// Copyright (C) 2003-2008 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Common.h" #include "MathUtil.h" #include "Profiler.h" #include #include "Statistics.h" #include "VertexShaderGen.h" #include "VertexShaderManager.h" #include "BPMemory.h" #include "CPMemory.h" #include "XFMemory.h" #include "VideoCommon.h" // Temporary ugly declaration. namespace VertexManager { void Flush(); } static float GC_ALIGNED16(s_fMaterials[16]); float GC_ALIGNED16(g_fProjectionMatrix[16]); // track changes static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged; static int nMaterialsChanged; static int nTransformMatricesChanged[2]; // min,max static int nNormalMatricesChanged[2]; // min,max static int nPostTransformMatricesChanged[2]; // min,max static int nLightsChanged[2]; // min,max static Matrix33 s_viewRotationMatrix; static Matrix33 s_viewInvRotationMatrix; static float s_fViewTranslationVector[3]; static float s_fViewRotation[2]; void UpdateViewport(); void VertexShaderManager::Init() { nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1; nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1; nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1; nLightsChanged[0] = nLightsChanged[1] = -1; bTexMatricesChanged[0] = bTexMatricesChanged[1] = false; bPosNormalMatrixChanged = bProjectionChanged = bViewportChanged = false; nMaterialsChanged = 0; memset(&xfregs, 0, sizeof(xfregs)); memset(xfmem, 0, sizeof(xfmem)); ResetView(); } void VertexShaderManager::Shutdown() { } // ======================================================================================= // Syncs the shader constant buffers with xfmem // ---------------- void VertexShaderManager::SetConstants(bool proj_hax_1,bool Hack_hack1 ,float Hack_value1 ,bool Hack_hack2 ,float Hack_value2 ,bool freeLook) { //nTransformMatricesChanged[0] = 0; nTransformMatricesChanged[1] = 256; //nNormalMatricesChanged[0] = 0; nNormalMatricesChanged[1] = 96; //nPostTransformMatricesChanged[0] = 0; nPostTransformMatricesChanged[1] = 256; //nLightsChanged[0] = 0; nLightsChanged[1] = 0x80; //bPosNormalMatrixChanged = true; //bTexMatricesChanged[0] = bTexMatricesChanged[1] = true; //bProjectionChanged = true; // bPosNormalMatrixChanged = bTexMatricesChanged[0] = bTexMatricesChanged[1] = true; // nMaterialsChanged = 15; if (nTransformMatricesChanged[0] >= 0) { int startn = nTransformMatricesChanged[0]/4; int endn = (nTransformMatricesChanged[1]+3)/4; const float* pstart = (const float*)&xfmem[startn*4]; for(int i = startn; i < endn; ++i, pstart += 4) SetVSConstant4fv(C_TRANSFORMMATRICES+i, pstart); nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1; } if (nNormalMatricesChanged[0] >= 0) { int startn = nNormalMatricesChanged[0]/3; int endn = (nNormalMatricesChanged[1]+2)/3; const float* pnstart = (const float*)&xfmem[XFMEM_NORMALMATRICES+3*startn]; for(int i = startn; i < endn; ++i, pnstart += 3) SetVSConstant4fv(C_NORMALMATRICES+i, pnstart); nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1; } if (nPostTransformMatricesChanged[0] >= 0) { int startn = nPostTransformMatricesChanged[0]/4; int endn = (nPostTransformMatricesChanged[1]+3)/4; const float* pstart = (const float*)&xfmem[XFMEM_POSTMATRICES + startn*4]; for(int i = startn; i < endn; ++i, pstart += 4) SetVSConstant4fv(C_POSTTRANSFORMMATRICES + i, pstart); } if (nLightsChanged[0] >= 0) { // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats int istart = nLightsChanged[0] / 0x10; int iend = (nLightsChanged[1] + 15) / 0x10; const float* xfmemptr = (const float*)&xfmem[0x10*istart + XFMEM_LIGHTS]; for (int i = istart; i < iend; ++i) { u32 color = *(const u32*)(xfmemptr + 3); SetVSConstant4f(C_LIGHTS + 5*i, ((color >> 24) & 0xFF)/255.0f, ((color >> 16) & 0xFF)/255.0f, ((color >> 8) & 0xFF)/255.0f, ((color) & 0xFF)/255.0f); xfmemptr += 4; for (int j = 0; j < 4; ++j, xfmemptr += 3) { if (j == 1 && fabs(xfmemptr[0]) < 0.00001f && fabs(xfmemptr[1]) < 0.00001f && fabs(xfmemptr[2]) < 0.00001f) { // dist attenuation, make sure not equal to 0!!! SetVSConstant4f(C_LIGHTS+5*i+j+1, 0.00001f, xfmemptr[1], xfmemptr[2], 0); } else SetVSConstant4fv(C_LIGHTS+5*i+j+1, xfmemptr); } } nLightsChanged[0] = nLightsChanged[1] = -1; } if (nMaterialsChanged) { for (int i = 0; i < 4; ++i) { if (nMaterialsChanged & (1 << i)) SetVSConstant4fv(C_MATERIALS + i, &s_fMaterials[4*i]); } nMaterialsChanged = 0; } if (bPosNormalMatrixChanged) { bPosNormalMatrixChanged = false; float* pos = (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4; float* norm = (float*)xfmem + XFMEM_NORMALMATRICES + 3 * (MatrixIndexA.PosNormalMtxIdx & 31); SetVSConstant4fv(C_POSNORMALMATRIX, pos); SetVSConstant4fv(C_POSNORMALMATRIX+1, pos+4); SetVSConstant4fv(C_POSNORMALMATRIX+2, pos+8); SetVSConstant4fv(C_POSNORMALMATRIX+3, norm); SetVSConstant4fv(C_POSNORMALMATRIX+4, norm+3); SetVSConstant4fv(C_POSNORMALMATRIX+5, norm+6); } if (bTexMatricesChanged[0]) { bTexMatricesChanged[0] = false; float* fptrs[] = { (float*)xfmem + MatrixIndexA.Tex0MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex1MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex2MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex3MtxIdx * 4 }; for (int i = 0; i < 4; ++i) { SetVSConstant4fv(C_TEXMATRICES+3*i, fptrs[i]); SetVSConstant4fv(C_TEXMATRICES+3*i+1, fptrs[i]+4); SetVSConstant4fv(C_TEXMATRICES+3*i+2, fptrs[i]+8); } } if (bTexMatricesChanged[1]) { bTexMatricesChanged[1] = false; float* fptrs[] = {(float*)xfmem + MatrixIndexB.Tex4MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex5MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex6MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex7MtxIdx * 4 }; for (int i = 0; i < 4; ++i) { SetVSConstant4fv(C_TEXMATRICES+3*i+12, fptrs[i]); SetVSConstant4fv(C_TEXMATRICES+3*i+12+1, fptrs[i]+4); SetVSConstant4fv(C_TEXMATRICES+3*i+12+2, fptrs[i]+8); } } if (bViewportChanged) { bViewportChanged = false; // This is so implementation-dependent that we can't have it here. UpdateViewport(); } if (bProjectionChanged) { bProjectionChanged = false; if (xfregs.rawProjection[6] == 0) { // Perspective g_fProjectionMatrix[0] = xfregs.rawProjection[0]; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = xfregs.rawProjection[1]; g_fProjectionMatrix[3] = 0.0f; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = xfregs.rawProjection[2]; g_fProjectionMatrix[6] = xfregs.rawProjection[3]; g_fProjectionMatrix[7] = 0.0f; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; g_fProjectionMatrix[10] = xfregs.rawProjection[4]; g_fProjectionMatrix[11] = xfregs.rawProjection[5]; g_fProjectionMatrix[12] = 0.0f; g_fProjectionMatrix[13] = 0.0f; // donkopunchstania: GC GPU rounds differently? // -(1 + epsilon) so objects are clipped as they are on the real HW g_fProjectionMatrix[14] = -1.00000011921f; g_fProjectionMatrix[15] = 0.0f; SETSTAT_FT(stats.gproj_0, g_fProjectionMatrix[0]); SETSTAT_FT(stats.gproj_1, g_fProjectionMatrix[1]); SETSTAT_FT(stats.gproj_2, g_fProjectionMatrix[2]); SETSTAT_FT(stats.gproj_3, g_fProjectionMatrix[3]); SETSTAT_FT(stats.gproj_4, g_fProjectionMatrix[4]); SETSTAT_FT(stats.gproj_5, g_fProjectionMatrix[5]); SETSTAT_FT(stats.gproj_6, g_fProjectionMatrix[6]); SETSTAT_FT(stats.gproj_7, g_fProjectionMatrix[7]); SETSTAT_FT(stats.gproj_8, g_fProjectionMatrix[8]); SETSTAT_FT(stats.gproj_9, g_fProjectionMatrix[9]); SETSTAT_FT(stats.gproj_10, g_fProjectionMatrix[10]); SETSTAT_FT(stats.gproj_11, g_fProjectionMatrix[11]); SETSTAT_FT(stats.gproj_12, g_fProjectionMatrix[12]); SETSTAT_FT(stats.gproj_13, g_fProjectionMatrix[13]); SETSTAT_FT(stats.gproj_14, g_fProjectionMatrix[14]); SETSTAT_FT(stats.gproj_15, g_fProjectionMatrix[15]); } else { // Orthographic Projection g_fProjectionMatrix[0] = xfregs.rawProjection[0]; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = 0.0f; g_fProjectionMatrix[3] = xfregs.rawProjection[1]; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = xfregs.rawProjection[2]; g_fProjectionMatrix[6] = 0.0f; g_fProjectionMatrix[7] = xfregs.rawProjection[3]; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; g_fProjectionMatrix[10] = (Hack_hack1 ? -(Hack_value1 + xfregs.rawProjection[4]) : xfregs.rawProjection[4]); g_fProjectionMatrix[11] = (Hack_hack2 ? -(Hack_value2 + xfregs.rawProjection[5]) : xfregs.rawProjection[5]) + (proj_hax_1 ? 0.1f : 0.0f); g_fProjectionMatrix[12] = 0.0f; g_fProjectionMatrix[13] = 0.0f; g_fProjectionMatrix[14] = 0.0f; g_fProjectionMatrix[15] = 1.0f; SETSTAT_FT(stats.g2proj_0, g_fProjectionMatrix[0]); SETSTAT_FT(stats.g2proj_1, g_fProjectionMatrix[1]); SETSTAT_FT(stats.g2proj_2, g_fProjectionMatrix[2]); SETSTAT_FT(stats.g2proj_3, g_fProjectionMatrix[3]); SETSTAT_FT(stats.g2proj_4, g_fProjectionMatrix[4]); SETSTAT_FT(stats.g2proj_5, g_fProjectionMatrix[5]); SETSTAT_FT(stats.g2proj_6, g_fProjectionMatrix[6]); SETSTAT_FT(stats.g2proj_7, g_fProjectionMatrix[7]); SETSTAT_FT(stats.g2proj_8, g_fProjectionMatrix[8]); SETSTAT_FT(stats.g2proj_9, g_fProjectionMatrix[9]); SETSTAT_FT(stats.g2proj_10, g_fProjectionMatrix[10]); SETSTAT_FT(stats.g2proj_11, g_fProjectionMatrix[11]); SETSTAT_FT(stats.g2proj_12, g_fProjectionMatrix[12]); SETSTAT_FT(stats.g2proj_13, g_fProjectionMatrix[13]); SETSTAT_FT(stats.g2proj_14, g_fProjectionMatrix[14]); SETSTAT_FT(stats.g2proj_15, g_fProjectionMatrix[15]); SETSTAT_FT(stats.proj_0, xfregs.rawProjection[0]); SETSTAT_FT(stats.proj_1, xfregs.rawProjection[1]); SETSTAT_FT(stats.proj_2, xfregs.rawProjection[2]); SETSTAT_FT(stats.proj_3, xfregs.rawProjection[3]); SETSTAT_FT(stats.proj_4, xfregs.rawProjection[4]); SETSTAT_FT(stats.proj_5, xfregs.rawProjection[5]); SETSTAT_FT(stats.proj_6, xfregs.rawProjection[6]); } PRIM_LOG("Projection: %f %f %f %f %f %f\n", xfregs.rawProjection[0], xfregs.rawProjection[1], xfregs.rawProjection[2], xfregs.rawProjection[3], xfregs.rawProjection[4], xfregs.rawProjection[5]); if (freeLook) { Matrix44 mtxA; Matrix44 mtxB; Matrix44 viewMtx; Matrix44::Translate(mtxA, s_fViewTranslationVector); Matrix44::LoadMatrix33(mtxB, s_viewRotationMatrix); Matrix44::Multiply(mtxB, mtxA, viewMtx); // view = rotation x translation Matrix44::Set(mtxB, g_fProjectionMatrix); Matrix44::Multiply(mtxB, viewMtx, mtxA); // mtxA = projection x view SetVSConstant4fv(C_PROJECTION, &mtxA.data[0]); SetVSConstant4fv(C_PROJECTION+1, &mtxA.data[4]); SetVSConstant4fv(C_PROJECTION+2, &mtxA.data[8]); SetVSConstant4fv(C_PROJECTION+3, &mtxA.data[12]); } else { SetVSConstant4fv(C_PROJECTION, &g_fProjectionMatrix[0]); SetVSConstant4fv(C_PROJECTION+1, &g_fProjectionMatrix[4]); SetVSConstant4fv(C_PROJECTION+2, &g_fProjectionMatrix[8]); SetVSConstant4fv(C_PROJECTION+3, &g_fProjectionMatrix[12]); } } } void VertexShaderManager::InvalidateXFRange(int start, int end) { if (((u32)start >= (u32)MatrixIndexA.PosNormalMtxIdx*4 && (u32)start < (u32)MatrixIndexA.PosNormalMtxIdx*4 + 12) || ((u32)start >= XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31)*3 && (u32)start < XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31)*3 + 9)) { bPosNormalMatrixChanged = true; } if (((u32)start >= (u32)MatrixIndexA.Tex0MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex0MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexA.Tex1MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex1MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexA.Tex2MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex2MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexA.Tex3MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex3MtxIdx*4+12)) { bTexMatricesChanged[0] = true; } if (((u32)start >= (u32)MatrixIndexB.Tex4MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex4MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexB.Tex5MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex5MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexB.Tex6MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex6MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexB.Tex7MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex7MtxIdx*4+12)) { bTexMatricesChanged[1] = true; } if (start < XFMEM_POSMATRICES_END) { if (nTransformMatricesChanged[0] == -1) { nTransformMatricesChanged[0] = start; nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } else { if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start; if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } } if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES) { int _start = start < XFMEM_NORMALMATRICES ? 0 : start-XFMEM_NORMALMATRICES; int _end = end < XFMEM_NORMALMATRICES_END ? end-XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END-XFMEM_NORMALMATRICES; if (nNormalMatricesChanged[0] == -1 ) { nNormalMatricesChanged[0] = _start; nNormalMatricesChanged[1] = _end; } else { if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start; if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end; } } if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES) { int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start-XFMEM_POSTMATRICES; int _end = end < XFMEM_POSTMATRICES_END ? end-XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END-XFMEM_POSTMATRICES; if (nPostTransformMatricesChanged[0] == -1 ) { nPostTransformMatricesChanged[0] = _start; nPostTransformMatricesChanged[1] = _end; } else { if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start; if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end; } } if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS) { int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS; int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS; if (nLightsChanged[0] == -1 ) { nLightsChanged[0] = _start; nLightsChanged[1] = _end; } else { if (nLightsChanged[0] > _start) nLightsChanged[0] = _start; if (nLightsChanged[1] < _end) nLightsChanged[1] = _end; } } } void VertexShaderManager::SetTexMatrixChangedA(u32 Value) { if (MatrixIndexA.Hex != Value) { VertexManager::Flush(); if (MatrixIndexA.PosNormalMtxIdx != (Value&0x3f)) bPosNormalMatrixChanged = true; bTexMatricesChanged[0] = true; MatrixIndexA.Hex = Value; } } void VertexShaderManager::SetTexMatrixChangedB(u32 Value) { if (MatrixIndexB.Hex != Value) { VertexManager::Flush(); bTexMatricesChanged[1] = true; MatrixIndexB.Hex = Value; } } void VertexShaderManager::SetViewport(float* _Viewport) { // Workaround for paper mario, yep this is bizarre. for (size_t i = 0; i < ARRAYSIZE(xfregs.rawViewport); ++i) { if (*(u32*)(_Viewport + i) == 0x7f800000) // invalid fp number return; } memcpy(xfregs.rawViewport, _Viewport, sizeof(xfregs.rawViewport)); bViewportChanged = true; } void VertexShaderManager::SetViewportChanged() { bViewportChanged = true; } void VertexShaderManager::SetProjection(float* _pProjection, int constantIndex) { memcpy(xfregs.rawProjection, _pProjection, sizeof(xfregs.rawProjection)); bProjectionChanged = true; } void VertexShaderManager::SetMaterialColor(int index, u32 data) { int ind = index * 4; nMaterialsChanged |= (1 << index); s_fMaterials[ind++] = ((data>>24)&0xFF)/255.0f; s_fMaterials[ind++] = ((data>>16)&0xFF)/255.0f; s_fMaterials[ind++] = ((data>>8)&0xFF)/255.0f; s_fMaterials[ind] = ((data)&0xFF)/255.0f; } void VertexShaderManager::TranslateView(float x, float y) { float result[3]; float vector[3] = { x,0,y }; Matrix33::Multiply(s_viewInvRotationMatrix, vector, result); for(int i = 0; i < 3; i++) { s_fViewTranslationVector[i] += result[i]; } bProjectionChanged = true; } void VertexShaderManager::RotateView(float x, float y) { s_fViewRotation[0] += x; s_fViewRotation[1] += y; Matrix33 mx; Matrix33 my; Matrix33::RotateX(mx, s_fViewRotation[1]); Matrix33::RotateY(my, s_fViewRotation[0]); Matrix33::Multiply(mx, my, s_viewRotationMatrix); // reverse rotation Matrix33::RotateX(mx, -s_fViewRotation[1]); Matrix33::RotateY(my, -s_fViewRotation[0]); Matrix33::Multiply(my, mx, s_viewInvRotationMatrix); bProjectionChanged = true; } void VertexShaderManager::ResetView() { memset(s_fViewTranslationVector, 0, sizeof(s_fViewTranslationVector)); Matrix33::LoadIdentity(s_viewRotationMatrix); Matrix33::LoadIdentity(s_viewInvRotationMatrix); s_fViewRotation[0] = s_fViewRotation[1] = 0.0f; bProjectionChanged = true; }