// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "DiscIO/VolumeWii.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Common/Swap.h" #include "DiscIO/Blob.h" #include "DiscIO/DiscExtractor.h" #include "DiscIO/Enums.h" #include "DiscIO/FileSystemGCWii.h" #include "DiscIO/Filesystem.h" #include "DiscIO/Volume.h" #include "DiscIO/WiiSaveBanner.h" namespace DiscIO { VolumeWii::VolumeWii(std::unique_ptr reader) : m_pReader(std::move(reader)), m_game_partition(PARTITION_NONE), m_last_decrypted_block(UINT64_MAX) { ASSERT(m_pReader); m_encrypted = m_pReader->ReadSwapped(0x60) == u32(0); for (u32 partition_group = 0; partition_group < 4; ++partition_group) { const std::optional number_of_partitions = m_pReader->ReadSwapped(0x40000 + (partition_group * 8)); if (!number_of_partitions) continue; const std::optional partition_table_offset = ReadSwappedAndShifted(0x40000 + (partition_group * 8) + 4, PARTITION_NONE); if (!partition_table_offset) continue; for (u32 i = 0; i < number_of_partitions; i++) { const std::optional partition_offset = ReadSwappedAndShifted(*partition_table_offset + (i * 8), PARTITION_NONE); if (!partition_offset) continue; const Partition partition(*partition_offset); const std::optional partition_type = m_pReader->ReadSwapped(*partition_table_offset + (i * 8) + 4); if (!partition_type) continue; // If this is the game partition, set m_game_partition if (m_game_partition == PARTITION_NONE && *partition_type == 0) m_game_partition = partition; auto get_ticket = [this, partition]() -> IOS::ES::TicketReader { std::vector ticket_buffer(sizeof(IOS::ES::Ticket)); if (!m_pReader->Read(partition.offset, ticket_buffer.size(), ticket_buffer.data())) return INVALID_TICKET; return IOS::ES::TicketReader{std::move(ticket_buffer)}; }; auto get_tmd = [this, partition]() -> IOS::ES::TMDReader { const std::optional tmd_size = m_pReader->ReadSwapped(partition.offset + 0x2a4); const std::optional tmd_address = ReadSwappedAndShifted(partition.offset + 0x2a8, PARTITION_NONE); if (!tmd_size || !tmd_address) return INVALID_TMD; if (!IOS::ES::IsValidTMDSize(*tmd_size)) { // This check is normally done by ES in ES_DiVerify, but that would happen too late // (after allocating the buffer), so we do the check here. PanicAlert("Invalid TMD size"); return INVALID_TMD; } std::vector tmd_buffer(*tmd_size); if (!m_pReader->Read(partition.offset + *tmd_address, *tmd_size, tmd_buffer.data())) return INVALID_TMD; return IOS::ES::TMDReader{std::move(tmd_buffer)}; }; auto get_key = [this, partition]() -> std::unique_ptr { const IOS::ES::TicketReader& ticket = *m_partitions[partition].ticket; if (!ticket.IsValid()) return nullptr; const std::array key = ticket.GetTitleKey(); std::unique_ptr aes_context = std::make_unique(); mbedtls_aes_setkey_dec(aes_context.get(), key.data(), 128); return aes_context; }; auto get_file_system = [this, partition]() -> std::unique_ptr { auto file_system = std::make_unique(this, partition); return file_system->IsValid() ? std::move(file_system) : nullptr; }; auto get_data_offset = [this, partition]() -> u64 { return ReadSwappedAndShifted(partition.offset + 0x2b8, PARTITION_NONE).value_or(0); }; m_partitions.emplace( partition, PartitionDetails{Common::Lazy>(get_key), Common::Lazy(get_ticket), Common::Lazy(get_tmd), Common::Lazy>(get_file_system), Common::Lazy(get_data_offset), *partition_type}); } } } VolumeWii::~VolumeWii() { } bool VolumeWii::Read(u64 _ReadOffset, u64 _Length, u8* _pBuffer, const Partition& partition) const { if (partition == PARTITION_NONE) return m_pReader->Read(_ReadOffset, _Length, _pBuffer); auto it = m_partitions.find(partition); if (it == m_partitions.end()) return false; const PartitionDetails& partition_details = it->second; if (!m_encrypted) { return m_pReader->Read(partition.offset + *partition_details.data_offset + _ReadOffset, _Length, _pBuffer); } if (m_pReader->SupportsReadWiiDecrypted()) return m_pReader->ReadWiiDecrypted(_ReadOffset, _Length, _pBuffer, partition.offset); mbedtls_aes_context* aes_context = partition_details.key->get(); if (!aes_context) return false; std::vector read_buffer(BLOCK_TOTAL_SIZE); while (_Length > 0) { // Calculate offsets u64 block_offset_on_disc = partition.offset + *partition_details.data_offset + _ReadOffset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE; u64 data_offset_in_block = _ReadOffset % BLOCK_DATA_SIZE; if (m_last_decrypted_block != block_offset_on_disc) { // Read the current block if (!m_pReader->Read(block_offset_on_disc, BLOCK_TOTAL_SIZE, read_buffer.data())) return false; // Decrypt the block's data. // 0x3D0 - 0x3DF in read_buffer will be overwritten, // but that won't affect anything, because we won't // use the content of read_buffer anymore after this mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, BLOCK_DATA_SIZE, &read_buffer[0x3D0], &read_buffer[BLOCK_HEADER_SIZE], m_last_decrypted_block_data); m_last_decrypted_block = block_offset_on_disc; // The only thing we currently use from the 0x000 - 0x3FF part // of the block is the IV (at 0x3D0), but it also contains SHA-1 // hashes that IOS uses to check that discs aren't tampered with. // http://wiibrew.org/wiki/Wii_Disc#Encrypted } // Copy the decrypted data u64 copy_size = std::min(_Length, BLOCK_DATA_SIZE - data_offset_in_block); memcpy(_pBuffer, &m_last_decrypted_block_data[data_offset_in_block], static_cast(copy_size)); // Update offsets _Length -= copy_size; _pBuffer += copy_size; _ReadOffset += copy_size; } return true; } bool VolumeWii::IsEncryptedAndHashed() const { return m_encrypted; } std::vector VolumeWii::GetPartitions() const { std::vector partitions; for (const auto& pair : m_partitions) partitions.push_back(pair.first); return partitions; } Partition VolumeWii::GetGamePartition() const { return m_game_partition; } std::optional VolumeWii::GetPartitionType(const Partition& partition) const { auto it = m_partitions.find(partition); return it != m_partitions.end() ? it->second.type : std::optional(); } std::optional VolumeWii::GetTitleID(const Partition& partition) const { const IOS::ES::TicketReader& ticket = GetTicket(partition); if (!ticket.IsValid()) return {}; return ticket.GetTitleId(); } const IOS::ES::TicketReader& VolumeWii::GetTicket(const Partition& partition) const { auto it = m_partitions.find(partition); return it != m_partitions.end() ? *it->second.ticket : INVALID_TICKET; } const IOS::ES::TMDReader& VolumeWii::GetTMD(const Partition& partition) const { auto it = m_partitions.find(partition); return it != m_partitions.end() ? *it->second.tmd : INVALID_TMD; } const FileSystem* VolumeWii::GetFileSystem(const Partition& partition) const { auto it = m_partitions.find(partition); return it != m_partitions.end() ? it->second.file_system->get() : nullptr; } u64 VolumeWii::EncryptedPartitionOffsetToRawOffset(u64 offset, const Partition& partition, u64 partition_data_offset) { if (partition == PARTITION_NONE) return offset; return partition.offset + partition_data_offset + (offset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE) + (offset % BLOCK_DATA_SIZE); } u64 VolumeWii::PartitionOffsetToRawOffset(u64 offset, const Partition& partition) const { auto it = m_partitions.find(partition); if (it == m_partitions.end()) return offset; const u64 data_offset = *it->second.data_offset; if (!m_encrypted) return partition.offset + data_offset + offset; return EncryptedPartitionOffsetToRawOffset(offset, partition, data_offset); } std::string VolumeWii::GetGameID(const Partition& partition) const { char ID[6]; if (!Read(0, 6, (u8*)ID, partition)) return std::string(); return DecodeString(ID); } Region VolumeWii::GetRegion() const { const std::optional region_code = m_pReader->ReadSwapped(0x4E000); if (!region_code) return Region::Unknown; const Region region = static_cast(*region_code); return region <= Region::NTSC_K ? region : Region::Unknown; } Country VolumeWii::GetCountry(const Partition& partition) const { // The 0 that we use as a default value is mapped to Country::Unknown and Region::Unknown u8 country_byte = ReadSwapped(3, partition).value_or(0); const Region region = GetRegion(); if (RegionSwitchWii(country_byte) != region) return TypicalCountryForRegion(region); return CountrySwitch(country_byte); } std::string VolumeWii::GetMakerID(const Partition& partition) const { char makerID[2]; if (!Read(0x4, 0x2, (u8*)&makerID, partition)) return std::string(); return DecodeString(makerID); } std::optional VolumeWii::GetRevision(const Partition& partition) const { std::optional revision = ReadSwapped(7, partition); return revision ? *revision : std::optional(); } std::string VolumeWii::GetInternalName(const Partition& partition) const { char name_buffer[0x60]; if (Read(0x20, 0x60, (u8*)&name_buffer, partition)) return DecodeString(name_buffer); return ""; } std::map VolumeWii::GetLongNames() const { std::vector names(NAMES_TOTAL_CHARS); names.resize(ReadFile(*this, GetGamePartition(), "opening.bnr", reinterpret_cast(names.data()), NAMES_TOTAL_BYTES, 0x5C)); return ReadWiiNames(names); } std::vector VolumeWii::GetBanner(u32* width, u32* height) const { *width = 0; *height = 0; const std::optional title_id = GetTitleID(GetGamePartition()); if (!title_id) return std::vector(); return WiiSaveBanner(*title_id).GetBanner(width, height); } std::string VolumeWii::GetApploaderDate(const Partition& partition) const { char date[16]; if (!Read(0x2440, 0x10, (u8*)&date, partition)) return std::string(); return DecodeString(date); } Platform VolumeWii::GetVolumeType() const { return Platform::WiiDisc; } std::optional VolumeWii::GetDiscNumber(const Partition& partition) const { return ReadSwapped(6, partition); } BlobType VolumeWii::GetBlobType() const { return m_pReader->GetBlobType(); } u64 VolumeWii::GetSize() const { return m_pReader->GetDataSize(); } u64 VolumeWii::GetRawSize() const { return m_pReader->GetRawSize(); } bool VolumeWii::CheckIntegrity(const Partition& partition) const { if (!m_encrypted) return false; // Get the decryption key for the partition auto it = m_partitions.find(partition); if (it == m_partitions.end()) return false; const PartitionDetails& partition_details = it->second; mbedtls_aes_context* aes_context = partition_details.key->get(); if (!aes_context) return false; // Get partition data size u32 partSizeDiv4; m_pReader->Read(partition.offset + 0x2BC, 4, (u8*)&partSizeDiv4); u64 partDataSize = (u64)Common::swap32(partSizeDiv4) * 4; u32 nClusters = (u32)(partDataSize / 0x8000); for (u32 clusterID = 0; clusterID < nClusters; ++clusterID) { u64 clusterOff = partition.offset + *partition_details.data_offset + (u64)clusterID * 0x8000; // Read and decrypt the cluster metadata u8 clusterMDCrypted[0x400]; u8 clusterMD[0x400]; u8 IV[16] = {0}; if (!m_pReader->Read(clusterOff, 0x400, clusterMDCrypted)) { WARN_LOG(DISCIO, "Integrity Check: fail at cluster %d: could not read metadata", clusterID); return false; } mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, 0x400, IV, clusterMDCrypted, clusterMD); // Some clusters have invalid data and metadata because they aren't // meant to be read by the game (for example, holes between files). To // try to avoid reporting errors because of these clusters, we check // the 0x00 paddings in the metadata. // // This may cause some false negatives though: some bad clusters may be // skipped because they are *too* bad and are not even recognized as // valid clusters. To be improved. bool meaningless = false; for (u32 idx = 0x26C; idx < 0x280; ++idx) if (clusterMD[idx] != 0) meaningless = true; if (meaningless) continue; u8 clusterData[0x7C00]; if (!Read((u64)clusterID * 0x7C00, 0x7C00, clusterData, partition)) { WARN_LOG(DISCIO, "Integrity Check: fail at cluster %d: could not read data", clusterID); return false; } for (u32 hashID = 0; hashID < 31; ++hashID) { u8 hash[20]; mbedtls_sha1(clusterData + hashID * 0x400, 0x400, hash); // Note that we do not use strncmp here if (memcmp(hash, clusterMD + hashID * 20, 20)) { WARN_LOG(DISCIO, "Integrity Check: fail at cluster %d: hash %d is invalid", clusterID, hashID); return false; } } } return true; } } // namespace