][R 4])
const __m128i aarr01 = _mm_unpackhi_epi8(ar0, ar0);
// ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8]) -> ([A b][A b][R b][R b] [A a][A a][R a][R a] [A 9][A 9][R 9][R 9] [A 8][A 8][R 8][R 8])
const __m128i aarr10 = _mm_unpacklo_epi8(ar1, ar1);
// ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8]) -> ([A f][A f][R f][R f] [A e][A e][R e][R e] [A d][A d][R d][R d] [A c][A c][R c][R c])
const __m128i aarr11 = _mm_unpackhi_epi8(ar1, ar1);
// Move A right 16 bits and mask off everything but the lowest 8 bits to get A in its final place:
const __m128i ___a00 = _mm_and_si128(_mm_srli_epi32(aarr00, 16), kMask_x000f);
// Move R left 16 bits and mask off everything but the highest 8 bits to get R in its final place:
const __m128i r___00 = _mm_and_si128(_mm_slli_epi32(aarr00, 16), kMask_xf000);
// OR the two together to get R and A in their final places:
const __m128i r__a00 = _mm_or_si128(r___00, ___a00);
const __m128i ___a01 = _mm_and_si128(_mm_srli_epi32(aarr01, 16), kMask_x000f);
const __m128i r___01 = _mm_and_si128(_mm_slli_epi32(aarr01, 16), kMask_xf000);
const __m128i r__a01 = _mm_or_si128(r___01, ___a01);
const __m128i ___a10 = _mm_and_si128(_mm_srli_epi32(aarr10, 16), kMask_x000f);
const __m128i r___10 = _mm_and_si128(_mm_slli_epi32(aarr10, 16), kMask_xf000);
const __m128i r__a10 = _mm_or_si128(r___10, ___a10);
const __m128i ___a11 = _mm_and_si128(_mm_srli_epi32(aarr11, 16), kMask_x000f);
const __m128i r___11 = _mm_and_si128(_mm_slli_epi32(aarr11, 16), kMask_xf000);
const __m128i r__a11 = _mm_or_si128(r___11, ___a11);
// Expand the GB components to fill out 32-bit words:
// ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0]) -> ([G 3][G 3][B 3][B 3] [G 2][G 2][B 2][B 2] [G 1][G 1][B 1][B 1] [G 0][G 0][B 0][B 0])
const __m128i ggbb00 = _mm_unpacklo_epi8(gb0, gb0);
// ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0]) -> ([G 7][G 7][B 7][B 7] [G 6][G 6][B 6][B 6] [G 5][G 5][B 5][B 5] [G 4][G 4][B 4][B 4])
const __m128i ggbb01 = _mm_unpackhi_epi8(gb0, gb0);
// ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8]) -> ([G b][G b][B b][B b] [G a][G a][B a][B a] [G 9][G 9][B 9][B 9] [G 8][G 8][B 8][B 8])
const __m128i ggbb10 = _mm_unpacklo_epi8(gb1, gb1);
// ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8]) -> ([G f][G f][B f][B f] [G e][G e][B e][B e] [G d][G d][B d][B d] [G c][G c][B c][B c])
const __m128i ggbb11 = _mm_unpackhi_epi8(gb1, gb1);
// G and B are already in perfect spots in the center, just remove the extra copies in the 1st and 4th positions:
const __m128i _gb_00 = _mm_and_si128(ggbb00, kMask_x0ff0);
const __m128i _gb_01 = _mm_and_si128(ggbb01, kMask_x0ff0);
const __m128i _gb_10 = _mm_and_si128(ggbb10, kMask_x0ff0);
const __m128i _gb_11 = _mm_and_si128(ggbb11, kMask_x0ff0);
// Now join up R__A and _GB_ to get RGBA!
rgba00 = _mm_or_si128(r__a00, _gb_00);
rgba01 = _mm_or_si128(r__a01, _gb_01);
rgba10 = _mm_or_si128(r__a10, _gb_10);
rgba11 = _mm_or_si128(r__a11, _gb_11);
// Write em out!
__m128i *dst128 = (__m128i*)( dst + (y + 0) * width + x );
_mm_storeu_si128(dst128, rgba00);
dst128 = (__m128i*)( dst + (y + 1) * width + x );
_mm_storeu_si128(dst128, rgba01);
dst128 = (__m128i*)( dst + (y + 2) * width + x );
_mm_storeu_si128(dst128, rgba10);
dst128 = (__m128i*)( dst + (y + 3) * width + x );
_mm_storeu_si128(dst128, rgba11);
}
}
#if 0
// Reference C implementation.
for (int y = 0; y < height; y += 4)
for (int x = 0; x < width; x += 4)
{
for (int iy = 0; iy < 4; iy++)
decodebytesARGB8_4ToRgba(dst + (y+iy)*width + x, (u16*)src + 4 * iy, (u16*)src + 4 * iy + 16);
src += 64;
}
#endif
}
break;
case GX_TF_CMPR: // speed critical
// The metroid games use this format almost exclusively.
{
// JSD optimized with SSE2 intrinsics.
// Produces a ~50% improvement for x86 and a ~40% improvement for x64 in speed over reference C implementation.
// The x64 compiled reference C code is faster than the x86 compiled reference C code, but the SSE2 is
// faster than both.
#pragma omp parallel for
for (int y = 0; y < height; y += 8)
{
for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8,yStep++)
{
// We handle two DXT blocks simultaneously to take full advantage of SSE2's 128-bit registers.
// This is ideal because a single DXT block contains 2 RGBA colors when decoded from their 16-bit.
// Two DXT blocks therefore contain 4 RGBA colors to be processed. The processing is parallelizable
// at this level, so we do.
for (int z = 0, xStep = 2 * yStep; z < 2; ++z, xStep++)
{
// JSD NOTE: You may see many strange patterns of behavior in the below code, but they
// are for performance reasons. Sometimes, calculating what should be obvious hard-coded
// constants is faster than loading their values from memory. Unfortunately, there is no
// way to inline 128-bit constants from opcodes so they must be loaded from memory. This
// seems a little ridiculous to me in that you can't even generate a constant value of 1 without
// having to load it from memory. So, I stored the minimal constant I could, 128-bits worth
// of 1s :). Then I use sequences of shifts to squash it to the appropriate size and bit
// positions that I need.
const __m128i allFFs128 = _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128());
// Load 128 bits, i.e. two DXTBlocks (64-bits each)
const __m128i dxt = _mm_loadu_si128((__m128i *)(src + sizeof(struct DXTBlock) * 2 * xStep));
// Copy the 2-bit indices from each DXT block:
GC_ALIGNED16( u32 dxttmp[4] );
_mm_store_si128((__m128i *)dxttmp, dxt);
u32 dxt0sel = dxttmp[1];
u32 dxt1sel = dxttmp[3];
__m128i argb888x4;
__m128i c1 = _mm_unpackhi_epi16(dxt, dxt);
c1 = _mm_slli_si128(c1, 8);
const __m128i c0 = _mm_or_si128(c1, _mm_srli_si128(_mm_slli_si128(_mm_unpacklo_epi16(dxt, dxt), 8), 8));
// Compare rgb0 to rgb1:
// Each 32-bit word will contain either 0xFFFFFFFF or 0x00000000 for true/false.
const __m128i c0cmp = _mm_srli_epi32(_mm_slli_epi32(_mm_srli_epi64(c0, 8), 16), 16);
const __m128i c0shr = _mm_srli_epi64(c0cmp, 32);
const __m128i cmprgb0rgb1 = _mm_cmpgt_epi32(c0cmp, c0shr);
int cmp0 = _mm_extract_epi16(cmprgb0rgb1, 0);
int cmp1 = _mm_extract_epi16(cmprgb0rgb1, 4);
// green:
// NOTE: We start with the larger number of bits (6) firts for G and shift the mask down 1 bit to get a 5-bit mask
// later for R and B components.
// low6mask == _mm_set_epi32(0x0000FC00, 0x0000FC00, 0x0000FC00, 0x0000FC00)
const __m128i low6mask = _mm_slli_epi32( _mm_srli_epi32(allFFs128, 24 + 2), 8 + 2);
const __m128i gtmp = _mm_srli_epi32(c0, 3);
const __m128i g0 = _mm_and_si128(gtmp, low6mask);
// low3mask == _mm_set_epi32(0x00000300, 0x00000300, 0x00000300, 0x00000300)
const __m128i g1 = _mm_and_si128(_mm_srli_epi32(gtmp, 6), _mm_set_epi32(0x00000300, 0x00000300, 0x00000300, 0x00000300));
argb888x4 = _mm_or_si128(g0, g1);
// red:
// low5mask == _mm_set_epi32(0x000000F8, 0x000000F8, 0x000000F8, 0x000000F8)
const __m128i low5mask = _mm_slli_epi32( _mm_srli_epi32(low6mask, 8 + 3), 3);
const __m128i r0 = _mm_and_si128(c0, low5mask);
const __m128i r1 = _mm_srli_epi32(r0, 5);
argb888x4 = _mm_or_si128(argb888x4, _mm_or_si128(r0, r1));
// blue:
// _mm_slli_epi32(low5mask, 16) == _mm_set_epi32(0x00F80000, 0x00F80000, 0x00F80000, 0x00F80000)
const __m128i b0 = _mm_and_si128(_mm_srli_epi32(c0, 5), _mm_slli_epi32(low5mask, 16));
const __m128i b1 = _mm_srli_epi16(b0, 5);
// OR in the fixed alpha component
// _mm_slli_epi32( allFFs128, 24 ) == _mm_set_epi32(0xFF000000, 0xFF000000, 0xFF000000, 0xFF000000)
argb888x4 = _mm_or_si128(_mm_or_si128(argb888x4, _mm_slli_epi32( allFFs128, 24 ) ), _mm_or_si128(b0, b1));
// calculate RGB2 and RGB3:
const __m128i rgb0 = _mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i rgb1 = _mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i rrggbb0 = _mm_and_si128(_mm_unpacklo_epi8(rgb0, rgb0), _mm_srli_epi16( allFFs128, 8 ));
const __m128i rrggbb1 = _mm_and_si128(_mm_unpacklo_epi8(rgb1, rgb1), _mm_srli_epi16( allFFs128, 8 ));
const __m128i rrggbb01 = _mm_and_si128(_mm_unpackhi_epi8(rgb0, rgb0), _mm_srli_epi16( allFFs128, 8 ));
const __m128i rrggbb11 = _mm_and_si128(_mm_unpackhi_epi8(rgb1, rgb1), _mm_srli_epi16( allFFs128, 8 ));
__m128i rgb2, rgb3;
// if (rgb0 > rgb1):
if (cmp0 != 0)
{
// RGB2a = ((RGB1 - RGB0) >> 1) - ((RGB1 - RGB0) >> 3) using arithmetic shifts to extend sign (not logical shifts)
const __m128i rrggbbsub = _mm_subs_epi16(rrggbb1, rrggbb0);
const __m128i rrggbbsubshr1 = _mm_srai_epi16(rrggbbsub, 1);
const __m128i rrggbbsubshr3 = _mm_srai_epi16(rrggbbsub, 3);
const __m128i shr1subshr3 = _mm_sub_epi16(rrggbbsubshr1, rrggbbsubshr3);
// low8mask16 == _mm_set_epi16(0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff)
const __m128i low8mask16 = _mm_srli_epi16( allFFs128, 8 );
const __m128i rrggbbdelta = _mm_and_si128(shr1subshr3, low8mask16);
const __m128i rgbdeltadup = _mm_packus_epi16(rrggbbdelta, rrggbbdelta);
const __m128i rgbdelta = _mm_srli_si128(_mm_slli_si128(rgbdeltadup, 8), 8);
rgb2 = _mm_and_si128(_mm_add_epi8(rgb0, rgbdelta), _mm_srli_si128(allFFs128, 8));
rgb3 = _mm_and_si128(_mm_sub_epi8(rgb1, rgbdelta), _mm_srli_si128(allFFs128, 8));
}
else
{
// RGB2b = avg(RGB0, RGB1)
const __m128i rrggbb21 = _mm_avg_epu16(rrggbb0, rrggbb1);
const __m128i rgb210 = _mm_srli_si128(_mm_packus_epi16(rrggbb21, rrggbb21), 8);
rgb2 = rgb210;
rgb3 = _mm_and_si128(_mm_srli_si128(_mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(1, 1, 1, 1)), 8), _mm_srli_epi32( allFFs128, 8 ));
}
// if (rgb0 > rgb1):
if (cmp1 != 0)
{
// RGB2a = ((RGB1 - RGB0) >> 1) - ((RGB1 - RGB0) >> 3) using arithmetic shifts to extend sign (not logical shifts)
const __m128i rrggbbsub1 = _mm_subs_epi16(rrggbb11, rrggbb01);
const __m128i rrggbbsubshr11 = _mm_srai_epi16(rrggbbsub1, 1);
const __m128i rrggbbsubshr31 = _mm_srai_epi16(rrggbbsub1, 3);
const __m128i shr1subshr31 = _mm_sub_epi16(rrggbbsubshr11, rrggbbsubshr31);
// low8mask16 == _mm_set_epi16(0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff)
const __m128i low8mask16 = _mm_srli_epi16( allFFs128, 8 );
const __m128i rrggbbdelta1 = _mm_and_si128(shr1subshr31, low8mask16);
__m128i rgbdelta1 = _mm_packus_epi16(rrggbbdelta1, rrggbbdelta1);
rgbdelta1 = _mm_slli_si128(rgbdelta1, 8);
rgb2 = _mm_or_si128(rgb2, _mm_and_si128(_mm_add_epi8(rgb0, rgbdelta1), _mm_slli_si128(allFFs128, 8)));
rgb3 = _mm_or_si128(rgb3, _mm_and_si128(_mm_sub_epi8(rgb1, rgbdelta1), _mm_slli_si128(allFFs128, 8)));
}
else
{
// RGB2b = avg(RGB0, RGB1)
const __m128i rrggbb211 = _mm_avg_epu16(rrggbb01, rrggbb11);
const __m128i rgb211 = _mm_slli_si128(_mm_packus_epi16(rrggbb211, rrggbb211), 8);
rgb2 = _mm_or_si128(rgb2, rgb211);
// _mm_srli_epi32( allFFs128, 8 ) == _mm_set_epi32(0x00FFFFFF, 0x00FFFFFF, 0x00FFFFFF, 0x00FFFFFF)
// Make this color fully transparent:
rgb3 = _mm_or_si128(rgb3, _mm_and_si128(_mm_and_si128(rgb1, _mm_srli_epi32( allFFs128, 8 ) ), _mm_slli_si128(allFFs128, 8)));
}
// Create an array for color lookups for DXT0 so we can use the 2-bit indices:
const __m128i mmcolors0 = _mm_or_si128(
_mm_or_si128(
_mm_srli_si128(_mm_slli_si128(argb888x4, 8), 8),
_mm_slli_si128(_mm_srli_si128(_mm_slli_si128(rgb2, 8), 8 + 4), 8)
),
_mm_slli_si128(_mm_srli_si128(rgb3, 4), 8 + 4)
);
// Create an array for color lookups for DXT1 so we can use the 2-bit indices:
const __m128i mmcolors1 = _mm_or_si128(
_mm_or_si128(
_mm_srli_si128(argb888x4, 8),
_mm_slli_si128(_mm_srli_si128(rgb2, 8 + 4), 8)
),
_mm_slli_si128(_mm_srli_si128(rgb3, 8 + 4), 8 + 4)
);
// The #ifdef CHECKs here and below are to compare correctness of output against the reference code.
// Don't use them in a normal build.
#ifdef CHECK
// REFERENCE:
u32 tmp0[4][4], tmp1[4][4];
decodeDXTBlockRGBA(&(tmp0[0][0]), (const DXTBlock *)src, 4);
decodeDXTBlockRGBA(&(tmp1[0][0]), (const DXTBlock *)(src + 8), 4);
#endif
u32 *dst32 = ( dst + (y + z*4) * width + x );
// Copy the colors here:
GC_ALIGNED16( u32 colors0[4] );
GC_ALIGNED16( u32 colors1[4] );
_mm_store_si128((__m128i *)colors0, mmcolors0);
_mm_store_si128((__m128i *)colors1, mmcolors1);
// Row 0:
dst32[(width * 0) + 0] = colors0[(dxt0sel >> ((0*8)+6)) & 3];
dst32[(width * 0) + 1] = colors0[(dxt0sel >> ((0*8)+4)) & 3];
dst32[(width * 0) + 2] = colors0[(dxt0sel >> ((0*8)+2)) & 3];
dst32[(width * 0) + 3] = colors0[(dxt0sel >> ((0*8)+0)) & 3];
dst32[(width * 0) + 4] = colors1[(dxt1sel >> ((0*8)+6)) & 3];
dst32[(width * 0) + 5] = colors1[(dxt1sel >> ((0*8)+4)) & 3];
dst32[(width * 0) + 6] = colors1[(dxt1sel >> ((0*8)+2)) & 3];
dst32[(width * 0) + 7] = colors1[(dxt1sel >> ((0*8)+0)) & 3];
#ifdef CHECK
assert( memcmp(&(tmp0[0]), &dst32[(width * 0)], 16) == 0 );
assert( memcmp(&(tmp1[0]), &dst32[(width * 0) + 4], 16) == 0 );
#endif
// Row 1:
dst32[(width * 1) + 0] = colors0[(dxt0sel >> ((1*8)+6)) & 3];
dst32[(width * 1) + 1] = colors0[(dxt0sel >> ((1*8)+4)) & 3];
dst32[(width * 1) + 2] = colors0[(dxt0sel >> ((1*8)+2)) & 3];
dst32[(width * 1) + 3] = colors0[(dxt0sel >> ((1*8)+0)) & 3];
dst32[(width * 1) + 4] = colors1[(dxt1sel >> ((1*8)+6)) & 3];
dst32[(width * 1) + 5] = colors1[(dxt1sel >> ((1*8)+4)) & 3];
dst32[(width * 1) + 6] = colors1[(dxt1sel >> ((1*8)+2)) & 3];
dst32[(width * 1) + 7] = colors1[(dxt1sel >> ((1*8)+0)) & 3];
#ifdef CHECK
assert( memcmp(&(tmp0[1]), &dst32[(width * 1)], 16) == 0 );
assert( memcmp(&(tmp1[1]), &dst32[(width * 1) + 4], 16) == 0 );
#endif
// Row 2:
dst32[(width * 2) + 0] = colors0[(dxt0sel >> ((2*8)+6)) & 3];
dst32[(width * 2) + 1] = colors0[(dxt0sel >> ((2*8)+4)) & 3];
dst32[(width * 2) + 2] = colors0[(dxt0sel >> ((2*8)+2)) & 3];
dst32[(width * 2) + 3] = colors0[(dxt0sel >> ((2*8)+0)) & 3];
dst32[(width * 2) + 4] = colors1[(dxt1sel >> ((2*8)+6)) & 3];
dst32[(width * 2) + 5] = colors1[(dxt1sel >> ((2*8)+4)) & 3];
dst32[(width * 2) + 6] = colors1[(dxt1sel >> ((2*8)+2)) & 3];
dst32[(width * 2) + 7] = colors1[(dxt1sel >> ((2*8)+0)) & 3];
#ifdef CHECK
assert( memcmp(&(tmp0[2]), &dst32[(width * 2)], 16) == 0 );
assert( memcmp(&(tmp1[2]), &dst32[(width * 2) + 4], 16) == 0 );
#endif
// Row 3:
dst32[(width * 3) + 0] = colors0[(dxt0sel >> ((3*8)+6)) & 3];
dst32[(width * 3) + 1] = colors0[(dxt0sel >> ((3*8)+4)) & 3];
dst32[(width * 3) + 2] = colors0[(dxt0sel >> ((3*8)+2)) & 3];
dst32[(width * 3) + 3] = colors0[(dxt0sel >> ((3*8)+0)) & 3];
dst32[(width * 3) + 4] = colors1[(dxt1sel >> ((3*8)+6)) & 3];
dst32[(width * 3) + 5] = colors1[(dxt1sel >> ((3*8)+4)) & 3];
dst32[(width * 3) + 6] = colors1[(dxt1sel >> ((3*8)+2)) & 3];
dst32[(width * 3) + 7] = colors1[(dxt1sel >> ((3*8)+0)) & 3];
#ifdef CHECK
assert( memcmp(&(tmp0[3]), &dst32[(width * 3)], 16) == 0 );
assert( memcmp(&(tmp1[3]), &dst32[(width * 3) + 4], 16) == 0 );
#endif
}
}
}
#if 0
for (int y = 0; y < height; y += 8)
{
for (int x = 0; x < width; x += 8)
{
decodeDXTBlockRGBA((u32*)dst + y * width + x, (DXTBlock*)src, width);
src += sizeof(DXTBlock);
decodeDXTBlockRGBA((u32*)dst + y * width + x + 4, (DXTBlock*)src, width);
src += sizeof(DXTBlock);
decodeDXTBlockRGBA((u32*)dst + (y + 4) * width + x, (DXTBlock*)src, width);
src += sizeof(DXTBlock);
decodeDXTBlockRGBA((u32*)dst + (y + 4) * width + x + 4, (DXTBlock*)src, width);
src += sizeof(DXTBlock);
}
}
#endif
break;
}
}
// The "copy" texture formats, too?
return PC_TEX_FMT_RGBA32;
}
void TexDecoder_SetTexFmtOverlayOptions(bool enable, bool center)
{
TexFmt_Overlay_Enable = enable;
TexFmt_Overlay_Center = center;
}
PC_TexFormat TexDecoder_Decode(u8 *dst, const u8 *src, int width, int height, int texformat, int tlutaddr, int tlutfmt,bool rgbaOnly)
{
PC_TexFormat retval = TexDecoder_Decode_OpenCL(dst, src,
width, height, texformat, tlutaddr, tlutfmt, rgbaOnly);
if (retval == PC_TEX_FMT_NONE)
retval = rgbaOnly ? TexDecoder_Decode_RGBA((u32*)dst, src,
width, height, texformat, tlutaddr, tlutfmt)
: TexDecoder_Decode_real(dst, src,
width, height, texformat, tlutaddr, tlutfmt);
if ((!TexFmt_Overlay_Enable)|| (retval == PC_TEX_FMT_NONE))
return retval;
int w = min(width, 40);
int h = min(height, 10);
int xoff = (width - w) >> 1;
int yoff = (height - h) >> 1;
if (!TexFmt_Overlay_Center)
{
xoff=0;
yoff=0;
}
const char* fmt = texfmt[texformat&15];
while (*fmt)
{
int xcnt = 0;
int nchar = sfont_map[(int)*fmt];
const unsigned char *ptr = sfont_raw[nchar]; // each char is up to 9x10
for (int x = 0; x < 9;x++)
{
if (ptr[x] == 0x78)
break;
xcnt++;
}
for (int y=0; y < 10; y++)
{
for (int x=0; x < xcnt; x++)
{
switch(retval)
{
case PC_TEX_FMT_I8:
{
// TODO: Is this an acceptable way to draw in I8?
u8 *dtp = (u8*)dst;
dtp[(y + yoff) * width + x + xoff] = ptr[x] ? 0xFF : 0x88;
break;
}
case PC_TEX_FMT_IA8:
case PC_TEX_FMT_IA4_AS_IA8:
{
u16 *dtp = (u16*)dst;
dtp[(y + yoff) * width + x + xoff] = ptr[x] ? 0xFFFF : 0xFF00;
break;
}
case PC_TEX_FMT_RGB565:
{
u16 *dtp = (u16*)dst;
dtp[(y + yoff)*width + x + xoff] = ptr[x] ? 0xFFFF : 0x0000;
break;
}
default:
case PC_TEX_FMT_BGRA32:
{
int *dtp = (int*)dst;
dtp[(y + yoff) * width + x + xoff] = ptr[x] ? 0xFFFFFFFF : 0xFF000000;
break;
}
}
}
ptr += 9;
}
xoff += xcnt;
fmt++;
}
return retval;
}
void TexDecoder_DecodeTexel(u8 *dst, const u8 *src, int s, int t, int imageWidth, int texformat, int tlutaddr, int tlutfmt)
{
/* General formula for computing texture offset
//
u16 sBlk = s / blockWidth;
u16 tBlk = t / blockHeight;
u16 widthBlks = (width / blockWidth) + 1;
u32 base = (tBlk * widthBlks + sBlk) * blockWidth * blockHeight;
u16 blkS = s & (blockWidth - 1);
u16 blkT = t & (blockHeight - 1);
u32 blkOff = blkT * blockWidth + blkS;
*/
switch (texformat)
{
case GX_TF_C4:
{
u16 sBlk = s >> 3;
u16 tBlk = t >> 3;
u16 widthBlks = (imageWidth >> 3) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 5;
u16 blkS = s & 7;
u16 blkT = t & 7;
u32 blkOff = (blkT << 3) + blkS;
int rs = (blkOff & 1)?0:4;
u32 offset = base + (blkOff >> 1);
u8 val = (*(src + offset) >> rs) & 0xF;
u16 *tlut = (u16*)(texMem + tlutaddr);
switch (tlutfmt)
{
case 0:
*((u32*)dst) = decodeIA8Swapped(tlut[val]);
break;
case 1:
*((u32*)dst) = decode565RGBA(Common::swap16(tlut[val]));
break;
case 2:
*((u32*)dst) = decode5A3RGBA(Common::swap16(tlut[val]));
break;
}
}
break;
case GX_TF_I4:
{
u16 sBlk = s >> 3;
u16 tBlk = t >> 3;
u16 widthBlks = (imageWidth >> 3) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 5;
u16 blkS = s & 7;
u16 blkT = t & 7;
u32 blkOff = (blkT << 3) + blkS;
int rs = (blkOff & 1)?0:4;
u32 offset = base + (blkOff >> 1);
u8 val = (*(src + offset) >> rs) & 0xF;
val = Convert4To8(val);
dst[0] = val;
dst[1] = val;
dst[2] = val;
dst[3] = val;
}
break;
case GX_TF_I8:
{
u16 sBlk = s >> 3;
u16 tBlk = t >> 2;
u16 widthBlks = (imageWidth >> 3) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 5;
u16 blkS = s & 7;
u16 blkT = t & 3;
u32 blkOff = (blkT << 3) + blkS;
u8 val = *(src + base + blkOff);
dst[0] = val;
dst[1] = val;
dst[2] = val;
dst[3] = val;
}
break;
case GX_TF_C8:
{
u16 sBlk = s >> 3;
u16 tBlk = t >> 2;
u16 widthBlks = (imageWidth >> 3) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 5;
u16 blkS = s & 7;
u16 blkT = t & 3;
u32 blkOff = (blkT << 3) + blkS;
u8 val = *(src + base + blkOff);
u16 *tlut = (u16*)(texMem + tlutaddr);
switch (tlutfmt)
{
case 0:
*((u32*)dst) = decodeIA8Swapped(tlut[val]);
break;
case 1:
*((u32*)dst) = decode565RGBA(Common::swap16(tlut[val]));
break;
case 2:
*((u32*)dst) = decode5A3RGBA(Common::swap16(tlut[val]));
break;
}
}
break;
case GX_TF_IA4:
{
u16 sBlk = s >> 3;
u16 tBlk = t >> 2;
u16 widthBlks = (imageWidth >> 3) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 5;
u16 blkS = s & 7;
u16 blkT = t & 3;
u32 blkOff = (blkT << 3) + blkS;
u8 val = *(src + base + blkOff);
const u8 a = Convert4To8(val>>4);
const u8 l = Convert4To8(val&0xF);
dst[0] = l;
dst[1] = l;
dst[2] = l;
dst[3] = a;
}
break;
case GX_TF_IA8:
{
u16 sBlk = s >> 2;
u16 tBlk = t >> 2;
u16 widthBlks = (imageWidth >> 2) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 4;
u16 blkS = s & 3;
u16 blkT = t & 3;
u32 blkOff = (blkT << 2) + blkS;
u32 offset = (base + blkOff) << 1;
const u16* valAddr = (u16*)(src + offset);
*((u32*)dst) = decodeIA8Swapped(*valAddr);
}
break;
case GX_TF_C14X2:
{
u16 sBlk = s >> 2;
u16 tBlk = t >> 2;
u16 widthBlks = (imageWidth >> 2) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 4;
u16 blkS = s & 3;
u16 blkT = t & 3;
u32 blkOff = (blkT << 2) + blkS;
u32 offset = (base + blkOff) << 1;
const u16* valAddr = (u16*)(src + offset);
u16 val = Common::swap16(*valAddr) & 0x3FFF;
u16 *tlut = (u16*)(texMem + tlutaddr);
switch (tlutfmt)
{
case 0:
*((u32*)dst) = decodeIA8Swapped(tlut[val]);
break;
case 1:
*((u32*)dst) = decode565RGBA(Common::swap16(tlut[val]));
break;
case 2:
*((u32*)dst) = decode5A3RGBA(Common::swap16(tlut[val]));
break;
}
}
break;
case GX_TF_RGB565:
{
u16 sBlk = s >> 2;
u16 tBlk = t >> 2;
u16 widthBlks = (imageWidth >> 2) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 4;
u16 blkS = s & 3;
u16 blkT = t & 3;
u32 blkOff = (blkT << 2) + blkS;
u32 offset = (base + blkOff) << 1;
const u16* valAddr = (u16*)(src + offset);
*((u32*)dst) = decode565RGBA(Common::swap16(*valAddr));
}
break;
case GX_TF_RGB5A3:
{
u16 sBlk = s >> 2;
u16 tBlk = t >> 2;
u16 widthBlks = (imageWidth >> 2) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 4;
u16 blkS = s & 3;
u16 blkT = t & 3;
u32 blkOff = (blkT << 2) + blkS;
u32 offset = (base + blkOff) << 1;
const u16* valAddr = (u16*)(src + offset);
*((u32*)dst) = decode5A3RGBA(Common::swap16(*valAddr));
}
break;
case GX_TF_RGBA8:
{
u16 sBlk = s >> 2;
u16 tBlk = t >> 2;
u16 widthBlks = (imageWidth >> 2) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 5; // shift by 5 is correct
u16 blkS = s & 3;
u16 blkT = t & 3;
u32 blkOff = (blkT << 2) + blkS;
u32 offset = (base + blkOff) << 1 ;
const u8* valAddr = src + offset;
dst[3] = valAddr[0];
dst[0] = valAddr[1];
dst[1] = valAddr[32];
dst[2] = valAddr[33];
}
break;
case GX_TF_CMPR:
{
u16 sDxt = s >> 2;
u16 tDxt = t >> 2;
u16 sBlk = sDxt >> 1;
u16 tBlk = tDxt >> 1;
u16 widthBlks = (imageWidth >> 3) + 1;
u32 base = (tBlk * widthBlks + sBlk) << 2;
u16 blkS = sDxt & 1;
u16 blkT = tDxt & 1;
u32 blkOff = (blkT << 1) + blkS;
u32 offset = (base + blkOff) << 3;
const DXTBlock* dxtBlock = (const DXTBlock*)(src + offset);
u16 c1 = Common::swap16(dxtBlock->color1);
u16 c2 = Common::swap16(dxtBlock->color2);
int blue1 = Convert5To8(c1 & 0x1F);
int blue2 = Convert5To8(c2 & 0x1F);
int green1 = Convert6To8((c1 >> 5) & 0x3F);
int green2 = Convert6To8((c2 >> 5) & 0x3F);
int red1 = Convert5To8((c1 >> 11) & 0x1F);
int red2 = Convert5To8((c2 >> 11) & 0x1F);
u16 ss = s & 3;
u16 tt = t & 3;
int colorSel = dxtBlock->lines[tt];
int rs = 6 - (ss << 1);
colorSel = (colorSel >> rs) & 3;
colorSel |= c1 > c2?0:4;
u32 color = 0;
switch (colorSel)
{
case 0:
case 4:
color = makeRGBA(red1, green1, blue1, 255);
break;
case 1:
case 5:
color = makeRGBA(red2, green2, blue2, 255);
break;
case 2:
color = makeRGBA(red1+(red2-red1)/3, green1+(green2-green1)/3, blue1+(blue2-blue1)/3, 255);
break;
case 3:
color = makeRGBA(red2+(red1-red2)/3, green2+(green1-green2)/3, blue2+(blue1-blue2)/3, 255);
break;
case 6:
color = makeRGBA((int)ceil((float)(red1+red2)/2), (int)ceil((float)(green1+green2)/2), (int)ceil((float)(blue1+blue2)/2), 255);
break;
case 7:
color = makeRGBA(red2, green2, blue2, 0);
break;
}
*((u32*)dst) = color;
}
break;
}
}
const char* texfmt[] = {
// pixel
"I4", "I8", "IA4", "IA8",
"RGB565", "RGB5A3", "RGBA8", "0x07",
"C4", "C8", "C14X2", "0x0B",
"0x0C", "0x0D", "CMPR", "0x0F",
// Z-buffer
"0x10", "Z8", "0x12", "Z16",
"0x14", "0x15", "Z24X8", "0x17",
"0x18", "0x19", "0x1A", "0x1B",
"0x1C", "0x1D", "0x1E", "0x1F",
// pixel + copy
"CR4", "0x21", "CRA4", "CRA8",
"0x24", "0x25", "CYUVA8", "CA8",
"CR8", "CG8", "CB8", "CRG8",
"CGB8", "0x2D", "0x2E", "0x2F",
// Z + copy
"CZ4", "0x31", "0x32", "0x33",
"0x34", "0x35", "0x36", "0x37",
"0x38", "CZ8M", "CZ8L", "0x3B",
"CZ16L", "0x3D", "0x3E", "0x3F",
};
const unsigned char sfont_map[] = {
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,10,10,10,10,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,10,10,10,10,10,
10,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,
52,53,54,55,56,57,58,59,60,61,62,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
};
const unsigned char sfont_raw[][9*10] = {
{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff,
0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0xff,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0xff,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff,
0xff, 0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0x00, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},{
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0x00, 0x00, 0x00, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
0xff, 0xff, 0xff, 0xff, 0xff, 0x78, 0x78, 0x78, 0x78,
},
};