// Copyright 2014 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include // From Bochs, fallback included in Externals. #include #include #include #include // gtest defines the TEST macro to generate test case functions. It conflicts // with the TEST method in the x64Emitter. // // Since we use TEST_F in this file to attach the test cases to a fixture, we // can get away with simply undef'ing TEST. Phew. #undef TEST #include "Common/CPUDetect.h" #include "Common/x64Emitter.h" namespace Gen { struct NamedReg { X64Reg reg; std::string name; }; const std::vector reg8names { { RAX, "al" }, { RBX, "bl" }, { RCX, "cl" }, { RDX, "dl" }, { RSI, "sil" }, { RDI, "dil" }, { RBP, "bpl" }, { RSP, "spl" }, { R8, "r8b" }, { R9, "r9b" }, { R10, "r10b" }, { R11, "r11b" }, { R12, "r12b" }, { R13, "r13b" }, { R14, "r14b" }, { R15, "r15b" }, }; const std::vector reg8hnames { { AH, "ah" }, { BH, "bh" }, { CH, "ch" }, { DH, "dh" }, }; const std::vector reg16names { { RAX, "ax" }, { RBX, "bx" }, { RCX, "cx" }, { RDX, "dx" }, { RSI, "si" }, { RDI, "di" }, { RBP, "bp" }, { RSP, "sp" }, { R8, "r8w" }, { R9, "r9w" }, { R10, "r10w" }, { R11, "r11w" }, { R12, "r12w" }, { R13, "r13w" }, { R14, "r14w" }, { R15, "r15w" }, }; const std::vector reg32names { { RAX, "eax" }, { RBX, "ebx" }, { RCX, "ecx" }, { RDX, "edx" }, { RSI, "esi" }, { RDI, "edi" }, { RBP, "ebp" }, { RSP, "esp" }, { R8, "r8d" }, { R9, "r9d" }, { R10, "r10d" }, { R11, "r11d" }, { R12, "r12d" }, { R13, "r13d" }, { R14, "r14d" }, { R15, "r15d" }, }; const std::vector reg64names { { RAX, "rax" }, { RBX, "rbx" }, { RCX, "rcx" }, { RDX, "rdx" }, { RSI, "rsi" }, { RDI, "rdi" }, { RBP, "rbp" }, { RSP, "rsp" }, { R8, "r8" }, { R9, "r9" }, { R10, "r10" }, { R11, "r11" }, { R12, "r12" }, { R13, "r13" }, { R14, "r14" }, { R15, "r15" }, }; const std::vector xmmnames { { XMM0, "xmm0" }, { XMM1, "xmm1" }, { XMM2, "xmm2" }, { XMM3, "xmm3" }, { XMM4, "xmm4" }, { XMM5, "xmm5" }, { XMM6, "xmm6" }, { XMM7, "xmm7" }, { XMM8, "xmm8" }, { XMM9, "xmm9" }, { XMM10, "xmm10" }, { XMM11, "xmm11" }, { XMM12, "xmm12" }, { XMM13, "xmm13" }, { XMM14, "xmm14" }, { XMM15, "xmm15" }, }; const std::vector ymmnames { { YMM0, "ymm0" }, { YMM1, "ymm1" }, { YMM2, "ymm2" }, { YMM3, "ymm3" }, { YMM4, "ymm4" }, { YMM5, "ymm5" }, { YMM6, "ymm6" }, { YMM7, "ymm7" }, { YMM8, "ymm8" }, { YMM9, "ymm9" }, { YMM10, "ymm10" }, { YMM11, "ymm11" }, { YMM12, "ymm12" }, { YMM13, "ymm13" }, { YMM14, "ymm14" }, { YMM15, "ymm15" }, }; struct { CCFlags cc; std::string name; } ccnames[] = { { CC_O, "o" }, { CC_NO, "no" }, { CC_B, "b" }, { CC_NB, "nb" }, { CC_Z, "z" }, { CC_NZ, "nz" }, { CC_BE, "be" }, { CC_NBE, "nbe" }, { CC_S, "s" }, { CC_NS, "ns" }, { CC_P, "p" }, { CC_NP, "np" }, { CC_L, "l" }, { CC_NL, "nl" }, { CC_LE, "le" }, { CC_NLE, "nle" }, }; class x64EmitterTest : public testing::Test { protected: void SetUp() override { memset(&cpu_info, 0xFF, sizeof (cpu_info)); emitter.reset(new X64CodeBlock()); emitter->AllocCodeSpace(4096); code_buffer = emitter->GetWritableCodePtr(); disasm.reset(new disassembler); disasm->set_syntax_intel(); } void ExpectDisassembly(const std::string& expected) { std::string disasmed; const u8* generated_code_iterator = code_buffer; while (generated_code_iterator < emitter->GetCodePtr()) { char instr_buffer[1024] = ""; generated_code_iterator += disasm->disasm64( (u64)generated_code_iterator, (u64)generated_code_iterator, generated_code_iterator, instr_buffer); disasmed += instr_buffer; disasmed += "\n"; } auto NormalizeAssembly = [](const std::string& str) -> std::string { // Normalize assembly code to make it suitable for equality checks. // In particular: // * Replace all whitespace characters by a single space. // * Remove leading and trailing whitespaces. // * Lowercase everything. // * Remove all (0x...) addresses. std::string out; bool previous_was_space = false; bool inside_parens = false; for (auto c : str) { c = tolower(c); if (c == '(') { inside_parens = true; continue; } else if (inside_parens) { if (c == ')') inside_parens = false; continue; } else if (isspace(c)) { previous_was_space = true; continue; } else if (previous_was_space) { previous_was_space = false; if (!out.empty()) out += ' '; } out += c; } return out; }; std::string expected_norm = NormalizeAssembly(expected); std::string disasmed_norm = NormalizeAssembly(disasmed); EXPECT_EQ(expected_norm, disasmed_norm); // Reset code buffer afterwards. emitter->SetCodePtr(code_buffer); } std::unique_ptr emitter; std::unique_ptr disasm; u8* code_buffer; }; #define TEST_INSTR_NO_OPERANDS(Name, ExpectedDisasm) \ TEST_F(x64EmitterTest, Name) \ { \ emitter->Name(); \ ExpectDisassembly(ExpectedDisasm); \ } TEST_INSTR_NO_OPERANDS(INT3, "int3") TEST_INSTR_NO_OPERANDS(NOP, "nop") TEST_INSTR_NO_OPERANDS(PAUSE, "pause") TEST_INSTR_NO_OPERANDS(STC, "stc") TEST_INSTR_NO_OPERANDS(CLC, "clc") TEST_INSTR_NO_OPERANDS(CMC, "cmc") TEST_INSTR_NO_OPERANDS(LAHF, "lahf") TEST_INSTR_NO_OPERANDS(SAHF, "sahf") TEST_INSTR_NO_OPERANDS(PUSHF, "pushf") TEST_INSTR_NO_OPERANDS(POPF, "popf") TEST_INSTR_NO_OPERANDS(RET, "ret") TEST_INSTR_NO_OPERANDS(RET_FAST, "rep ret") TEST_INSTR_NO_OPERANDS(UD2, "ud2a") TEST_INSTR_NO_OPERANDS(JMPself, "jmp .-2") TEST_INSTR_NO_OPERANDS(LFENCE, "lfence") TEST_INSTR_NO_OPERANDS(MFENCE, "mfence") TEST_INSTR_NO_OPERANDS(SFENCE, "sfence") TEST_INSTR_NO_OPERANDS(CWD, "cwd") TEST_INSTR_NO_OPERANDS(CDQ, "cdq") TEST_INSTR_NO_OPERANDS(CQO, "cqo") TEST_INSTR_NO_OPERANDS(CBW, "cbw") TEST_INSTR_NO_OPERANDS(CWDE, "cwde") TEST_INSTR_NO_OPERANDS(CDQE, "cdqe") TEST_INSTR_NO_OPERANDS(XCHG_AHAL, "xchg al, ah") TEST_INSTR_NO_OPERANDS(FWAIT, "fwait") TEST_INSTR_NO_OPERANDS(FNSTSW_AX, "fnstsw ax") TEST_INSTR_NO_OPERANDS(RDTSC, "rdtsc") TEST_F(x64EmitterTest, NOP_MultiByte) { // 2 bytes is "rep nop", still a simple nop. emitter->NOP(2); ExpectDisassembly("nop"); for (int i = 3; i <= 11; ++i) { emitter->NOP(i); ExpectDisassembly("multibyte nop"); } // Larger NOPs are split into several NOPs. emitter->NOP(20); ExpectDisassembly("multibyte nop " "multibyte nop"); } TEST_F(x64EmitterTest, PUSH_Register) { for (const auto& r : reg64names) { emitter->PUSH(r.reg); ExpectDisassembly("push " + r.name); } } TEST_F(x64EmitterTest, PUSH_Immediate) { emitter->PUSH(64, Imm8(0xf0)); ExpectDisassembly("push 0xfffffffffffffff0"); // X64 is weird like that... this pushes 2 bytes, not 8 bytes with sext. emitter->PUSH(64, Imm16(0xe0f0)); ExpectDisassembly("push 0xe0f0"); emitter->PUSH(64, Imm32(0xc0d0e0f0)); ExpectDisassembly("push 0xffffffffc0d0e0f0"); } TEST_F(x64EmitterTest, PUSH_MComplex) { emitter->PUSH(64, MComplex(RAX, RBX, SCALE_2, 4)); ExpectDisassembly("push qword ptr ds:[rax+rbx*2+4]"); } TEST_F(x64EmitterTest, POP_Register) { for (const auto& r : reg64names) { emitter->POP(r.reg); ExpectDisassembly("pop " + r.name); } } TEST_F(x64EmitterTest, JMP) { emitter->NOP(6); emitter->JMP(code_buffer); ExpectDisassembly("multibyte nop " "jmp .-8"); emitter->NOP(6); emitter->JMP(code_buffer, true); ExpectDisassembly("multibyte nop " "jmp .-11"); } TEST_F(x64EmitterTest, JMPptr_Register) { for (const auto& r : reg64names) { emitter->JMPptr(R(r.reg)); ExpectDisassembly("jmp " + r.name); } } // TODO: J/SetJumpTarget // TODO: CALL // TODO: J_CC TEST_F(x64EmitterTest, SETcc) { for (const auto& cc : ccnames) { for (const auto& r : reg8names) { emitter->SETcc(cc.cc, R(r.reg)); ExpectDisassembly("set" + cc.name + " " + r.name); } for (const auto& r : reg8hnames) { emitter->SETcc(cc.cc, R(r.reg)); ExpectDisassembly("set" + cc.name + " " + r.name); } } } TEST_F(x64EmitterTest, CMOVcc_Register) { for (const auto& cc : ccnames) { emitter->CMOVcc(64, RAX, R(R12), cc.cc); emitter->CMOVcc(32, RAX, R(R12), cc.cc); emitter->CMOVcc(16, RAX, R(R12), cc.cc); ExpectDisassembly("cmov" + cc.name + " rax, r12 " "cmov" + cc.name + " eax, r12d " "cmov" + cc.name + " ax, r12w"); } } #define BITSEARCH_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string size; \ std::string rax_name; \ } regsets[] = { \ { 16, reg16names, "word", "ax" }, \ { 32, reg32names, "dword", "eax" }, \ { 64, reg64names, "qword", "rax" }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, r.reg, R(RAX)); \ emitter->Name(regset.bits, RAX, R(r.reg)); \ emitter->Name(regset.bits, r.reg, MatR(RAX)); \ ExpectDisassembly(#Name " " + r.name + ", " + regset.rax_name + " " \ #Name " " + regset.rax_name + ", " + r.name + " " \ #Name " " + r.name + ", " + regset.size + " ptr ds:[rax] " ); \ } \ } BITSEARCH_TEST(BSR); BITSEARCH_TEST(BSF); BITSEARCH_TEST(LZCNT); BITSEARCH_TEST(TZCNT); TEST_F(x64EmitterTest, PREFETCH) { emitter->PREFETCH(XEmitter::PF_NTA, MatR(R12)); emitter->PREFETCH(XEmitter::PF_T0, MatR(R12)); emitter->PREFETCH(XEmitter::PF_T1, MatR(R12)); emitter->PREFETCH(XEmitter::PF_T2, MatR(R12)); ExpectDisassembly("prefetchnta byte ptr ds:[r12] " "prefetcht0 byte ptr ds:[r12] " "prefetcht1 byte ptr ds:[r12] " "prefetcht2 byte ptr ds:[r12]"); } TEST_F(x64EmitterTest, MOVNTI) { emitter->MOVNTI(32, MatR(RAX), R12); emitter->MOVNTI(32, M(code_buffer), R12); emitter->MOVNTI(64, MatR(RAX), R12); emitter->MOVNTI(64, M(code_buffer), R12); ExpectDisassembly("movnti dword ptr ds:[rax], r12d " "movnti dword ptr ds:[rip-12], r12d " "movnti qword ptr ds:[rax], r12 " "movnti qword ptr ds:[rip-24], r12"); } // Grouped together since these 3 instructions do exactly the same thing. TEST_F(x64EmitterTest, MOVNT_DQ_PS_PD) { for (const auto& r : xmmnames) { emitter->MOVNTDQ(MatR(RAX), r.reg); emitter->MOVNTPS(MatR(RAX), r.reg); emitter->MOVNTPD(MatR(RAX), r.reg); ExpectDisassembly("movntdq dqword ptr ds:[rax], " + r.name + " " "movntps dqword ptr ds:[rax], " + r.name + " " "movntpd dqword ptr ds:[rax], " + r.name); } } #define MUL_DIV_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string out_name; \ } regsets[] = { \ { 8, reg8names, "al" }, \ { 8, reg8hnames, "al" }, \ { 16, reg16names, "ax" }, \ { 32, reg32names, "eax" }, \ { 64, reg64names, "rax" }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, R(r.reg)); \ ExpectDisassembly(#Name " " + regset.out_name + ", " + r.name); \ } \ } MUL_DIV_TEST(MUL) MUL_DIV_TEST(IMUL) MUL_DIV_TEST(DIV) MUL_DIV_TEST(IDIV) // TODO: More complex IMUL variants. #define SHIFT_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ } regsets[] = { \ { 8, reg8names }, \ { 8, reg8hnames }, \ { 16, reg16names }, \ { 32, reg32names }, \ { 64, reg64names }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, R(r.reg), Imm8(1)); \ emitter->Name(regset.bits, R(r.reg), Imm8(4)); \ emitter->Name(regset.bits, R(r.reg), R(CL)); \ ExpectDisassembly(#Name " " + r.name + ", 1 " \ #Name " " + r.name + ", 0x04 " \ #Name " " + r.name + ", cl"); \ } \ } SHIFT_TEST(ROL) SHIFT_TEST(ROR) SHIFT_TEST(RCL) SHIFT_TEST(RCR) SHIFT_TEST(SHL) SHIFT_TEST(SHR) SHIFT_TEST(SAR) #define BT_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string out_name; \ std::string size; \ } regsets[] = { \ { 16, reg16names, "ax", "word" }, \ { 32, reg32names, "eax", "dword" }, \ { 64, reg64names, "rax", "qword" }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, R(r.reg), R(RAX)); \ emitter->Name(regset.bits, R(RAX), R(r.reg)); \ emitter->Name(regset.bits, R(r.reg), Imm8(0x42)); \ emitter->Name(regset.bits, MatR(R12), R(r.reg)); \ ExpectDisassembly(#Name " " + r.name + ", " + regset.out_name + " " \ #Name " " + regset.out_name + ", " + r.name + " " \ #Name " " + r.name + ", 0x42 " \ #Name " " + regset.size + " ptr ds:[r12], " + r.name); \ } \ } BT_TEST(BT) BT_TEST(BTS) BT_TEST(BTR) BT_TEST(BTC) // TODO: LEA tests #define ONE_OP_ARITH_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string size; \ } regsets[] = { \ { 8, reg8names, "byte" }, \ { 8, reg8hnames, "byte" }, \ { 16, reg16names, "word" }, \ { 32, reg32names, "dword" }, \ { 64, reg64names, "qword" }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, R(r.reg)); \ emitter->Name(regset.bits, MatR(RAX)); \ emitter->Name(regset.bits, MatR(R12)); \ ExpectDisassembly(#Name " " + r.name + " " \ #Name " " + regset.size + " ptr ds:[rax] " \ #Name " " + regset.size + " ptr ds:[r12]"); \ } \ } ONE_OP_ARITH_TEST(NOT) ONE_OP_ARITH_TEST(NEG) #define TWO_OP_ARITH_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string size; \ std::string rax_name; \ Gen::OpArg imm; \ std::string immname; \ } regsets[] = { \ { 8, reg8names, "byte", "al", Imm8(0xEF), "0xef" }, \ { 8, reg8hnames, "byte", "al", Imm8(0xEF), "0xef" }, \ { 16, reg16names, "word", "ax", Imm16(0xBEEF), "0xbeef" }, \ { 32, reg32names, "dword", "eax", Imm32(0xDEADBEEF), "0xdeadbeef" }, \ { 64, reg64names, "qword", "rax", Imm32(0xDEADBEEF), "0xffffffffdeadbeef" }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, R(r.reg), R(RAX)); \ emitter->Name(regset.bits, R(RAX), R(r.reg)); \ emitter->Name(regset.bits, R(r.reg), MatR(RAX)); \ emitter->Name(regset.bits, MatR(RAX), R(r.reg)); \ emitter->Name(regset.bits, R(r.reg), regset.imm); \ ExpectDisassembly(#Name " " + r.name + ", " + regset.rax_name + " " \ #Name " " + regset.rax_name + ", " + r.name + " " \ #Name " " + r.name + ", " + regset.size + " ptr ds:[rax] " \ #Name " " + regset.size + " ptr ds:[rax], " + r.name + " " \ #Name " " + r.name + ", " + regset.immname ); \ } \ } TWO_OP_ARITH_TEST(ADD) TWO_OP_ARITH_TEST(ADC) TWO_OP_ARITH_TEST(SUB) TWO_OP_ARITH_TEST(SBB) TWO_OP_ARITH_TEST(AND) TWO_OP_ARITH_TEST(CMP) TWO_OP_ARITH_TEST(OR) TWO_OP_ARITH_TEST(XOR) TWO_OP_ARITH_TEST(MOV) // TODO: Disassembler inverts operands here. // TWO_OP_ARITH_TEST(XCHG) // TWO_OP_ARITH_TEST(TEST) TEST_F(x64EmitterTest, BSWAP) { struct { int bits; std::vector regs; } regsets[] = { { 32, reg32names }, { 64, reg64names }, }; for (const auto& regset : regsets) for (const auto& r : regset.regs) { emitter->BSWAP(regset.bits, r.reg); ExpectDisassembly("bswap " + r.name); } } TEST_F(x64EmitterTest, MOVSX) { emitter->MOVSX(16, 8, RAX, R(AH)); emitter->MOVSX(32, 8, RAX, R(R12)); emitter->MOVSX(32, 16, R12, R(RBX)); emitter->MOVSX(64, 8, R12, R(RBX)); emitter->MOVSX(64, 16, RAX, R(R12)); emitter->MOVSX(64, 32, R12, R(RSP)); ExpectDisassembly("movsx ax, ah " "movsx eax, r12b " "movsx r12d, bx " "movsx r12, bl " "movsx rax, r12w " "movsxd r12, esp"); } TEST_F(x64EmitterTest, MOVZX) { emitter->MOVZX(16, 8, RAX, R(AH)); emitter->MOVZX(32, 8, R12, R(RBP)); emitter->MOVZX(64, 8, R12, R(RDI)); emitter->MOVZX(32, 16, RAX, R(R12)); emitter->MOVZX(64, 16, RCX, R(RSI)); ExpectDisassembly("movzx ax, ah " "movzx r12d, bpl " "movzx r12d, dil " // Generates 32 bit movzx "movzx eax, r12w " "movzx ecx, si"); } TEST_F(x64EmitterTest, MOVBE) { emitter->MOVBE(16, R(RAX), MatR(R12)); emitter->MOVBE(16, MatR(RAX), R(R12)); emitter->MOVBE(32, R(RAX), MatR(R12)); emitter->MOVBE(32, MatR(RAX), R(R12)); emitter->MOVBE(64, R(RAX), MatR(R12)); emitter->MOVBE(64, MatR(RAX), R(R12)); ExpectDisassembly("movbe ax, word ptr ds:[r12] " "movbe word ptr ds:[rax], r12w " "movbe eax, dword ptr ds:[r12] " "movbe dword ptr ds:[rax], r12d " "movbe rax, qword ptr ds:[r12] " "movbe qword ptr ds:[rax], r12"); } TEST_F(x64EmitterTest, STMXCSR) { emitter->STMXCSR(MatR(R12)); ExpectDisassembly("stmxcsr dword ptr ds:[r12]"); } TEST_F(x64EmitterTest, LDMXCSR) { emitter->LDMXCSR(MatR(R12)); ExpectDisassembly("ldmxcsr dword ptr ds:[r12]"); } TEST_F(x64EmitterTest, FLD_FST_FSTP) { emitter->FLD(32, MatR(RBP)); emitter->FLD(64, MatR(RBP)); emitter->FLD(80, MatR(RBP)); emitter->FST(32, MatR(RBP)); emitter->FST(64, MatR(RBP)); // No 80 bit version of FST emitter->FSTP(32, MatR(RBP)); emitter->FSTP(64, MatR(RBP)); emitter->FSTP(80, MatR(RBP)); ExpectDisassembly("fld dword ptr ss:[rbp] " "fld qword ptr ss:[rbp] " "fld tbyte ptr ss:[rbp] " "fst dword ptr ss:[rbp] " "fst qword ptr ss:[rbp] " "fstp dword ptr ss:[rbp] " "fstp qword ptr ss:[rbp] " "fstp tbyte ptr ss:[rbp]"); } #define TWO_OP_SSE_TEST(Name, MemBits) \ TEST_F(x64EmitterTest, Name) \ { \ for (const auto& r1 : xmmnames) \ { \ for (const auto& r2 : xmmnames) \ { \ emitter->Name(r1.reg, R(r2.reg)); \ ExpectDisassembly(#Name " " + r1.name + ", " + r2.name); \ } \ emitter->Name(r1.reg, MatR(R12)); \ ExpectDisassembly(#Name " " + r1.name + ", " MemBits " ptr ds:[r12]"); \ } \ } TWO_OP_SSE_TEST(ADDSS, "dword") TWO_OP_SSE_TEST(SUBSS, "dword") TWO_OP_SSE_TEST(MULSS, "dword") TWO_OP_SSE_TEST(DIVSS, "dword") TWO_OP_SSE_TEST(MINSS, "dword") TWO_OP_SSE_TEST(MAXSS, "dword") TWO_OP_SSE_TEST(SQRTSS, "dword") TWO_OP_SSE_TEST(RSQRTSS, "dword") TWO_OP_SSE_TEST(ADDSD, "qword") TWO_OP_SSE_TEST(SUBSD, "qword") TWO_OP_SSE_TEST(MULSD, "qword") TWO_OP_SSE_TEST(DIVSD, "qword") TWO_OP_SSE_TEST(MINSD, "qword") TWO_OP_SSE_TEST(MAXSD, "qword") TWO_OP_SSE_TEST(SQRTSD, "qword") TWO_OP_SSE_TEST(ADDPS, "dqword") TWO_OP_SSE_TEST(SUBPS, "dqword") TWO_OP_SSE_TEST(MULPS, "dqword") TWO_OP_SSE_TEST(DIVPS, "dqword") TWO_OP_SSE_TEST(MINPS, "dqword") TWO_OP_SSE_TEST(MAXPS, "dqword") TWO_OP_SSE_TEST(SQRTPS, "dqword") TWO_OP_SSE_TEST(RSQRTPS, "dqword") TWO_OP_SSE_TEST(ANDPS, "dqword") TWO_OP_SSE_TEST(ANDNPS, "dqword") TWO_OP_SSE_TEST(ORPS, "dqword") TWO_OP_SSE_TEST(XORPS, "dqword") TWO_OP_SSE_TEST(ADDPD, "dqword") TWO_OP_SSE_TEST(SUBPD, "dqword") TWO_OP_SSE_TEST(MULPD, "dqword") TWO_OP_SSE_TEST(DIVPD, "dqword") TWO_OP_SSE_TEST(MINPD, "dqword") TWO_OP_SSE_TEST(MAXPD, "dqword") TWO_OP_SSE_TEST(SQRTPD, "dqword") TWO_OP_SSE_TEST(ANDPD, "dqword") TWO_OP_SSE_TEST(ANDNPD, "dqword") TWO_OP_SSE_TEST(ORPD, "dqword") TWO_OP_SSE_TEST(XORPD, "dqword") TWO_OP_SSE_TEST(MOVDDUP, "qword") TWO_OP_SSE_TEST(UNPCKLPS, "dqword") TWO_OP_SSE_TEST(UNPCKHPS, "dqword") TWO_OP_SSE_TEST(UNPCKLPD, "dqword") TWO_OP_SSE_TEST(UNPCKHPD, "dqword") TWO_OP_SSE_TEST(COMISS, "dword") TWO_OP_SSE_TEST(UCOMISS, "dword") TWO_OP_SSE_TEST(COMISD, "qword") TWO_OP_SSE_TEST(UCOMISD, "qword") // register-only instructions #define TWO_OP_SSE_REG_TEST(Name, MemBits) \ TEST_F(x64EmitterTest, Name) \ { \ for (const auto& r1 : xmmnames) \ { \ for (const auto& r2 : xmmnames) \ { \ emitter->Name(r1.reg, r2.reg); \ ExpectDisassembly(#Name " " + r1.name + ", " + r2.name); \ } \ } \ } TWO_OP_SSE_REG_TEST(MOVHLPS, "qword") TWO_OP_SSE_REG_TEST(MOVLHPS, "qword") // "register + memory"-only instructions #define TWO_OP_SSE_MEM_TEST(Name, MemBits) \ TEST_F(x64EmitterTest, Name) \ { \ for (const auto& r1 : xmmnames) \ { \ emitter->Name(r1.reg, MatR(R12)); \ ExpectDisassembly(#Name " " + r1.name + ", " MemBits " ptr ds:[r12]"); \ emitter->Name(MatR(R12), r1.reg); \ ExpectDisassembly(#Name " " MemBits " ptr ds:[r12], " + r1.name); \ } \ } TWO_OP_SSE_MEM_TEST(MOVLPS, "qword") TWO_OP_SSE_MEM_TEST(MOVHPS, "qword") TWO_OP_SSE_MEM_TEST(MOVLPD, "qword") TWO_OP_SSE_MEM_TEST(MOVHPD, "qword") // TODO: CMPSS/SD // TODO: SHUFPS/PD // TODO: more SSE MOVs // TODO: MOVMSK TEST_F(x64EmitterTest, MASKMOVDQU) { for (const auto& r1 : xmmnames) { for (const auto& r2 : xmmnames) { emitter->MASKMOVDQU(r1.reg, r2.reg); ExpectDisassembly("maskmovdqu " + r1.name + ", " + r2.name + ", dqword ptr ds:[rdi]"); } } } TEST_F(x64EmitterTest, LDDQU) { for (const auto& r : xmmnames) { emitter->LDDQU(r.reg, MatR(R12)); ExpectDisassembly("lddqu " + r.name + ", dqword ptr ds:[r12]"); } } TWO_OP_SSE_TEST(CVTPS2PD, "dqword") TWO_OP_SSE_TEST(CVTPD2PS, "dqword") TWO_OP_SSE_TEST(CVTSS2SD, "dword") TWO_OP_SSE_TEST(CVTSD2SS, "qword") TWO_OP_SSE_TEST(CVTDQ2PD, "qword") TWO_OP_SSE_TEST(CVTPD2DQ, "dqword") TWO_OP_SSE_TEST(CVTDQ2PS, "dqword") TWO_OP_SSE_TEST(CVTPS2DQ, "dqword") TWO_OP_SSE_TEST(CVTTPS2DQ, "dqword") TWO_OP_SSE_TEST(CVTTPD2DQ, "dqword") // TODO: CVT2SI TWO_OP_SSE_TEST(PACKSSDW, "dqword") TWO_OP_SSE_TEST(PACKSSWB, "dqword") TWO_OP_SSE_TEST(PACKUSDW, "dqword") TWO_OP_SSE_TEST(PACKUSWB, "dqword") TWO_OP_SSE_TEST(PUNPCKLBW, "dqword") TWO_OP_SSE_TEST(PUNPCKLWD, "dqword") TWO_OP_SSE_TEST(PUNPCKLDQ, "dqword") TWO_OP_SSE_TEST(PTEST, "dqword") TWO_OP_SSE_TEST(PAND, "dqword") TWO_OP_SSE_TEST(PANDN, "dqword") TWO_OP_SSE_TEST(POR, "dqword") TWO_OP_SSE_TEST(PXOR, "dqword") TWO_OP_SSE_TEST(PADDB, "dqword") TWO_OP_SSE_TEST(PADDW, "dqword") TWO_OP_SSE_TEST(PADDD, "dqword") TWO_OP_SSE_TEST(PADDQ, "dqword") TWO_OP_SSE_TEST(PADDSB, "dqword") TWO_OP_SSE_TEST(PADDSW, "dqword") TWO_OP_SSE_TEST(PADDUSB, "dqword") TWO_OP_SSE_TEST(PADDUSW, "dqword") TWO_OP_SSE_TEST(PSUBB, "dqword") TWO_OP_SSE_TEST(PSUBW, "dqword") TWO_OP_SSE_TEST(PSUBD, "dqword") TWO_OP_SSE_TEST(PSUBQ, "dqword") TWO_OP_SSE_TEST(PSUBUSB, "dqword") TWO_OP_SSE_TEST(PSUBUSW, "dqword") TWO_OP_SSE_TEST(PAVGB, "dqword") TWO_OP_SSE_TEST(PAVGW, "dqword") TWO_OP_SSE_TEST(PCMPEQB, "dqword") TWO_OP_SSE_TEST(PCMPEQW, "dqword") TWO_OP_SSE_TEST(PCMPEQD, "dqword") TWO_OP_SSE_TEST(PCMPGTB, "dqword") TWO_OP_SSE_TEST(PCMPGTW, "dqword") TWO_OP_SSE_TEST(PCMPGTD, "dqword") TWO_OP_SSE_TEST(PMADDWD, "dqword") TWO_OP_SSE_TEST(PSADBW, "dqword") TWO_OP_SSE_TEST(PMAXSW, "dqword") TWO_OP_SSE_TEST(PMAXUB, "dqword") TWO_OP_SSE_TEST(PMINSW, "dqword") TWO_OP_SSE_TEST(PMINUB, "dqword") TWO_OP_SSE_TEST(PSHUFB, "dqword") // TODO: PEXT/INS/SHUF/MOVMSK TWO_OP_SSE_TEST(PMOVSXBW, "qword") TWO_OP_SSE_TEST(PMOVSXBD, "dword") TWO_OP_SSE_TEST(PMOVSXBQ, "word") TWO_OP_SSE_TEST(PMOVSXWD, "qword") TWO_OP_SSE_TEST(PMOVSXWQ, "dword") TWO_OP_SSE_TEST(PMOVSXDQ, "qword") TWO_OP_SSE_TEST(PMOVZXBW, "qword") TWO_OP_SSE_TEST(PMOVZXBD, "dword") TWO_OP_SSE_TEST(PMOVZXBQ, "word") TWO_OP_SSE_TEST(PMOVZXWD, "qword") TWO_OP_SSE_TEST(PMOVZXWQ, "dword") TWO_OP_SSE_TEST(PMOVZXDQ, "qword") // TODO: BLEND // TODO: AVX // for VEX GPR instructions that take the form op reg, r/m, reg #define VEX_RMR_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string out_name; \ std::string size; \ } regsets[] = { \ { 32, reg32names, "eax", "dword" }, \ { 64, reg64names, "rax", "qword" }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, r.reg, R(RAX), RAX); \ emitter->Name(regset.bits, RAX, R(r.reg), RAX); \ emitter->Name(regset.bits, RAX, MatR(R12), r.reg); \ ExpectDisassembly(#Name " " + r.name + ", " + regset.out_name + ", " + regset.out_name + " " \ #Name " " + regset.out_name + ", " + r.name + ", " + regset.out_name + " " \ #Name " " + regset.out_name + ", " + regset.size + " ptr ds:[r12], " + r.name + " "); \ } \ } VEX_RMR_TEST(SHRX) VEX_RMR_TEST(SARX) VEX_RMR_TEST(SHLX) VEX_RMR_TEST(BEXTR) VEX_RMR_TEST(BZHI) // for VEX GPR instructions that take the form op reg, reg, r/m #define VEX_RRM_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string out_name; \ std::string size; \ } regsets[] = { \ { 32, reg32names, "eax", "dword" }, \ { 64, reg64names, "rax", "qword" }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, r.reg, RAX, R(RAX)); \ emitter->Name(regset.bits, RAX, RAX, R(r.reg)); \ emitter->Name(regset.bits, RAX, r.reg, MatR(R12)); \ ExpectDisassembly(#Name " " + r.name+ ", " + regset.out_name + ", " + regset.out_name + " " \ #Name " " + regset.out_name + ", " + regset.out_name + ", " + r.name + " " \ #Name " " + regset.out_name + ", " + r.name + ", " + regset.size + " ptr ds:[r12] "); \ } \ } VEX_RRM_TEST(PEXT) VEX_RRM_TEST(PDEP) VEX_RRM_TEST(MULX) VEX_RRM_TEST(ANDN) // for VEX GPR instructions that take the form op reg, r/m #define VEX_RM_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string out_name; \ std::string size; \ } regsets[] = { \ { 32, reg32names, "eax", "dword" }, \ { 64, reg64names, "rax", "qword" }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, r.reg, R(RAX)); \ emitter->Name(regset.bits, RAX, R(r.reg)); \ emitter->Name(regset.bits, r.reg, MatR(R12)); \ ExpectDisassembly(#Name " " + r.name+ ", " + regset.out_name + " " \ #Name " " + regset.out_name + ", " + r.name + " " \ #Name " " + r.name + ", " + regset.size + " ptr ds:[r12] "); \ } \ } VEX_RM_TEST(BLSR) VEX_RM_TEST(BLSMSK) VEX_RM_TEST(BLSI) // for VEX GPR instructions that take the form op reg, r/m, imm #define VEX_RMI_TEST(Name) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string out_name; \ std::string size; \ } regsets[] = { \ { 32, reg32names, "eax", "dword" }, \ { 64, reg64names, "rax", "qword" }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(regset.bits, r.reg, R(RAX), 4); \ emitter->Name(regset.bits, RAX, R(r.reg), 4); \ emitter->Name(regset.bits, r.reg, MatR(R12), 4); \ ExpectDisassembly(#Name " " + r.name+ ", " + regset.out_name + ", 0x04 " \ #Name " " + regset.out_name + ", " + r.name + ", 0x04 " \ #Name " " + r.name + ", " + regset.size + " ptr ds:[r12], 0x04 "); \ } \ } VEX_RMI_TEST(RORX) // for AVX instructions that take the form op reg, reg, r/m #define AVX_RRM_TEST(Name, sizename) \ TEST_F(x64EmitterTest, Name) \ { \ struct { \ int bits; \ std::vector regs; \ std::string out_name; \ std::string size; \ } regsets[] = { \ { 64, xmmnames, "xmm0", sizename }, \ }; \ for (const auto& regset : regsets) \ for (const auto& r : regset.regs) \ { \ emitter->Name(r.reg, XMM0, R(XMM0)); \ emitter->Name(XMM0, XMM0, R(r.reg)); \ emitter->Name(XMM0, r.reg, MatR(R12)); \ ExpectDisassembly(#Name " " + r.name+ ", " + regset.out_name + ", " + regset.out_name + " " \ #Name " " + regset.out_name + ", " + regset.out_name + ", " + r.name + " " \ #Name " " + regset.out_name + ", " + r.name + ", " + regset.size + " ptr ds:[r12] "); \ } \ } AVX_RRM_TEST(VANDPS, "dqword") AVX_RRM_TEST(VANDPD, "dqword") AVX_RRM_TEST(VANDNPS, "dqword") AVX_RRM_TEST(VANDNPD, "dqword") AVX_RRM_TEST(VORPS, "dqword") AVX_RRM_TEST(VORPD, "dqword") AVX_RRM_TEST(VXORPS, "dqword") AVX_RRM_TEST(VXORPD, "dqword") AVX_RRM_TEST(VPAND, "dqword") AVX_RRM_TEST(VPANDN, "dqword") AVX_RRM_TEST(VPOR, "dqword") AVX_RRM_TEST(VPXOR, "dqword") #define FMA_TEST(Name, P, packed) \ AVX_RRM_TEST(Name ## 132 ## P ## S, packed ? "dqword" : "dword") \ AVX_RRM_TEST(Name ## 213 ## P ## S, packed ? "dqword" : "dword") \ AVX_RRM_TEST(Name ## 231 ## P ## S, packed ? "dqword" : "dword") \ AVX_RRM_TEST(Name ## 132 ## P ## D, packed ? "dqword" : "qword") \ AVX_RRM_TEST(Name ## 213 ## P ## D, packed ? "dqword" : "qword") \ AVX_RRM_TEST(Name ## 231 ## P ## D, packed ? "dqword" : "qword") FMA_TEST(VFMADD, P, true) FMA_TEST(VFMADD, S, false) FMA_TEST(VFMSUB, P, true) FMA_TEST(VFMSUB, S, false) FMA_TEST(VFNMADD, P, true) FMA_TEST(VFNMADD, S, false) FMA_TEST(VFNMSUB, P, true) FMA_TEST(VFNMSUB, S, false) FMA_TEST(VFMADDSUB, P, true) FMA_TEST(VFMSUBADD, P, true) } // namespace Gen