// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include "Common/Assert.h" #include "Common/CommonFuncs.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Common/StringUtil.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/DriverDetails.h" #include "VideoCommon/VideoCommon.h" namespace Vulkan { std::unique_ptr g_vulkan_context; VulkanContext::VulkanContext(VkInstance instance, VkPhysicalDevice physical_device) : m_instance(instance), m_physical_device(physical_device) { // Read device physical memory properties, we need it for allocating buffers vkGetPhysicalDeviceProperties(physical_device, &m_device_properties); vkGetPhysicalDeviceMemoryProperties(physical_device, &m_device_memory_properties); // Would any drivers be this silly? I hope not... m_device_properties.limits.minUniformBufferOffsetAlignment = std::max( m_device_properties.limits.minUniformBufferOffsetAlignment, static_cast(1)); m_device_properties.limits.minTexelBufferOffsetAlignment = std::max( m_device_properties.limits.minTexelBufferOffsetAlignment, static_cast(1)); m_device_properties.limits.optimalBufferCopyOffsetAlignment = std::max( m_device_properties.limits.optimalBufferCopyOffsetAlignment, static_cast(1)); m_device_properties.limits.optimalBufferCopyRowPitchAlignment = std::max( m_device_properties.limits.optimalBufferCopyRowPitchAlignment, static_cast(1)); } VulkanContext::~VulkanContext() { if (m_device != VK_NULL_HANDLE) vkDestroyDevice(m_device, nullptr); if (m_debug_report_callback != VK_NULL_HANDLE) DisableDebugReports(); vkDestroyInstance(m_instance, nullptr); } bool VulkanContext::CheckValidationLayerAvailablility() { u32 extension_count = 0; VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } std::vector extension_list(extension_count); res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, extension_list.data()); ASSERT(res == VK_SUCCESS); u32 layer_count = 0; res = vkEnumerateInstanceLayerProperties(&layer_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } std::vector layer_list(layer_count); res = vkEnumerateInstanceLayerProperties(&layer_count, layer_list.data()); ASSERT(res == VK_SUCCESS); // Check for both VK_EXT_debug_report and VK_LAYER_LUNARG_standard_validation return (std::find_if(extension_list.begin(), extension_list.end(), [](const auto& it) { return strcmp(it.extensionName, VK_EXT_DEBUG_REPORT_EXTENSION_NAME) == 0; }) != extension_list.end() && std::find_if(layer_list.begin(), layer_list.end(), [](const auto& it) { return strcmp(it.layerName, "VK_LAYER_KHRONOS_validation") == 0; }) != layer_list.end()); } VkInstance VulkanContext::CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_report, bool enable_validation_layer) { std::vector enabled_extensions; if (!SelectInstanceExtensions(&enabled_extensions, wstype, enable_debug_report)) return VK_NULL_HANDLE; VkApplicationInfo app_info = {}; app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; app_info.pNext = nullptr; app_info.pApplicationName = "Dolphin Emulator"; app_info.applicationVersion = VK_MAKE_VERSION(5, 0, 0); app_info.pEngineName = "Dolphin Emulator"; app_info.engineVersion = VK_MAKE_VERSION(5, 0, 0); app_info.apiVersion = VK_MAKE_VERSION(1, 0, 0); // Try for Vulkan 1.1 if the loader supports it. if (vkEnumerateInstanceVersion) { u32 supported_api_version = 0; VkResult res = vkEnumerateInstanceVersion(&supported_api_version); if (res == VK_SUCCESS && (VK_VERSION_MAJOR(supported_api_version) > 1 || VK_VERSION_MINOR(supported_api_version) >= 1)) { // The device itself may not support 1.1, so we check that before using any 1.1 functionality. app_info.apiVersion = VK_MAKE_VERSION(1, 1, 0); } } VkInstanceCreateInfo instance_create_info = {}; instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instance_create_info.pNext = nullptr; instance_create_info.flags = 0; instance_create_info.pApplicationInfo = &app_info; instance_create_info.enabledExtensionCount = static_cast(enabled_extensions.size()); instance_create_info.ppEnabledExtensionNames = enabled_extensions.data(); instance_create_info.enabledLayerCount = 0; instance_create_info.ppEnabledLayerNames = nullptr; // Enable debug layer on debug builds if (enable_validation_layer) { static const char* layer_names[] = {"VK_LAYER_KHRONOS_validation"}; instance_create_info.enabledLayerCount = 1; instance_create_info.ppEnabledLayerNames = layer_names; } VkInstance instance; VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateInstance failed: "); return nullptr; } return instance; } bool VulkanContext::SelectInstanceExtensions(std::vector* extension_list, WindowSystemType wstype, bool enable_debug_report) { u32 extension_count = 0; VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } if (extension_count == 0) { ERROR_LOG(VIDEO, "Vulkan: No extensions supported by instance."); return false; } std::vector available_extension_list(extension_count); res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, available_extension_list.data()); ASSERT(res == VK_SUCCESS); for (const auto& extension_properties : available_extension_list) INFO_LOG(VIDEO, "Available extension: %s", extension_properties.extensionName); auto AddExtension = [&](const char* name, bool required) { if (std::find_if(available_extension_list.begin(), available_extension_list.end(), [&](const VkExtensionProperties& properties) { return !strcmp(name, properties.extensionName); }) != available_extension_list.end()) { INFO_LOG(VIDEO, "Enabling extension: %s", name); extension_list->push_back(name); return true; } if (required) ERROR_LOG(VIDEO, "Vulkan: Missing required extension %s.", name); return false; }; // Common extensions if (wstype != WindowSystemType::Headless && !AddExtension(VK_KHR_SURFACE_EXTENSION_NAME, true)) { return false; } #if defined(VK_USE_PLATFORM_WIN32_KHR) if (wstype == WindowSystemType::Windows && !AddExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true)) { return false; } #endif #if defined(VK_USE_PLATFORM_XLIB_KHR) if (wstype == WindowSystemType::X11 && !AddExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true)) { return false; } #endif #if defined(VK_USE_PLATFORM_ANDROID_KHR) if (wstype == WindowSystemType::Android && !AddExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, true)) { return false; } #endif #if defined(VK_USE_PLATFORM_METAL_EXT) if (wstype == WindowSystemType::MacOS && !AddExtension(VK_EXT_METAL_SURFACE_EXTENSION_NAME, true)) { return false; } #endif // VK_EXT_debug_report if (enable_debug_report && !AddExtension(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, false)) WARN_LOG(VIDEO, "Vulkan: Debug report requested, but extension is not available."); AddExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, false); AddExtension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, false); return true; } VulkanContext::GPUList VulkanContext::EnumerateGPUs(VkInstance instance) { u32 gpu_count = 0; VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: "); return {}; } GPUList gpus; gpus.resize(gpu_count); res = vkEnumeratePhysicalDevices(instance, &gpu_count, gpus.data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: "); return {}; } return gpus; } void VulkanContext::PopulateBackendInfo(VideoConfig* config) { config->backend_info.api_type = APIType::Vulkan; config->backend_info.bSupports3DVision = false; // D3D-exclusive. config->backend_info.bSupportsOversizedViewports = true; // Assumed support. config->backend_info.bSupportsEarlyZ = true; // Assumed support. config->backend_info.bSupportsPrimitiveRestart = true; // Assumed support. config->backend_info.bSupportsBindingLayout = false; // Assumed support. config->backend_info.bSupportsPaletteConversion = true; // Assumed support. config->backend_info.bSupportsClipControl = true; // Assumed support. config->backend_info.bSupportsMultithreading = true; // Assumed support. config->backend_info.bSupportsComputeShaders = true; // Assumed support. config->backend_info.bSupportsGPUTextureDecoding = true; // Assumed support. config->backend_info.bSupportsBitfield = true; // Assumed support. config->backend_info.bSupportsPartialDepthCopies = true; // Assumed support. config->backend_info.bSupportsShaderBinaries = true; // Assumed support. config->backend_info.bSupportsPipelineCacheData = false; // Handled via pipeline caches. config->backend_info.bSupportsDynamicSamplerIndexing = true; // Assumed support. config->backend_info.bSupportsPostProcessing = true; // Assumed support. config->backend_info.bSupportsBackgroundCompiling = true; // Assumed support. config->backend_info.bSupportsCopyToVram = true; // Assumed support. config->backend_info.bSupportsReversedDepthRange = true; // Assumed support. config->backend_info.bSupportsExclusiveFullscreen = false; // Dependent on OS and features. config->backend_info.bSupportsDualSourceBlend = false; // Dependent on features. config->backend_info.bSupportsGeometryShaders = false; // Dependent on features. config->backend_info.bSupportsGSInstancing = false; // Dependent on features. config->backend_info.bSupportsBBox = false; // Dependent on features. config->backend_info.bSupportsFragmentStoresAndAtomics = false; // Dependent on features. config->backend_info.bSupportsSSAA = false; // Dependent on features. config->backend_info.bSupportsDepthClamp = false; // Dependent on features. config->backend_info.bSupportsST3CTextures = false; // Dependent on features. config->backend_info.bSupportsBPTCTextures = false; // Dependent on features. config->backend_info.bSupportsLogicOp = false; // Dependent on features. config->backend_info.bSupportsLargePoints = false; // Dependent on features. config->backend_info.bSupportsFramebufferFetch = false; // No support. } void VulkanContext::PopulateBackendInfoAdapters(VideoConfig* config, const GPUList& gpu_list) { config->backend_info.Adapters.clear(); for (VkPhysicalDevice physical_device : gpu_list) { VkPhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties(physical_device, &properties); config->backend_info.Adapters.push_back(properties.deviceName); } } void VulkanContext::PopulateBackendInfoFeatures(VideoConfig* config, VkPhysicalDevice gpu, const VkPhysicalDeviceProperties& properties, const VkPhysicalDeviceFeatures& features) { config->backend_info.MaxTextureSize = properties.limits.maxImageDimension2D; config->backend_info.bUsesLowerLeftOrigin = false; config->backend_info.bSupportsDualSourceBlend = (features.dualSrcBlend == VK_TRUE); config->backend_info.bSupportsGeometryShaders = (features.geometryShader == VK_TRUE); config->backend_info.bSupportsGSInstancing = (features.geometryShader == VK_TRUE); config->backend_info.bSupportsBBox = config->backend_info.bSupportsFragmentStoresAndAtomics = (features.fragmentStoresAndAtomics == VK_TRUE); config->backend_info.bSupportsSSAA = (features.sampleRateShading == VK_TRUE); config->backend_info.bSupportsLogicOp = (features.logicOp == VK_TRUE); // Disable geometry shader when shaderTessellationAndGeometryPointSize is not supported. // Seems this is needed for gl_Layer. if (!features.shaderTessellationAndGeometryPointSize) { config->backend_info.bSupportsGeometryShaders = VK_FALSE; config->backend_info.bSupportsGSInstancing = VK_FALSE; } // Depth clamping implies shaderClipDistance and depthClamp config->backend_info.bSupportsDepthClamp = (features.depthClamp == VK_TRUE && features.shaderClipDistance == VK_TRUE); // textureCompressionBC implies BC1 through BC7, which is a superset of DXT1/3/5, which we need. const bool supports_bc = features.textureCompressionBC == VK_TRUE; config->backend_info.bSupportsST3CTextures = supports_bc; config->backend_info.bSupportsBPTCTextures = supports_bc; // Some devices don't support point sizes >1 (e.g. Adreno). // If we can't use a point size above our maximum IR, use triangles instead for EFB pokes. // This means a 6x increase in the size of the vertices, though. config->backend_info.bSupportsLargePoints = features.largePoints && properties.limits.pointSizeRange[0] <= 1.0f && properties.limits.pointSizeRange[1] >= 16; // Our usage of primitive restart appears to be broken on AMD's binary drivers. // Seems to be fine on GCN Gen 1-2, unconfirmed on GCN Gen 3, causes driver resets on GCN Gen 4. if (DriverDetails::HasBug(DriverDetails::BUG_PRIMITIVE_RESTART)) config->backend_info.bSupportsPrimitiveRestart = false; // Reversed depth range is broken on some drivers, or is broken when used in combination // with depth clamping. Fall back to inverted depth range for these. if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_REVERSED_DEPTH_RANGE)) config->backend_info.bSupportsReversedDepthRange = false; // GPU Texture Decoding is broken under MoltenVK. if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_GPU_TEXTURE_DECODING)) config->backend_info.bSupportsGPUTextureDecoding = false; } void VulkanContext::PopulateBackendInfoMultisampleModes( VideoConfig* config, VkPhysicalDevice gpu, const VkPhysicalDeviceProperties& properties) { // Query image support for the EFB texture formats. VkImageFormatProperties efb_color_properties = {}; vkGetPhysicalDeviceImageFormatProperties( gpu, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, &efb_color_properties); VkImageFormatProperties efb_depth_properties = {}; vkGetPhysicalDeviceImageFormatProperties( gpu, VK_FORMAT_D32_SFLOAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, &efb_depth_properties); // We can only support MSAA if it's supported on our render target formats. VkSampleCountFlags supported_sample_counts = properties.limits.framebufferColorSampleCounts & properties.limits.framebufferDepthSampleCounts & efb_color_properties.sampleCounts & efb_depth_properties.sampleCounts; // No AA config->backend_info.AAModes.clear(); config->backend_info.AAModes.emplace_back(1); // 2xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_2_BIT) config->backend_info.AAModes.emplace_back(2); // 4xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_4_BIT) config->backend_info.AAModes.emplace_back(4); // 8xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_8_BIT) config->backend_info.AAModes.emplace_back(8); // 16xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_16_BIT) config->backend_info.AAModes.emplace_back(16); // 32xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_32_BIT) config->backend_info.AAModes.emplace_back(32); // 64xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_64_BIT) config->backend_info.AAModes.emplace_back(64); } std::unique_ptr VulkanContext::Create(VkInstance instance, VkPhysicalDevice gpu, VkSurfaceKHR surface, bool enable_debug_reports, bool enable_validation_layer) { std::unique_ptr context = std::make_unique(instance, gpu); // Initialize DriverDetails so that we can check for bugs to disable features if needed. context->InitDriverDetails(); context->PopulateShaderSubgroupSupport(); // Enable debug reports if the "Host GPU" log category is enabled. if (enable_debug_reports) context->EnableDebugReports(); // Attempt to create the device. if (!context->CreateDevice(surface, enable_validation_layer)) { // Since we are destroying the instance, we're also responsible for destroying the surface. if (surface != VK_NULL_HANDLE) vkDestroySurfaceKHR(instance, surface, nullptr); return nullptr; } return context; } bool VulkanContext::SelectDeviceExtensions(bool enable_surface) { u32 extension_count = 0; VkResult res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: "); return false; } if (extension_count == 0) { ERROR_LOG(VIDEO, "Vulkan: No extensions supported by device."); return false; } std::vector available_extension_list(extension_count); res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, available_extension_list.data()); ASSERT(res == VK_SUCCESS); for (const auto& extension_properties : available_extension_list) INFO_LOG(VIDEO, "Available extension: %s", extension_properties.extensionName); auto AddExtension = [&](const char* name, bool required) { if (std::find_if(available_extension_list.begin(), available_extension_list.end(), [&](const VkExtensionProperties& properties) { return !strcmp(name, properties.extensionName); }) != available_extension_list.end()) { INFO_LOG(VIDEO, "Enabling extension: %s", name); m_device_extensions.push_back(name); return true; } if (required) ERROR_LOG(VIDEO, "Vulkan: Missing required extension %s.", name); return false; }; if (enable_surface && !AddExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true)) return false; #ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN // VK_EXT_full_screen_exclusive if (AddExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME, true)) INFO_LOG(VIDEO, "Using VK_EXT_full_screen_exclusive for exclusive fullscreen."); #endif return true; } bool VulkanContext::SelectDeviceFeatures() { VkPhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties(m_physical_device, &properties); VkPhysicalDeviceFeatures available_features; vkGetPhysicalDeviceFeatures(m_physical_device, &available_features); // Not having geometry shaders or wide lines will cause issues with rendering. if (!available_features.geometryShader && !available_features.wideLines) WARN_LOG(VIDEO, "Vulkan: Missing both geometryShader and wideLines features."); if (!available_features.largePoints) WARN_LOG(VIDEO, "Vulkan: Missing large points feature. CPU EFB writes will be slower."); if (!available_features.occlusionQueryPrecise) WARN_LOG(VIDEO, "Vulkan: Missing precise occlusion queries. Perf queries will be inaccurate."); // Enable the features we use. m_device_features.dualSrcBlend = available_features.dualSrcBlend; m_device_features.geometryShader = available_features.geometryShader; m_device_features.samplerAnisotropy = available_features.samplerAnisotropy; m_device_features.logicOp = available_features.logicOp; m_device_features.fragmentStoresAndAtomics = available_features.fragmentStoresAndAtomics; m_device_features.sampleRateShading = available_features.sampleRateShading; m_device_features.largePoints = available_features.largePoints; m_device_features.shaderStorageImageMultisample = available_features.shaderStorageImageMultisample; m_device_features.shaderTessellationAndGeometryPointSize = available_features.shaderTessellationAndGeometryPointSize; m_device_features.occlusionQueryPrecise = available_features.occlusionQueryPrecise; m_device_features.shaderClipDistance = available_features.shaderClipDistance; m_device_features.depthClamp = available_features.depthClamp; m_device_features.textureCompressionBC = available_features.textureCompressionBC; return true; } bool VulkanContext::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer) { u32 queue_family_count; vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr); if (queue_family_count == 0) { ERROR_LOG(VIDEO, "No queue families found on specified vulkan physical device."); return false; } std::vector queue_family_properties(queue_family_count); vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, queue_family_properties.data()); INFO_LOG(VIDEO, "%u vulkan queue families", queue_family_count); // Find graphics and present queues. m_graphics_queue_family_index = queue_family_count; m_present_queue_family_index = queue_family_count; for (uint32_t i = 0; i < queue_family_count; i++) { VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT; if (graphics_supported) { m_graphics_queue_family_index = i; // Quit now, no need for a present queue. if (!surface) { break; } } if (surface) { VkBool32 present_supported; VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: "); return false; } if (present_supported) { m_present_queue_family_index = i; } // Prefer one queue family index that does both graphics and present. if (graphics_supported && present_supported) { break; } } } if (m_graphics_queue_family_index == queue_family_count) { ERROR_LOG(VIDEO, "Vulkan: Failed to find an acceptable graphics queue."); return false; } if (surface && m_present_queue_family_index == queue_family_count) { ERROR_LOG(VIDEO, "Vulkan: Failed to find an acceptable present queue."); return false; } VkDeviceCreateInfo device_info = {}; device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; device_info.pNext = nullptr; device_info.flags = 0; static constexpr float queue_priorities[] = {1.0f}; VkDeviceQueueCreateInfo graphics_queue_info = {}; graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; graphics_queue_info.pNext = nullptr; graphics_queue_info.flags = 0; graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index; graphics_queue_info.queueCount = 1; graphics_queue_info.pQueuePriorities = queue_priorities; VkDeviceQueueCreateInfo present_queue_info = {}; present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; present_queue_info.pNext = nullptr; present_queue_info.flags = 0; present_queue_info.queueFamilyIndex = m_present_queue_family_index; present_queue_info.queueCount = 1; present_queue_info.pQueuePriorities = queue_priorities; std::array queue_infos = {{ graphics_queue_info, present_queue_info, }}; device_info.queueCreateInfoCount = 1; if (m_graphics_queue_family_index != m_present_queue_family_index) { device_info.queueCreateInfoCount = 2; } device_info.pQueueCreateInfos = queue_infos.data(); if (!SelectDeviceExtensions(surface != VK_NULL_HANDLE)) return false; // convert std::string list to a char pointer list which we can feed in std::vector extension_name_pointers; for (const std::string& name : m_device_extensions) extension_name_pointers.push_back(name.c_str()); device_info.enabledLayerCount = 0; device_info.ppEnabledLayerNames = nullptr; device_info.enabledExtensionCount = static_cast(extension_name_pointers.size()); device_info.ppEnabledExtensionNames = extension_name_pointers.data(); // Check for required features before creating. if (!SelectDeviceFeatures()) return false; device_info.pEnabledFeatures = &m_device_features; // Enable debug layer on debug builds if (enable_validation_layer) { static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"}; device_info.enabledLayerCount = 1; device_info.ppEnabledLayerNames = layer_names; } VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDevice failed: "); return false; } // With the device created, we can fill the remaining entry points. if (!LoadVulkanDeviceFunctions(m_device)) return false; // Grab the graphics and present queues. vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue); if (surface) { vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue); } return true; } static VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage, void* pUserData) { std::string log_message = StringFromFormat("Vulkan debug report: (%s) %s", pLayerPrefix ? pLayerPrefix : "", pMessage); if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) GENERIC_LOG(Common::Log::HOST_GPU, Common::Log::LERROR, "%s", log_message.c_str()); else if (flags & (VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT)) GENERIC_LOG(Common::Log::HOST_GPU, Common::Log::LWARNING, "%s", log_message.c_str()); else if (flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) GENERIC_LOG(Common::Log::HOST_GPU, Common::Log::LINFO, "%s", log_message.c_str()); else GENERIC_LOG(Common::Log::HOST_GPU, Common::Log::LDEBUG, "%s", log_message.c_str()); return VK_FALSE; } bool VulkanContext::EnableDebugReports() { // Already enabled? if (m_debug_report_callback != VK_NULL_HANDLE) return true; // Check for presence of the functions before calling if (!vkCreateDebugReportCallbackEXT || !vkDestroyDebugReportCallbackEXT || !vkDebugReportMessageEXT) { return false; } VkDebugReportCallbackCreateInfoEXT callback_info = { VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT, nullptr, VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_INFORMATION_BIT_EXT | VK_DEBUG_REPORT_DEBUG_BIT_EXT, DebugReportCallback, nullptr}; VkResult res = vkCreateDebugReportCallbackEXT(m_instance, &callback_info, nullptr, &m_debug_report_callback); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDebugReportCallbackEXT failed: "); return false; } return true; } void VulkanContext::DisableDebugReports() { if (m_debug_report_callback != VK_NULL_HANDLE) { vkDestroyDebugReportCallbackEXT(m_instance, m_debug_report_callback, nullptr); m_debug_report_callback = VK_NULL_HANDLE; } } std::optional VulkanContext::GetMemoryType(u32 bits, VkMemoryPropertyFlags properties, bool strict, bool* is_coherent) { static constexpr u32 ALL_MEMORY_PROPERTY_FLAGS = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; const u32 mask = strict ? ALL_MEMORY_PROPERTY_FLAGS : properties; for (u32 i = 0; i < VK_MAX_MEMORY_TYPES; i++) { if ((bits & (1 << i)) != 0) { const VkMemoryPropertyFlags type_flags = m_device_memory_properties.memoryTypes[i].propertyFlags; const VkMemoryPropertyFlags supported = type_flags & mask; if (supported == properties) { if (is_coherent) *is_coherent = (type_flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0; return i; } } } return std::nullopt; } u32 VulkanContext::GetUploadMemoryType(u32 bits, bool* is_coherent) { static constexpr VkMemoryPropertyFlags COHERENT_FLAGS = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; // Try for coherent memory. Some drivers (looking at you, Adreno) have the cached type before the // uncached type, so use a strict check first. std::optional type_index = GetMemoryType(bits, COHERENT_FLAGS, true, is_coherent); if (type_index) return type_index.value(); // Try for coherent memory, with any other bits set. type_index = GetMemoryType(bits, COHERENT_FLAGS, false, is_coherent); if (type_index) { WARN_LOG(VIDEO, "Strict check for upload memory properties failed, this may affect performance"); return type_index.value(); } // Fall back to non-coherent memory. WARN_LOG( VIDEO, "Vulkan: Failed to find a coherent memory type for uploads, this will affect performance."); type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, false, is_coherent); if (type_index) return type_index.value(); // Shouldn't happen, there should be at least one host-visible heap. PanicAlert("Unable to get memory type for upload."); return 0; } u32 VulkanContext::GetReadbackMemoryType(u32 bits, bool* is_coherent) { std::optional type_index; // Mali driver appears to be significantly slower for readbacks when using cached memory. if (DriverDetails::HasBug(DriverDetails::BUG_SLOW_CACHED_READBACK_MEMORY)) { type_index = GetMemoryType( bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, true, is_coherent); if (type_index) return type_index.value(); } // Optimal config uses cached+coherent. type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, true, is_coherent); if (type_index) return type_index.value(); // Otherwise, prefer cached over coherent if we must choose one. type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, false, is_coherent); if (type_index) return type_index.value(); WARN_LOG(VIDEO, "Vulkan: Failed to find a cached memory type for readbacks, this will affect " "performance."); type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, false, is_coherent); *is_coherent = false; if (type_index) return type_index.value(); // We should have at least one host visible memory type... PanicAlert("Unable to get memory type for upload."); return 0; } bool VulkanContext::SupportsDeviceExtension(const char* name) const { return std::any_of(m_device_extensions.begin(), m_device_extensions.end(), [name](const std::string& extension) { return extension == name; }); } void VulkanContext::InitDriverDetails() { DriverDetails::Vendor vendor; DriverDetails::Driver driver; // String comparisons aren't ideal, but there doesn't seem to be any other way to tell // which vendor a driver is for. These names are based on the reports submitted to // vulkan.gpuinfo.org, as of 19/09/2017. std::string device_name = m_device_properties.deviceName; u32 vendor_id = m_device_properties.vendorID; if (vendor_id == 0x10DE) { // Currently, there is only the official NV binary driver. // "NVIDIA" does not appear in the device name. vendor = DriverDetails::VENDOR_NVIDIA; driver = DriverDetails::DRIVER_NVIDIA; } else if (vendor_id == 0x1002 || vendor_id == 0x1022 || device_name.find("AMD") != std::string::npos) { // RADV always advertises its name in the device string. // If not RADV, assume the AMD binary driver. if (device_name.find("RADV") != std::string::npos) { vendor = DriverDetails::VENDOR_MESA; driver = DriverDetails::DRIVER_R600; } else { vendor = DriverDetails::VENDOR_ATI; driver = DriverDetails::DRIVER_ATI; } } else if (vendor_id == 0x8086 || vendor_id == 0x8087 || device_name.find("Intel") != std::string::npos) { // Apart from the driver version, Intel does not appear to provide a way to // differentiate between anv and the binary driver (Skylake+). Assume to be // using anv if we not running on Windows. #ifdef WIN32 vendor = DriverDetails::VENDOR_INTEL; driver = DriverDetails::DRIVER_INTEL; #else vendor = DriverDetails::VENDOR_MESA; driver = DriverDetails::DRIVER_I965; #endif } else if (vendor_id == 0x5143 || device_name.find("Adreno") != std::string::npos) { // Currently only the Qualcomm binary driver exists for Adreno. vendor = DriverDetails::VENDOR_QUALCOMM; driver = DriverDetails::DRIVER_QUALCOMM; } else if (vendor_id == 0x13B6 || device_name.find("Mali") != std::string::npos) { // Currently only the ARM binary driver exists for Mali. vendor = DriverDetails::VENDOR_ARM; driver = DriverDetails::DRIVER_ARM; } else if (vendor_id == 0x1010 || device_name.find("PowerVR") != std::string::npos) { // Currently only the binary driver exists for PowerVR. vendor = DriverDetails::VENDOR_IMGTEC; driver = DriverDetails::DRIVER_IMGTEC; } else { WARN_LOG(VIDEO, "Unknown Vulkan driver vendor, please report it to us."); WARN_LOG(VIDEO, "Vendor ID: 0x%X, Device Name: %s", vendor_id, device_name.c_str()); vendor = DriverDetails::VENDOR_UNKNOWN; driver = DriverDetails::DRIVER_UNKNOWN; } #ifdef __APPLE__ // Vulkan on macOS goes through Metal, and is not susceptible to the same bugs // as the vendor's native Vulkan drivers. We use a different driver fields to // differentiate MoltenVK. driver = DriverDetails::DRIVER_PORTABILITY; #endif DriverDetails::Init(DriverDetails::API_VULKAN, vendor, driver, static_cast(m_device_properties.driverVersion), DriverDetails::Family::UNKNOWN); } void VulkanContext::PopulateShaderSubgroupSupport() { // Vulkan 1.1 support is required for vkGetPhysicalDeviceProperties2(), but we can't rely on the // function pointer alone. if (!vkGetPhysicalDeviceProperties2 || (VK_VERSION_MAJOR(m_device_properties.apiVersion) == 1 && VK_VERSION_MINOR(m_device_properties.apiVersion) < 1)) { return; } VkPhysicalDeviceProperties2 device_properties_2 = {}; device_properties_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; VkPhysicalDeviceSubgroupProperties subgroup_properties = {}; subgroup_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES; device_properties_2.pNext = &subgroup_properties; vkGetPhysicalDeviceProperties2(m_physical_device, &device_properties_2); m_shader_subgroup_size = subgroup_properties.subgroupSize; // We require basic ops (for gl_SubgroupInvocationID), ballot (for subgroupBallot, // subgroupBallotFindLSB), and arithmetic (for subgroupMin/subgroupMax). constexpr VkSubgroupFeatureFlags required_operations = VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT; m_supports_shader_subgroup_operations = (subgroup_properties.supportedOperations & required_operations) == required_operations && subgroup_properties.supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT; } bool VulkanContext::SupportsExclusiveFullscreen(const WindowSystemInfo& wsi, VkSurfaceKHR surface) { #ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN if (!surface || !vkGetPhysicalDeviceSurfaceCapabilities2KHR || !SupportsDeviceExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME)) { return false; } VkPhysicalDeviceSurfaceInfo2KHR si = {}; si.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR; si.surface = surface; auto platform_info = GetPlatformExclusiveFullscreenInfo(wsi); si.pNext = &platform_info; VkSurfaceCapabilities2KHR caps = {}; caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR; VkSurfaceCapabilitiesFullScreenExclusiveEXT fullscreen_caps = {}; fullscreen_caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_FULL_SCREEN_EXCLUSIVE_EXT; fullscreen_caps.fullScreenExclusiveSupported = VK_TRUE; caps.pNext = &fullscreen_caps; VkResult res = vkGetPhysicalDeviceSurfaceCapabilities2KHR(m_physical_device, &si, &caps); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceCapabilities2KHR failed:"); return false; } return fullscreen_caps.fullScreenExclusiveSupported; #else return false; #endif } #ifdef WIN32 VkSurfaceFullScreenExclusiveWin32InfoEXT VulkanContext::GetPlatformExclusiveFullscreenInfo(const WindowSystemInfo& wsi) { VkSurfaceFullScreenExclusiveWin32InfoEXT info = {}; info.sType = VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_WIN32_INFO_EXT; info.hmonitor = MonitorFromWindow(static_cast(wsi.render_surface), MONITOR_DEFAULTTOPRIMARY); return info; } #endif } // namespace Vulkan