// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #pragma once #include #include #include #include #include #include #include "Common/BitUtils.h" #include "Common/Common.h" #include "Common/IniFile.h" #include "Common/MathUtil.h" #include "InputCommon/ControlReference/ExpressionParser.h" #include "InputCommon/ControllerInterface/Device.h" class ControllerInterface; const char* const named_directions[] = {_trans("Up"), _trans("Down"), _trans("Left"), _trans("Right")}; class ControlReference; namespace ControllerEmu { class ControlGroup; // Represents calibration data found on Wii Remotes + extensions with a zero and a max value. // (e.g. accelerometer data) // Bits of precision specified to handle common situation of differing precision in the actual data. template struct TwoPointCalibration { TwoPointCalibration() = default; TwoPointCalibration(const T& zero_, const T& max_) : zero{zero_}, max{max_} {} // Sanity check is that max and zero are not equal. constexpr bool IsSane() const { if constexpr (std::is_arithmetic_v) { return max != zero; } else { return std::equal(std::begin(max.data), std::end(max.data), std::begin(zero.data), std::not_equal_to<>()); } } static constexpr size_t BITS_OF_PRECISION = Bits; T zero; T max; }; // Represents calibration data with a min, zero, and max value. (e.g. joystick data) template struct ThreePointCalibration { ThreePointCalibration() = default; ThreePointCalibration(const T& min_, const T& zero_, const T& max_) : min{min_}, zero{zero_}, max{max_} { } // Sanity check is that min and max are on opposite sides of the zero value. constexpr bool IsSane() const { if constexpr (std::is_arithmetic_v) { return MathUtil::Sign(zero - min) * MathUtil::Sign(zero - max) == -1; } else { for (size_t i = 0; i != std::size(zero.data); ++i) { if (MathUtil::Sign(zero.data[i] - min.data[i]) * MathUtil::Sign(zero.data[i] - max.data[i]) != -1) { return false; } } return true; } } static constexpr size_t BITS_OF_PRECISION = Bits; T min; T zero; T max; }; // Represents a raw/uncalibrated N-dimensional value of input data. (e.g. Joystick X and Y) // A normalized value can be calculated with a provided {Two,Three}PointCalibration. // Values are adjusted with mismatched bits of precision. // Underlying type may be an unsigned type or a a Common::TVecN<> of an unsigned type. template struct RawValue { RawValue() = default; explicit RawValue(const T& value_) : value{value_} {} static constexpr size_t BITS_OF_PRECISION = Bits; T value; template auto GetNormalizedValue(const TwoPointCalibration& calibration) const { const auto value_expansion = std::max(0, int(calibration.BITS_OF_PRECISION) - int(BITS_OF_PRECISION)); const auto calibration_expansion = std::max(0, int(BITS_OF_PRECISION) - int(calibration.BITS_OF_PRECISION)); const auto calibration_zero = ExpandValue(calibration.zero, calibration_expansion) * 1.f; const auto calibration_max = ExpandValue(calibration.max, calibration_expansion) * 1.f; // Multiplication by 1.f to floatify either a scalar or a Vec. return (ExpandValue(value, value_expansion) * 1.f - calibration_zero) / (calibration_max - calibration_zero); } template auto GetNormalizedValue(const ThreePointCalibration& calibration) const { const auto value_expansion = std::max(0, int(calibration.BITS_OF_PRECISION) - int(BITS_OF_PRECISION)); const auto calibration_expansion = std::max(0, int(BITS_OF_PRECISION) - int(calibration.BITS_OF_PRECISION)); const auto calibration_min = ExpandValue(calibration.min, calibration_expansion) * 1.f; const auto calibration_zero = ExpandValue(calibration.zero, calibration_expansion) * 1.f; const auto calibration_max = ExpandValue(calibration.max, calibration_expansion) * 1.f; const auto use_max = calibration.zero < value; // Multiplication by 1.f to floatify either a scalar or a Vec. return (ExpandValue(value, value_expansion) * 1.f - calibration_zero) / (use_max * 1.f * (calibration_max - calibration_zero) + !use_max * 1.f * (calibration_zero - calibration_min)); } template static OtherT ExpandValue(OtherT value, size_t bits) { if constexpr (std::is_arithmetic_v) { return Common::ExpandValue(value, bits); } else { for (size_t i = 0; i != std::size(value.data); ++i) value.data[i] = Common::ExpandValue(value.data[i], bits); return value; } } }; class EmulatedController { public: virtual ~EmulatedController(); virtual std::string GetName() const = 0; virtual std::string GetDisplayName() const; virtual void LoadDefaults(const ControllerInterface& ciface); virtual void LoadConfig(IniFile::Section* sec, const std::string& base = ""); virtual void SaveConfig(IniFile::Section* sec, const std::string& base = ""); bool IsDefaultDeviceConnected() const; const ciface::Core::DeviceQualifier& GetDefaultDevice() const; void SetDefaultDevice(const std::string& device); void SetDefaultDevice(ciface::Core::DeviceQualifier devq); void UpdateReferences(const ControllerInterface& devi); void UpdateSingleControlReference(const ControllerInterface& devi, ControlReference* ref); // This returns a lock that should be held before calling State() on any control // references and GetState(), by extension. This prevents a race condition // which happens while handling a hotplug event because a control reference's State() // could be called before we have finished updating the reference. [[nodiscard]] static std::unique_lock GetStateLock(); std::vector> groups; // Maps a float from -1.0..+1.0 to an integer of the provided values. template static T MapFloat(F input_value, T zero_value, T neg_1_value = std::numeric_limits::min(), T pos_1_value = std::numeric_limits::max()) { static_assert(std::is_integral(), "T is only sane for int types."); static_assert(std::is_floating_point(), "F is only sane for float types."); static_assert(std::numeric_limits::min() <= std::numeric_limits::min() && std::numeric_limits::max() >= std::numeric_limits::max(), "long is not a superset of T. use of std::lround is not sane."); // Here we round when converting from float to int. // After applying our deadzone, resizing, and reshaping math // we sometimes have a near-zero value which is slightly negative. (e.g. -0.0001) // Casting would round down but rounding will yield our "zero_value". if (input_value > 0) return T(std::lround((pos_1_value - zero_value) * input_value + zero_value)); else return T(std::lround((zero_value - neg_1_value) * input_value + zero_value)); } protected: // TODO: Wiimote attachment has its own member that isn't being used.. ciface::ExpressionParser::ControlEnvironment::VariableContainer m_expression_vars; void UpdateReferences(ciface::ExpressionParser::ControlEnvironment& env); private: ciface::Core::DeviceQualifier m_default_device; bool m_default_device_is_connected{false}; }; } // namespace ControllerEmu