// Copyright 2014 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include <cmath> #include "VideoCommon/BPMemory.h" #include "VideoCommon/GeometryShaderGen.h" #include "VideoCommon/LightingShaderGen.h" #include "VideoCommon/VertexShaderGen.h" #include "VideoCommon/VideoConfig.h" static char text[16384]; static const char* primitives_ogl[] = { "points", "lines", "triangles" }; static const char* primitives_d3d[] = { "point", "line", "triangle" }; template<class T> static inline void EmitVertex(T& out, const char* vertex, API_TYPE ApiType, bool first_vertex = false); template<class T> static inline void EndPrimitive(T& out, API_TYPE ApiType); template<class T> static inline T GenerateGeometryShader(u32 primitive_type, API_TYPE ApiType) { T out; // Non-uid template parameters will write to the dummy data (=> gets optimized out) geometry_shader_uid_data dummy_data; geometry_shader_uid_data* uid_data = out.template GetUidData<geometry_shader_uid_data>(); if (uid_data == nullptr) uid_data = &dummy_data; out.SetBuffer(text); const bool is_writing_shadercode = (out.GetBuffer() != nullptr); if (is_writing_shadercode) text[sizeof(text) - 1] = 0x7C; // canary uid_data->primitive_type = primitive_type; const unsigned int vertex_in = primitive_type + 1; unsigned int vertex_out = primitive_type == PRIMITIVE_TRIANGLES ? 3 : 4; uid_data->wireframe = g_ActiveConfig.bWireFrame; if (g_ActiveConfig.bWireFrame) vertex_out++; uid_data->stereo = g_ActiveConfig.iStereoMode > 0; if (ApiType == API_OPENGL) { // Insert layout parameters if (g_ActiveConfig.backend_info.bSupportsGSInstancing) { out.Write("layout(%s, invocations = %d) in;\n", primitives_ogl[primitive_type], g_ActiveConfig.iStereoMode > 0 ? 2 : 1); out.Write("layout(%s_strip, max_vertices = %d) out;\n", g_ActiveConfig.bWireFrame ? "line" : "triangle", vertex_out); } else { out.Write("layout(%s) in;\n", primitives_ogl[primitive_type]); out.Write("layout(%s_strip, max_vertices = %d) out;\n", g_ActiveConfig.bWireFrame ? "line" : "triangle", g_ActiveConfig.iStereoMode > 0 ? vertex_out * 2 : vertex_out); } } out.Write("%s", s_lighting_struct); // uniforms if (ApiType == API_OPENGL) out.Write("layout(std140%s) uniform GSBlock {\n", g_ActiveConfig.backend_info.bSupportsBindingLayout ? ", binding = 3" : ""); else out.Write("cbuffer GSBlock {\n"); out.Write( "\tfloat4 " I_STEREOPARAMS";\n" "\tfloat4 " I_LINEPTPARAMS";\n" "\tint4 " I_TEXOFFSET";\n" "};\n"); uid_data->numTexGens = xfmem.numTexGen.numTexGens; uid_data->pixel_lighting = g_ActiveConfig.bEnablePixelLighting; out.Write("struct VS_OUTPUT {\n"); GenerateVSOutputMembers<T>(out, ApiType); out.Write("};\n"); if (ApiType == API_OPENGL) { if (g_ActiveConfig.backend_info.bSupportsGSInstancing) out.Write("#define InstanceID gl_InvocationID\n"); out.Write("in VertexData {\n"); GenerateVSOutputMembers<T>(out, ApiType, GetInterpolationQualifier(ApiType, true, true)); out.Write("} vs[%d];\n", vertex_in); out.Write("out VertexData {\n"); GenerateVSOutputMembers<T>(out, ApiType, GetInterpolationQualifier(ApiType, false, true)); if (g_ActiveConfig.iStereoMode > 0) out.Write("\tflat int layer;\n"); out.Write("} ps;\n"); out.Write("void main()\n{\n"); } else // D3D { out.Write("struct VertexData {\n"); out.Write("\tVS_OUTPUT o;\n"); if (g_ActiveConfig.iStereoMode > 0) out.Write("\tuint layer : SV_RenderTargetArrayIndex;\n"); out.Write("};\n"); if (g_ActiveConfig.backend_info.bSupportsGSInstancing) { out.Write("[maxvertexcount(%d)]\n[instance(%d)]\n", vertex_out, g_ActiveConfig.iStereoMode > 0 ? 2 : 1); out.Write("void main(%s VS_OUTPUT o[%d], inout %sStream<VertexData> output, in uint InstanceID : SV_GSInstanceID)\n{\n", primitives_d3d[primitive_type], vertex_in, g_ActiveConfig.bWireFrame ? "Line" : "Triangle"); } else { out.Write("[maxvertexcount(%d)]\n", g_ActiveConfig.iStereoMode > 0 ? vertex_out * 2 : vertex_out); out.Write("void main(%s VS_OUTPUT o[%d], inout %sStream<VertexData> output)\n{\n", primitives_d3d[primitive_type], vertex_in, g_ActiveConfig.bWireFrame ? "Line" : "Triangle"); } out.Write("\tVertexData ps;\n"); } if (primitive_type == PRIMITIVE_LINES) { if (ApiType == API_OPENGL) { out.Write("\tVS_OUTPUT start, end;\n"); AssignVSOutputMembers(out, "start", "vs[0]"); AssignVSOutputMembers(out, "end", "vs[1]"); } else { out.Write("\tVS_OUTPUT start = o[0];\n"); out.Write("\tVS_OUTPUT end = o[1];\n"); } // GameCube/Wii's line drawing algorithm is a little quirky. It does not // use the correct line caps. Instead, the line caps are vertical or // horizontal depending the slope of the line. out.Write( "\tfloat2 offset;\n" "\tfloat2 to = abs(end.pos.xy / end.pos.w - start.pos.xy / start.pos.w);\n" // FIXME: What does real hardware do when line is at a 45-degree angle? // FIXME: Lines aren't drawn at the correct width. See Twilight Princess map. "\tif (" I_LINEPTPARAMS".y * to.y > " I_LINEPTPARAMS".x * to.x) {\n" // Line is more tall. Extend geometry left and right. // Lerp LineWidth/2 from [0..VpWidth] to [-1..1] "\t\toffset = float2(" I_LINEPTPARAMS".z / " I_LINEPTPARAMS".x, 0);\n" "\t} else {\n" // Line is more wide. Extend geometry up and down. // Lerp LineWidth/2 from [0..VpHeight] to [1..-1] "\t\toffset = float2(0, -" I_LINEPTPARAMS".z / " I_LINEPTPARAMS".y);\n" "\t}\n"); } else if (primitive_type == PRIMITIVE_POINTS) { if (ApiType == API_OPENGL) { out.Write("\tVS_OUTPUT center;\n"); AssignVSOutputMembers(out, "center", "vs[0]"); } else { out.Write("\tVS_OUTPUT center = o[0];\n"); } // Offset from center to upper right vertex // Lerp PointSize/2 from [0,0..VpWidth,VpHeight] to [-1,1..1,-1] out.Write("\tfloat2 offset = float2(" I_LINEPTPARAMS".w / " I_LINEPTPARAMS".x, -" I_LINEPTPARAMS".w / " I_LINEPTPARAMS".y) * center.pos.w;\n"); } if (g_ActiveConfig.iStereoMode > 0) { // If the GPU supports invocation we don't need a for loop and can simply use the // invocation identifier to determine which layer we're rendering. if (g_ActiveConfig.backend_info.bSupportsGSInstancing) out.Write("\tint eye = InstanceID;\n"); else out.Write("\tfor (int eye = 0; eye < 2; ++eye) {\n"); } if (g_ActiveConfig.bWireFrame) out.Write("\tVS_OUTPUT first;\n"); out.Write("\tfor (int i = 0; i < %d; ++i) {\n", vertex_in); if (ApiType == API_OPENGL) { out.Write("\tVS_OUTPUT f;\n"); AssignVSOutputMembers(out, "f", "vs[i]"); } else { out.Write("\tVS_OUTPUT f = o[i];\n"); } if (g_ActiveConfig.iStereoMode > 0) { // Select the output layer out.Write("\tps.layer = eye;\n"); if (ApiType == API_OPENGL) out.Write("\tgl_Layer = eye;\n"); // For stereoscopy add a small horizontal offset in Normalized Device Coordinates proportional // to the depth of the vertex. We retrieve the depth value from the w-component of the projected // vertex which contains the negated z-component of the original vertex. // For negative parallax (out-of-screen effects) we subtract a convergence value from // the depth value. This results in objects at a distance smaller than the convergence // distance to seemingly appear in front of the screen. // This formula is based on page 13 of the "Nvidia 3D Vision Automatic, Best Practices Guide" out.Write("\tf.pos.x += " I_STEREOPARAMS"[eye] * (f.pos.w - " I_STEREOPARAMS"[2]);\n"); } if (primitive_type == PRIMITIVE_LINES) { out.Write("\tVS_OUTPUT l = f;\n" "\tVS_OUTPUT r = f;\n"); out.Write("\tl.pos.xy -= offset * l.pos.w;\n" "\tr.pos.xy += offset * r.pos.w;\n"); out.Write("\tif (" I_TEXOFFSET"[2] != 0) {\n"); out.Write("\tfloat texOffset = 1.0 / float(" I_TEXOFFSET"[2]);\n"); for (unsigned int i = 0; i < xfmem.numTexGen.numTexGens; ++i) { out.Write("\tif (((" I_TEXOFFSET"[0] >> %d) & 0x1) != 0)\n", i); out.Write("\t\tr.tex%d.x += texOffset;\n", i); } out.Write("\t}\n"); EmitVertex<T>(out, "l", ApiType, true); EmitVertex<T>(out, "r", ApiType); } else if (primitive_type == PRIMITIVE_POINTS) { out.Write("\tVS_OUTPUT ll = f;\n" "\tVS_OUTPUT lr = f;\n" "\tVS_OUTPUT ul = f;\n" "\tVS_OUTPUT ur = f;\n"); out.Write("\tll.pos.xy += float2(-1,-1) * offset;\n" "\tlr.pos.xy += float2(1,-1) * offset;\n" "\tul.pos.xy += float2(-1,1) * offset;\n" "\tur.pos.xy += offset;\n"); out.Write("\tif (" I_TEXOFFSET"[3] != 0) {\n"); out.Write("\tfloat2 texOffset = float2(1.0 / float(" I_TEXOFFSET"[3]), 1.0 / float(" I_TEXOFFSET"[3]));\n"); for (unsigned int i = 0; i < xfmem.numTexGen.numTexGens; ++i) { out.Write("\tif (((" I_TEXOFFSET"[1] >> %d) & 0x1) != 0) {\n", i); out.Write("\t\tll.tex%d.xy += float2(0,1) * texOffset;\n", i); out.Write("\t\tlr.tex%d.xy += texOffset;\n", i); out.Write("\t\tur.tex%d.xy += float2(1,0) * texOffset;\n", i); out.Write("\t}\n"); } out.Write("\t}\n"); EmitVertex<T>(out, "ll", ApiType, true); EmitVertex<T>(out, "lr", ApiType); EmitVertex<T>(out, "ul", ApiType); EmitVertex<T>(out, "ur", ApiType); } else { EmitVertex<T>(out, "f", ApiType, true); } out.Write("\t}\n"); EndPrimitive<T>(out, ApiType); if (g_ActiveConfig.iStereoMode > 0 && !g_ActiveConfig.backend_info.bSupportsGSInstancing) out.Write("\t}\n"); out.Write("}\n"); if (is_writing_shadercode) { if (text[sizeof(text) - 1] != 0x7C) PanicAlert("GeometryShader generator - buffer too small, canary has been eaten!"); } return out; } template<class T> static inline void EmitVertex(T& out, const char* vertex, API_TYPE ApiType, bool first_vertex) { if (g_ActiveConfig.bWireFrame && first_vertex) out.Write("\tif (i == 0) first = %s;\n", vertex); if (ApiType == API_OPENGL) { out.Write("\tgl_Position = %s.pos;\n", vertex); AssignVSOutputMembers(out, "ps", vertex); } else { out.Write("\tps.o = %s;\n", vertex); } if (ApiType == API_OPENGL) out.Write("\tEmitVertex();\n"); else out.Write("\toutput.Append(ps);\n"); } template<class T> static inline void EndPrimitive(T& out, API_TYPE ApiType) { if (g_ActiveConfig.bWireFrame) EmitVertex<T>(out, "first", ApiType); if (ApiType == API_OPENGL) out.Write("\tEndPrimitive();\n"); else out.Write("\toutput.RestartStrip();\n"); } GeometryShaderUid GetGeometryShaderUid(u32 primitive_type, API_TYPE ApiType) { return GenerateGeometryShader<GeometryShaderUid>(primitive_type, ApiType); } ShaderCode GenerateGeometryShaderCode(u32 primitive_type, API_TYPE ApiType) { return GenerateGeometryShader<ShaderCode>(primitive_type, ApiType); }