// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "DiscIO/VolumeWiiCrypted.h" #include #include #include #include #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Common/Swap.h" #include "DiscIO/Blob.h" #include "DiscIO/Enums.h" #include "DiscIO/Filesystem.h" #include "DiscIO/Volume.h" namespace DiscIO { constexpr u64 PARTITION_DATA_OFFSET = 0x20000; CVolumeWiiCrypted::CVolumeWiiCrypted(std::unique_ptr reader) : m_pReader(std::move(reader)), m_game_partition(PARTITION_NONE), m_last_decrypted_block(-1) { _assert_(m_pReader); // Get decryption keys for all partitions CBlobBigEndianReader big_endian_reader(*m_pReader.get()); for (u32 partition_group = 0; partition_group < 4; ++partition_group) { u32 number_of_partitions; if (!big_endian_reader.ReadSwapped(0x40000 + (partition_group * 8), &number_of_partitions)) continue; u32 read_buffer; if (!big_endian_reader.ReadSwapped(0x40000 + (partition_group * 8) + 4, &read_buffer)) continue; const u64 partition_table_offset = (u64)read_buffer << 2; for (u32 i = 0; i < number_of_partitions; i++) { if (!big_endian_reader.ReadSwapped(partition_table_offset + (i * 8), &read_buffer)) continue; const u64 partition_offset = (u64)read_buffer << 2; if (m_game_partition == PARTITION_NONE) { u32 partition_type; if (!big_endian_reader.ReadSwapped(partition_table_offset + (i * 8) + 4, &partition_type)) continue; if (partition_type == 0) m_game_partition = Partition(partition_offset); } u8 sub_key[16]; if (!m_pReader->Read(partition_offset + 0x1bf, 16, sub_key)) continue; u8 iv[16]; memset(iv, 0, 16); if (!m_pReader->Read(partition_offset + 0x44c, 8, iv)) continue; static const u8 common_key_standard[16] = {0xeb, 0xe4, 0x2a, 0x22, 0x5e, 0x85, 0x93, 0xe4, 0x48, 0xd9, 0xc5, 0x45, 0x73, 0x81, 0xaa, 0xf7}; static const u8 common_key_korean[16] = {0x63, 0xb8, 0x2b, 0xb4, 0xf4, 0x61, 0x4e, 0x2e, 0x13, 0xf2, 0xfe, 0xfb, 0xba, 0x4c, 0x9b, 0x7e}; static const u8 common_key_rvt[16] = {0xa1, 0x60, 0x4a, 0x6a, 0x71, 0x23, 0xb5, 0x29, 0xae, 0x8b, 0xec, 0x32, 0xc8, 0x16, 0xfc, 0xaa}; static const char issuer_rvt[] = "Root-CA00000002-XS00000006"; const u8* common_key; u8 issuer[sizeof(issuer_rvt)]; if (!m_pReader->Read(partition_offset + 0x140, sizeof(issuer), issuer)) continue; if (!memcmp(issuer, issuer_rvt, sizeof(issuer_rvt))) { // RVT issuer. Use the RVT (debug) master key. common_key = common_key_rvt; } else { u8 key_number = 0; if (!big_endian_reader.ReadSwapped(partition_offset + 0x1f1, &key_number)) continue; common_key = (key_number == 1) ? common_key_korean : common_key_standard; } mbedtls_aes_context aes_context; mbedtls_aes_setkey_dec(&aes_context, common_key, 128); u8 volume_key[16]; mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_DECRYPT, 16, iv, sub_key, volume_key); std::unique_ptr partition_AES_context = std::make_unique(); mbedtls_aes_setkey_dec(partition_AES_context.get(), volume_key, 128); m_partitions[Partition(partition_offset)] = std::move(partition_AES_context); } } } CVolumeWiiCrypted::~CVolumeWiiCrypted() { } bool CVolumeWiiCrypted::Read(u64 _ReadOffset, u64 _Length, u8* _pBuffer, const Partition& partition) const { if (partition == PARTITION_NONE) return m_pReader->Read(_ReadOffset, _Length, _pBuffer); // Get the decryption key for the partition auto it = m_partitions.find(partition); if (it == m_partitions.end()) return false; mbedtls_aes_context* aes_context = it->second.get(); std::vector read_buffer(BLOCK_TOTAL_SIZE); while (_Length > 0) { // Calculate offsets u64 block_offset_on_disc = partition.offset + PARTITION_DATA_OFFSET + _ReadOffset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE; u64 data_offset_in_block = _ReadOffset % BLOCK_DATA_SIZE; if (m_last_decrypted_block != block_offset_on_disc) { // Read the current block if (!m_pReader->Read(block_offset_on_disc, BLOCK_TOTAL_SIZE, read_buffer.data())) return false; // Decrypt the block's data. // 0x3D0 - 0x3DF in read_buffer will be overwritten, // but that won't affect anything, because we won't // use the content of read_buffer anymore after this mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, BLOCK_DATA_SIZE, &read_buffer[0x3D0], &read_buffer[BLOCK_HEADER_SIZE], m_last_decrypted_block_data); m_last_decrypted_block = block_offset_on_disc; // The only thing we currently use from the 0x000 - 0x3FF part // of the block is the IV (at 0x3D0), but it also contains SHA-1 // hashes that IOS uses to check that discs aren't tampered with. // http://wiibrew.org/wiki/Wii_Disc#Encrypted } // Copy the decrypted data u64 copy_size = std::min(_Length, BLOCK_DATA_SIZE - data_offset_in_block); memcpy(_pBuffer, &m_last_decrypted_block_data[data_offset_in_block], static_cast(copy_size)); // Update offsets _Length -= copy_size; _pBuffer += copy_size; _ReadOffset += copy_size; } return true; } std::vector CVolumeWiiCrypted::GetPartitions() const { std::vector partitions; for (const auto& pair : m_partitions) partitions.push_back(pair.first); return partitions; } Partition CVolumeWiiCrypted::GetGamePartition() const { return m_game_partition; } bool CVolumeWiiCrypted::GetTitleID(u64* buffer, const Partition& partition) const { return ReadSwapped(partition.offset + 0x1DC, buffer, PARTITION_NONE); } IOS::ES::TicketReader CVolumeWiiCrypted::GetTicket(const Partition& partition) const { std::vector buffer(0x2a4); Read(partition.offset, buffer.size(), buffer.data(), PARTITION_NONE); return IOS::ES::TicketReader{std::move(buffer)}; } IOS::ES::TMDReader CVolumeWiiCrypted::GetTMD(const Partition& partition) const { u32 tmd_size = 0; u32 tmd_address = 0; if (!ReadSwapped(partition.offset + 0x2a4, &tmd_size, PARTITION_NONE)) return {}; if (!ReadSwapped(partition.offset + 0x2a8, &tmd_address, PARTITION_NONE)) return {}; tmd_address <<= 2; if (tmd_size > 1024 * 1024 * 4) { // The size is checked so that a malicious or corrupt ISO // can't force Dolphin to allocate up to 4 GiB of memory. // 4 MiB should be much bigger than the size of TMDs and much smaller // than the amount of RAM in a computer that can run Dolphin. PanicAlert("TMD > 4 MiB"); tmd_size = 1024 * 1024 * 4; } std::vector buffer(tmd_size); if (!Read(partition.offset + tmd_address, tmd_size, buffer.data(), PARTITION_NONE)) return {}; return IOS::ES::TMDReader{std::move(buffer)}; } u64 CVolumeWiiCrypted::PartitionOffsetToRawOffset(u64 offset, const Partition& partition) { if (partition == PARTITION_NONE) return offset; return partition.offset + PARTITION_DATA_OFFSET + (offset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE) + (offset % BLOCK_DATA_SIZE); } std::string CVolumeWiiCrypted::GetGameID(const Partition& partition) const { char ID[6]; if (!Read(0, 6, (u8*)ID, partition)) return std::string(); return DecodeString(ID); } Region CVolumeWiiCrypted::GetRegion() const { u32 region_code; if (!ReadSwapped(0x4E000, ®ion_code, PARTITION_NONE)) return Region::UNKNOWN_REGION; return static_cast(region_code); } Country CVolumeWiiCrypted::GetCountry(const Partition& partition) const { u8 country_byte; if (!ReadSwapped(3, &country_byte, partition)) return Country::COUNTRY_UNKNOWN; const Region region = GetRegion(); if (RegionSwitchWii(country_byte) != region) return TypicalCountryForRegion(region); return CountrySwitch(country_byte); } std::string CVolumeWiiCrypted::GetMakerID(const Partition& partition) const { char makerID[2]; if (!Read(0x4, 0x2, (u8*)&makerID, partition)) return std::string(); return DecodeString(makerID); } u16 CVolumeWiiCrypted::GetRevision(const Partition& partition) const { u8 revision; if (!ReadSwapped(7, &revision, partition)) return 0; return revision; } std::string CVolumeWiiCrypted::GetInternalName(const Partition& partition) const { char name_buffer[0x60]; if (Read(0x20, 0x60, (u8*)&name_buffer, partition)) return DecodeString(name_buffer); return ""; } std::map CVolumeWiiCrypted::GetLongNames() const { std::unique_ptr file_system(CreateFileSystem(this, GetGamePartition())); if (!file_system) return {{}}; std::vector opening_bnr(NAMES_TOTAL_BYTES); size_t size = file_system->ReadFile("opening.bnr", opening_bnr.data(), opening_bnr.size(), 0x5C); opening_bnr.resize(size); return ReadWiiNames(opening_bnr); } std::vector CVolumeWiiCrypted::GetBanner(int* width, int* height) const { *width = 0; *height = 0; u64 title_id; if (!GetTitleID(&title_id, GetGamePartition())) return std::vector(); return GetWiiBanner(width, height, title_id); } u64 CVolumeWiiCrypted::GetFSTSize(const Partition& partition) const { u32 size; if (!Read(0x428, 0x4, (u8*)&size, partition)) return 0; return (u64)Common::swap32(size) << 2; } std::string CVolumeWiiCrypted::GetApploaderDate(const Partition& partition) const { char date[16]; if (!Read(0x2440, 0x10, (u8*)&date, partition)) return std::string(); return DecodeString(date); } Platform CVolumeWiiCrypted::GetVolumeType() const { return Platform::WII_DISC; } u8 CVolumeWiiCrypted::GetDiscNumber(const Partition& partition) const { u8 disc_number = 0; ReadSwapped(6, &disc_number, partition); return disc_number; } BlobType CVolumeWiiCrypted::GetBlobType() const { return m_pReader->GetBlobType(); } u64 CVolumeWiiCrypted::GetSize() const { return m_pReader->GetDataSize(); } u64 CVolumeWiiCrypted::GetRawSize() const { return m_pReader->GetRawSize(); } bool CVolumeWiiCrypted::CheckIntegrity(const Partition& partition) const { // Get the decryption key for the partition auto it = m_partitions.find(partition); if (it == m_partitions.end()) return false; mbedtls_aes_context* aes_context = it->second.get(); // Get partition data size u32 partSizeDiv4; Read(partition.offset + 0x2BC, 4, (u8*)&partSizeDiv4, PARTITION_NONE); u64 partDataSize = (u64)Common::swap32(partSizeDiv4) * 4; u32 nClusters = (u32)(partDataSize / 0x8000); for (u32 clusterID = 0; clusterID < nClusters; ++clusterID) { u64 clusterOff = partition.offset + PARTITION_DATA_OFFSET + (u64)clusterID * 0x8000; // Read and decrypt the cluster metadata u8 clusterMDCrypted[0x400]; u8 clusterMD[0x400]; u8 IV[16] = {0}; if (!Read(clusterOff, 0x400, clusterMDCrypted, PARTITION_NONE)) { WARN_LOG(DISCIO, "Integrity Check: fail at cluster %d: could not read metadata", clusterID); return false; } mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, 0x400, IV, clusterMDCrypted, clusterMD); // Some clusters have invalid data and metadata because they aren't // meant to be read by the game (for example, holes between files). To // try to avoid reporting errors because of these clusters, we check // the 0x00 paddings in the metadata. // // This may cause some false negatives though: some bad clusters may be // skipped because they are *too* bad and are not even recognized as // valid clusters. To be improved. bool meaningless = false; for (u32 idx = 0x26C; idx < 0x280; ++idx) if (clusterMD[idx] != 0) meaningless = true; if (meaningless) continue; u8 clusterData[0x7C00]; if (!Read((u64)clusterID * 0x7C00, 0x7C00, clusterData, partition)) { WARN_LOG(DISCIO, "Integrity Check: fail at cluster %d: could not read data", clusterID); return false; } for (u32 hashID = 0; hashID < 31; ++hashID) { u8 hash[20]; mbedtls_sha1(clusterData + hashID * 0x400, 0x400, hash); // Note that we do not use strncmp here if (memcmp(hash, clusterMD + hashID * 20, 20)) { WARN_LOG(DISCIO, "Integrity Check: fail at cluster %d: hash %d is invalid", clusterID, hashID); return false; } } } return true; } } // namespace