// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later // WARNING - THIS LIBRARY IS NOT THREAD SAFE!!! #pragma once #include #include #include #include #include #include "Common/Assert.h" #include "Common/BitSet.h" #include "Common/CodeBlock.h" #include "Common/CommonTypes.h" #include "Common/x64ABI.h" namespace Gen { enum CCFlags { CC_O = 0, CC_NO = 1, CC_B = 2, CC_C = 2, CC_NAE = 2, CC_NB = 3, CC_NC = 3, CC_AE = 3, CC_Z = 4, CC_E = 4, CC_NZ = 5, CC_NE = 5, CC_BE = 6, CC_NA = 6, CC_NBE = 7, CC_A = 7, CC_S = 8, CC_NS = 9, CC_P = 0xA, CC_PE = 0xA, CC_NP = 0xB, CC_PO = 0xB, CC_L = 0xC, CC_NGE = 0xC, CC_NL = 0xD, CC_GE = 0xD, CC_LE = 0xE, CC_NG = 0xE, CC_NLE = 0xF, CC_G = 0xF }; enum { NUMGPRs = 16, NUMXMMs = 16, }; enum { SCALE_NONE = 0, SCALE_1 = 1, SCALE_2 = 2, SCALE_4 = 4, SCALE_8 = 8, SCALE_ATREG = 16, // SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG SCALE_NOBASE_2 = 34, SCALE_NOBASE_4 = 36, SCALE_NOBASE_8 = 40, SCALE_RIP = 0xFF, SCALE_IMM8 = 0xF0, SCALE_IMM16 = 0xF1, SCALE_IMM32 = 0xF2, SCALE_IMM64 = 0xF3, }; enum SSECompare { CMP_EQ = 0, CMP_LT = 1, CMP_LE = 2, CMP_UNORD = 3, CMP_NEQ = 4, CMP_NLT = 5, CMP_NLE = 6, CMP_ORD = 7, }; class XEmitter; enum class FloatOp; enum class NormalOp; // Information about a generated MOV op struct MovInfo final { u8* address; bool nonAtomicSwapStore; // valid iff nonAtomicSwapStore is true X64Reg nonAtomicSwapStoreSrc; }; // RIP addressing does not benefit from micro op fusion on Core arch struct OpArg { // For accessing offset and operandReg. // This also allows us to keep the op writing functions private. friend class XEmitter; // dummy op arg, used for storage constexpr OpArg() = default; constexpr OpArg(u64 offset_, int scale_, X64Reg rm_reg = RAX, X64Reg scaled_reg = RAX) : scale{static_cast(scale_)}, offsetOrBaseReg{static_cast(rm_reg)}, indexReg{static_cast(scaled_reg)}, offset{offset_} { } constexpr bool operator==(const OpArg& b) const { return std::tie(scale, offsetOrBaseReg, indexReg, offset, operandReg) == std::tie(b.scale, b.offsetOrBaseReg, b.indexReg, b.offset, b.operandReg); } constexpr bool operator!=(const OpArg& b) const { return !operator==(b); } u64 Imm64() const { DEBUG_ASSERT(scale == SCALE_IMM64); return (u64)offset; } u32 Imm32() const { DEBUG_ASSERT(scale == SCALE_IMM32); return (u32)offset; } u16 Imm16() const { DEBUG_ASSERT(scale == SCALE_IMM16); return (u16)offset; } u8 Imm8() const { DEBUG_ASSERT(scale == SCALE_IMM8); return (u8)offset; } s64 SImm64() const { DEBUG_ASSERT(scale == SCALE_IMM64); return (s64)offset; } s32 SImm32() const { DEBUG_ASSERT(scale == SCALE_IMM32); return (s32)offset; } s16 SImm16() const { DEBUG_ASSERT(scale == SCALE_IMM16); return (s16)offset; } s8 SImm8() const { DEBUG_ASSERT(scale == SCALE_IMM8); return (s8)offset; } OpArg AsImm64() const { DEBUG_ASSERT(IsImm()); return OpArg((u64)offset, SCALE_IMM64); } OpArg AsImm32() const { DEBUG_ASSERT(IsImm()); return OpArg((u32)offset, SCALE_IMM32); } OpArg AsImm16() const { DEBUG_ASSERT(IsImm()); return OpArg((u16)offset, SCALE_IMM16); } OpArg AsImm8() const { DEBUG_ASSERT(IsImm()); return OpArg((u8)offset, SCALE_IMM8); } constexpr bool IsImm() const { return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64; } constexpr bool IsSimpleReg() const { return scale == SCALE_NONE; } constexpr bool IsSimpleReg(X64Reg reg) const { return IsSimpleReg() && GetSimpleReg() == reg; } constexpr bool IsZero() const { return IsImm() && offset == 0; } constexpr int GetImmBits() const { switch (scale) { case SCALE_IMM8: return 8; case SCALE_IMM16: return 16; case SCALE_IMM32: return 32; case SCALE_IMM64: return 64; default: return -1; } } constexpr X64Reg GetSimpleReg() const { if (scale == SCALE_NONE) return static_cast(offsetOrBaseReg); return INVALID_REG; } void AddMemOffset(int val) { DEBUG_ASSERT_MSG(DYNA_REC, scale == SCALE_RIP || (scale <= SCALE_ATREG && scale > SCALE_NONE), "Tried to increment an OpArg which doesn't have an offset"); offset += val; } private: void WriteREX(XEmitter* emit, int opBits, int bits, int customOp = -1) const; void WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const; void WriteRest(XEmitter* emit, int extraBytes = 0, X64Reg operandReg = INVALID_REG, bool warn_64bit_offset = true) const; void WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg operandReg, int bits); void WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const; u8 scale = 0; u16 offsetOrBaseReg = 0; u16 indexReg = 0; u64 offset = 0; // Also used to store immediates. u16 operandReg = 0; }; template inline OpArg M(const T* ptr) { return OpArg((u64)(const void*)ptr, (int)SCALE_RIP); } constexpr OpArg R(X64Reg value) { return OpArg(0, SCALE_NONE, value); } constexpr OpArg MatR(X64Reg value) { return OpArg(0, SCALE_ATREG, value); } constexpr OpArg MDisp(X64Reg value, int offset) { return OpArg(static_cast(offset), SCALE_ATREG, value); } constexpr OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset) { return OpArg(offset, scale, base, scaled); } constexpr OpArg MScaled(X64Reg scaled, int scale, int offset) { if (scale == SCALE_1) return OpArg(offset, SCALE_ATREG, scaled); return OpArg(offset, scale | 0x20, RAX, scaled); } constexpr OpArg MRegSum(X64Reg base, X64Reg offset) { return MComplex(base, offset, 1, 0); } constexpr OpArg Imm8(u8 imm) { return OpArg(imm, SCALE_IMM8); } constexpr OpArg Imm16(u16 imm) { return OpArg(imm, SCALE_IMM16); } // rarely used constexpr OpArg Imm32(u32 imm) { return OpArg(imm, SCALE_IMM32); } constexpr OpArg Imm64(u64 imm) { return OpArg(imm, SCALE_IMM64); } inline OpArg ImmPtr(const void* imm) { return Imm64(reinterpret_cast(imm)); } inline u32 PtrOffset(const void* ptr, const void* base = nullptr) { s64 distance = (s64)ptr - (s64)base; if (distance >= 0x80000000LL || distance < -0x80000000LL) { ASSERT_MSG(DYNA_REC, 0, "pointer offset out of range"); return 0; } return (u32)distance; } struct FixupBranch { enum class Type { Branch8Bit, Branch32Bit }; u8* ptr; Type type; }; class XEmitter { friend struct OpArg; // for Write8 etc private: // Pointer to memory where code will be emitted to. u8* code = nullptr; // Pointer past the end of the memory region we're allowed to emit to. // Writes that would reach this memory are refused and will set the m_write_failed flag instead. u8* m_code_end = nullptr; bool flags_locked = false; // Set to true when a write request happens that would write past m_code_end. // Must be cleared with SetCodePtr() afterwards. bool m_write_failed = false; void CheckFlags(); void Rex(int w, int r, int x, int b); void WriteModRM(int mod, int reg, int rm); void WriteSIB(int scale, int index, int base); void WriteSimple1Byte(int bits, u8 byte, X64Reg reg); void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg); void WriteMulDivType(int bits, OpArg src, int ext); void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false); void WriteShift(int bits, OpArg dest, const OpArg& shift, int ext); void WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext); void WriteMXCSR(OpArg arg, int ext); void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0); void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0); void WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0, int extrabytes = 0); void WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3, int W = 0); void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0, int extrabytes = 0); void WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3, int W = 0); void WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0); void WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0); void WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0); void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0); void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0); void WriteMOVBE(int bits, u8 op, X64Reg regOp, const OpArg& arg); void WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2); void ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp); protected: void Write8(u8 value); void Write16(u16 value); void Write32(u32 value); void Write64(u64 value); public: XEmitter() = default; explicit XEmitter(u8* code_ptr, u8* code_end) : code(code_ptr), m_code_end(code_end) {} virtual ~XEmitter() = default; void SetCodePtr(u8* ptr, u8* end, bool write_failed = false); void ReserveCodeSpace(int bytes); u8* AlignCodeTo(size_t alignment); u8* AlignCode4(); u8* AlignCode16(); u8* AlignCodePage(); const u8* GetCodePtr() const; u8* GetWritableCodePtr(); const u8* GetCodeEnd() const; u8* GetWritableCodeEnd(); void LockFlags() { flags_locked = true; } void UnlockFlags() { flags_locked = false; } // Should be checked after a block of code has been generated to see if the code has been // successfully written to memory. Do not call the generated code when this returns true! bool HasWriteFailed() const { return m_write_failed; } // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other // string instr., // INC and DEC are slow on Intel Core, but not on AMD. They create a // false flag dependency because they only update a subset of the flags. // XCHG is SLOW and should be avoided. // Debug breakpoint void INT3(); // Do nothing void NOP(size_t count = 1); // Save energy in wait-loops on P4 only. Probably not too useful. void PAUSE(); // Flag control void STC(); void CLC(); void CMC(); // These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and // AMD! void LAHF(); // 3 cycle vector path void SAHF(); // direct path fast // Stack control void PUSH(X64Reg reg); void POP(X64Reg reg); void PUSH(int bits, const OpArg& reg); void POP(int bits, const OpArg& reg); void PUSHF(); void POPF(); // Flow control void RET(); void RET_FAST(); void UD2(); FixupBranch J(bool force5bytes = false); void JMP(const u8* addr, bool force5Bytes = false); void JMPptr(const OpArg& arg); void JMPself(); // infinite loop! #ifdef CALL #undef CALL #endif void CALL(const void* fnptr); FixupBranch CALL(); void CALLptr(OpArg arg); FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false); void J_CC(CCFlags conditionCode, const u8* addr); void SetJumpTarget(const FixupBranch& branch); void SETcc(CCFlags flag, OpArg dest); // Note: CMOV brings small if any benefit on current CPUs. void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag); // Fences void LFENCE(); void MFENCE(); void SFENCE(); // Bit scan void BSF(int bits, X64Reg dest, const OpArg& src); // Bottom bit to top bit void BSR(int bits, X64Reg dest, const OpArg& src); // Top bit to bottom bit // Cache control enum PrefetchLevel { PF_NTA, // Non-temporal (data used once and only once) PF_T0, // All cache levels PF_T1, // Levels 2+ (aliased to T0 on AMD) PF_T2, // Levels 3+ (aliased to T0 on AMD) }; void PREFETCH(PrefetchLevel level, OpArg arg); void MOVNTI(int bits, const OpArg& dest, X64Reg src); void MOVNTDQ(const OpArg& arg, X64Reg regOp); void MOVNTPS(const OpArg& arg, X64Reg regOp); void MOVNTPD(const OpArg& arg, X64Reg regOp); // Multiplication / division void MUL(int bits, const OpArg& src); // UNSIGNED void IMUL(int bits, const OpArg& src); // SIGNED void IMUL(int bits, X64Reg regOp, const OpArg& src); void IMUL(int bits, X64Reg regOp, const OpArg& src, const OpArg& imm); void DIV(int bits, const OpArg& src); void IDIV(int bits, const OpArg& src); // Shift void ROL(int bits, const OpArg& dest, const OpArg& shift); void ROR(int bits, const OpArg& dest, const OpArg& shift); void RCL(int bits, const OpArg& dest, const OpArg& shift); void RCR(int bits, const OpArg& dest, const OpArg& shift); void SHL(int bits, const OpArg& dest, const OpArg& shift); void SHR(int bits, const OpArg& dest, const OpArg& shift); void SAR(int bits, const OpArg& dest, const OpArg& shift); // Bit Test void BT(int bits, const OpArg& dest, const OpArg& index); void BTS(int bits, const OpArg& dest, const OpArg& index); void BTR(int bits, const OpArg& dest, const OpArg& index); void BTC(int bits, const OpArg& dest, const OpArg& index); // Double-Precision Shift void SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift); void SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift); // Extend EAX into EDX in various ways void CWD(int bits = 16); inline void CDQ() { CWD(32); } inline void CQO() { CWD(64); } void CBW(int bits = 8); inline void CWDE() { CBW(16); } inline void CDQE() { CBW(32); } // Load effective address void LEA(int bits, X64Reg dest, OpArg src); // Integer arithmetic void NEG(int bits, const OpArg& src); void ADD(int bits, const OpArg& a1, const OpArg& a2); void ADC(int bits, const OpArg& a1, const OpArg& a2); void SUB(int bits, const OpArg& a1, const OpArg& a2); void SBB(int bits, const OpArg& a1, const OpArg& a2); void AND(int bits, const OpArg& a1, const OpArg& a2); void CMP(int bits, const OpArg& a1, const OpArg& a2); // Bit operations void NOT(int bits, const OpArg& src); void OR(int bits, const OpArg& a1, const OpArg& a2); void XOR(int bits, const OpArg& a1, const OpArg& a2); void MOV(int bits, const OpArg& a1, const OpArg& a2); void TEST(int bits, const OpArg& a1, const OpArg& a2); void CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2); void MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2); // Are these useful at all? Consider removing. void XCHG(int bits, const OpArg& a1, const OpArg& a2); void XCHG_AHAL(); // Byte swapping (32 and 64-bit only). void BSWAP(int bits, X64Reg reg); // Sign/zero extension void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); // automatically uses MOVSXD if necessary void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src); // Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE. void MOVBE(int bits, X64Reg dest, const OpArg& src); void MOVBE(int bits, const OpArg& dest, X64Reg src); void LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend = false, MovInfo* info = nullptr); void SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info = nullptr); // Available only on AMD >= Phenom or Intel >= Haswell void LZCNT(int bits, X64Reg dest, const OpArg& src); // Note: this one is actually part of BMI1 void TZCNT(int bits, X64Reg dest, const OpArg& src); // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64) void STMXCSR(const OpArg& memloc); void LDMXCSR(const OpArg& memloc); // Prefixes void LOCK(); void REP(); void REPNE(); void FSOverride(); void GSOverride(); // SSE/SSE2: Floating point arithmetic void ADDSS(X64Reg regOp, const OpArg& arg); void ADDSD(X64Reg regOp, const OpArg& arg); void SUBSS(X64Reg regOp, const OpArg& arg); void SUBSD(X64Reg regOp, const OpArg& arg); void MULSS(X64Reg regOp, const OpArg& arg); void MULSD(X64Reg regOp, const OpArg& arg); void DIVSS(X64Reg regOp, const OpArg& arg); void DIVSD(X64Reg regOp, const OpArg& arg); void MINSS(X64Reg regOp, const OpArg& arg); void MINSD(X64Reg regOp, const OpArg& arg); void MAXSS(X64Reg regOp, const OpArg& arg); void MAXSD(X64Reg regOp, const OpArg& arg); void SQRTSS(X64Reg regOp, const OpArg& arg); void SQRTSD(X64Reg regOp, const OpArg& arg); void RCPSS(X64Reg regOp, const OpArg& arg); void RSQRTSS(X64Reg regOp, const OpArg& arg); // SSE/SSE2: Floating point bitwise (yes) void CMPSS(X64Reg regOp, const OpArg& arg, u8 compare); void CMPSD(X64Reg regOp, const OpArg& arg, u8 compare); // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double) void ADDPS(X64Reg regOp, const OpArg& arg); void ADDPD(X64Reg regOp, const OpArg& arg); void SUBPS(X64Reg regOp, const OpArg& arg); void SUBPD(X64Reg regOp, const OpArg& arg); void CMPPS(X64Reg regOp, const OpArg& arg, u8 compare); void CMPPD(X64Reg regOp, const OpArg& arg, u8 compare); void MULPS(X64Reg regOp, const OpArg& arg); void MULPD(X64Reg regOp, const OpArg& arg); void DIVPS(X64Reg regOp, const OpArg& arg); void DIVPD(X64Reg regOp, const OpArg& arg); void MINPS(X64Reg regOp, const OpArg& arg); void MINPD(X64Reg regOp, const OpArg& arg); void MAXPS(X64Reg regOp, const OpArg& arg); void MAXPD(X64Reg regOp, const OpArg& arg); void SQRTPS(X64Reg regOp, const OpArg& arg); void SQRTPD(X64Reg regOp, const OpArg& arg); void RCPPS(X64Reg regOp, const OpArg& arg); void RSQRTPS(X64Reg regOp, const OpArg& arg); // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double) void ANDPS(X64Reg regOp, const OpArg& arg); void ANDPD(X64Reg regOp, const OpArg& arg); void ANDNPS(X64Reg regOp, const OpArg& arg); void ANDNPD(X64Reg regOp, const OpArg& arg); void ORPS(X64Reg regOp, const OpArg& arg); void ORPD(X64Reg regOp, const OpArg& arg); void XORPS(X64Reg regOp, const OpArg& arg); void XORPD(X64Reg regOp, const OpArg& arg); // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation. void SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle); void SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle); // SSE3 void MOVSLDUP(X64Reg regOp, const OpArg& arg); void MOVSHDUP(X64Reg regOp, const OpArg& arg); void MOVDDUP(X64Reg regOp, const OpArg& arg); // SSE/SSE2: Useful alternative to shuffle in some cases. void UNPCKLPS(X64Reg dest, const OpArg& src); void UNPCKHPS(X64Reg dest, const OpArg& src); void UNPCKLPD(X64Reg dest, const OpArg& src); void UNPCKHPD(X64Reg dest, const OpArg& src); // SSE/SSE2: Compares. void COMISS(X64Reg regOp, const OpArg& arg); void COMISD(X64Reg regOp, const OpArg& arg); void UCOMISS(X64Reg regOp, const OpArg& arg); void UCOMISD(X64Reg regOp, const OpArg& arg); // SSE/SSE2: Moves. Use the right data type for your data, in most cases. void MOVAPS(X64Reg regOp, const OpArg& arg); void MOVAPD(X64Reg regOp, const OpArg& arg); void MOVAPS(const OpArg& arg, X64Reg regOp); void MOVAPD(const OpArg& arg, X64Reg regOp); void MOVUPS(X64Reg regOp, const OpArg& arg); void MOVUPD(X64Reg regOp, const OpArg& arg); void MOVUPS(const OpArg& arg, X64Reg regOp); void MOVUPD(const OpArg& arg, X64Reg regOp); void MOVDQA(X64Reg regOp, const OpArg& arg); void MOVDQA(const OpArg& arg, X64Reg regOp); void MOVDQU(X64Reg regOp, const OpArg& arg); void MOVDQU(const OpArg& arg, X64Reg regOp); void MOVSS(X64Reg regOp, const OpArg& arg); void MOVSD(X64Reg regOp, const OpArg& arg); void MOVSS(const OpArg& arg, X64Reg regOp); void MOVSD(const OpArg& arg, X64Reg regOp); void MOVLPS(X64Reg regOp, const OpArg& arg); void MOVLPD(X64Reg regOp, const OpArg& arg); void MOVLPS(const OpArg& arg, X64Reg regOp); void MOVLPD(const OpArg& arg, X64Reg regOp); void MOVHPS(X64Reg regOp, const OpArg& arg); void MOVHPD(X64Reg regOp, const OpArg& arg); void MOVHPS(const OpArg& arg, X64Reg regOp); void MOVHPD(const OpArg& arg, X64Reg regOp); void MOVHLPS(X64Reg regOp1, X64Reg regOp2); void MOVLHPS(X64Reg regOp1, X64Reg regOp2); // Be careful when using these overloads for reg <--> xmm moves. // The one you cast to OpArg with R(reg) is the x86 reg, the other // one is the xmm reg. // ie: "MOVD_xmm(eax, R(xmm1))" generates incorrect code (movd xmm0, rcx) // use "MOVD_xmm(R(eax), xmm1)" instead. void MOVD_xmm(X64Reg dest, const OpArg& arg); void MOVQ_xmm(X64Reg dest, OpArg arg); void MOVD_xmm(const OpArg& arg, X64Reg src); void MOVQ_xmm(OpArg arg, X64Reg src); // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in // question. void MOVMSKPS(X64Reg dest, const OpArg& arg); void MOVMSKPD(X64Reg dest, const OpArg& arg); // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a // weird one. void MASKMOVDQU(X64Reg dest, X64Reg src); void LDDQU(X64Reg dest, const OpArg& src); // SSE/SSE2: Data type conversions. void CVTPS2PD(X64Reg dest, const OpArg& src); void CVTPD2PS(X64Reg dest, const OpArg& src); void CVTSS2SD(X64Reg dest, const OpArg& src); void CVTSI2SS(X64Reg dest, const OpArg& src); void CVTSD2SS(X64Reg dest, const OpArg& src); void CVTSI2SD(X64Reg dest, const OpArg& src); void CVTDQ2PD(X64Reg regOp, const OpArg& arg); void CVTPD2DQ(X64Reg regOp, const OpArg& arg); void CVTDQ2PS(X64Reg regOp, const OpArg& arg); void CVTPS2DQ(X64Reg regOp, const OpArg& arg); void CVTTPS2DQ(X64Reg regOp, const OpArg& arg); void CVTTPD2DQ(X64Reg regOp, const OpArg& arg); // Destinations are X64 regs (rax, rbx, ...) for these instructions. void CVTSS2SI(X64Reg xregdest, const OpArg& src); void CVTSD2SI(X64Reg xregdest, const OpArg& src); void CVTTSS2SI(X64Reg xregdest, const OpArg& arg); void CVTTSD2SI(X64Reg xregdest, const OpArg& arg); // SSE2: Packed integer instructions void PACKSSDW(X64Reg dest, const OpArg& arg); void PACKSSWB(X64Reg dest, const OpArg& arg); void PACKUSDW(X64Reg dest, const OpArg& arg); void PACKUSWB(X64Reg dest, const OpArg& arg); void PUNPCKLBW(X64Reg dest, const OpArg& arg); void PUNPCKLWD(X64Reg dest, const OpArg& arg); void PUNPCKLDQ(X64Reg dest, const OpArg& arg); void PUNPCKLQDQ(X64Reg dest, const OpArg& arg); void PTEST(X64Reg dest, const OpArg& arg); void PAND(X64Reg dest, const OpArg& arg); void PANDN(X64Reg dest, const OpArg& arg); void PXOR(X64Reg dest, const OpArg& arg); void POR(X64Reg dest, const OpArg& arg); void PADDB(X64Reg dest, const OpArg& arg); void PADDW(X64Reg dest, const OpArg& arg); void PADDD(X64Reg dest, const OpArg& arg); void PADDQ(X64Reg dest, const OpArg& arg); void PADDSB(X64Reg dest, const OpArg& arg); void PADDSW(X64Reg dest, const OpArg& arg); void PADDUSB(X64Reg dest, const OpArg& arg); void PADDUSW(X64Reg dest, const OpArg& arg); void PSUBB(X64Reg dest, const OpArg& arg); void PSUBW(X64Reg dest, const OpArg& arg); void PSUBD(X64Reg dest, const OpArg& arg); void PSUBQ(X64Reg dest, const OpArg& arg); void PSUBSB(X64Reg dest, const OpArg& arg); void PSUBSW(X64Reg dest, const OpArg& arg); void PSUBUSB(X64Reg dest, const OpArg& arg); void PSUBUSW(X64Reg dest, const OpArg& arg); void PAVGB(X64Reg dest, const OpArg& arg); void PAVGW(X64Reg dest, const OpArg& arg); void PCMPEQB(X64Reg dest, const OpArg& arg); void PCMPEQW(X64Reg dest, const OpArg& arg); void PCMPEQD(X64Reg dest, const OpArg& arg); void PCMPGTB(X64Reg dest, const OpArg& arg); void PCMPGTW(X64Reg dest, const OpArg& arg); void PCMPGTD(X64Reg dest, const OpArg& arg); void PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg); void PINSRW(X64Reg dest, const OpArg& arg, u8 subreg); void PINSRD(X64Reg dest, const OpArg& arg, u8 subreg); void PMADDWD(X64Reg dest, const OpArg& arg); void PSADBW(X64Reg dest, const OpArg& arg); void PMAXSW(X64Reg dest, const OpArg& arg); void PMAXUB(X64Reg dest, const OpArg& arg); void PMINSW(X64Reg dest, const OpArg& arg); void PMINUB(X64Reg dest, const OpArg& arg); void PMOVMSKB(X64Reg dest, const OpArg& arg); void PSHUFD(X64Reg dest, const OpArg& arg, u8 shuffle); void PSHUFB(X64Reg dest, const OpArg& arg); void PSHUFLW(X64Reg dest, const OpArg& arg, u8 shuffle); void PSHUFHW(X64Reg dest, const OpArg& arg, u8 shuffle); void PSRLW(X64Reg reg, int shift); void PSRLD(X64Reg reg, int shift); void PSRLQ(X64Reg reg, int shift); void PSRLQ(X64Reg reg, const OpArg& arg); void PSRLDQ(X64Reg reg, int shift); void PSLLW(X64Reg reg, int shift); void PSLLD(X64Reg reg, int shift); void PSLLQ(X64Reg reg, int shift); void PSLLDQ(X64Reg reg, int shift); void PSRAW(X64Reg reg, int shift); void PSRAD(X64Reg reg, int shift); // SSE4: data type conversions void PMOVSXBW(X64Reg dest, const OpArg& arg); void PMOVSXBD(X64Reg dest, const OpArg& arg); void PMOVSXBQ(X64Reg dest, const OpArg& arg); void PMOVSXWD(X64Reg dest, const OpArg& arg); void PMOVSXWQ(X64Reg dest, const OpArg& arg); void PMOVSXDQ(X64Reg dest, const OpArg& arg); void PMOVZXBW(X64Reg dest, const OpArg& arg); void PMOVZXBD(X64Reg dest, const OpArg& arg); void PMOVZXBQ(X64Reg dest, const OpArg& arg); void PMOVZXWD(X64Reg dest, const OpArg& arg); void PMOVZXWQ(X64Reg dest, const OpArg& arg); void PMOVZXDQ(X64Reg dest, const OpArg& arg); // SSE4: blend instructions void PBLENDVB(X64Reg dest, const OpArg& arg); void BLENDVPS(X64Reg dest, const OpArg& arg); void BLENDVPD(X64Reg dest, const OpArg& arg); void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend); void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend); // AVX void VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare); void VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle); void VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle); void VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg mask); void VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend); void VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend); void VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); // FMA3 void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); #define FMA4(name) \ void name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); \ void name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); FMA4(VFMADDSUBPS) FMA4(VFMADDSUBPD) FMA4(VFMSUBADDPS) FMA4(VFMSUBADDPD) FMA4(VFMADDPS) FMA4(VFMADDPD) FMA4(VFMADDSS) FMA4(VFMADDSD) FMA4(VFMSUBPS) FMA4(VFMSUBPD) FMA4(VFMSUBSS) FMA4(VFMSUBSD) FMA4(VFNMADDPS) FMA4(VFNMADDPD) FMA4(VFNMADDSS) FMA4(VFNMADDSD) FMA4(VFNMSUBPS) FMA4(VFNMSUBPD) FMA4(VFNMSUBSS) FMA4(VFNMSUBSD) #undef FMA4 // VEX GPR instructions void SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); void SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); void SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); void RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate); void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); void BLSR(int bits, X64Reg regOp, const OpArg& arg); void BLSMSK(int bits, X64Reg regOp, const OpArg& arg); void BLSI(int bits, X64Reg regOp, const OpArg& arg); void BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void RDTSC(); // Utility functions // The difference between this and CALL is that this aligns the stack // where appropriate. template void ABI_CallFunction(FunctionPointer func) { static_assert(std::is_pointer() && std::is_function>(), "Supplied type must be a function pointer."); const void* ptr = reinterpret_cast(func); const u64 address = reinterpret_cast(ptr); const u64 distance = address - (reinterpret_cast(code) + 5); if (distance >= 0x0000000080000000ULL && distance < 0xFFFFFFFF80000000ULL) { // Far call MOV(64, R(RAX), Imm64(address)); CALLptr(R(RAX)); } else { CALL(ptr); } } template void ABI_CallFunctionC16(FunctionPointer func, u16 param1) { MOV(32, R(ABI_PARAM1), Imm32(param1)); ABI_CallFunction(func); } template void ABI_CallFunctionCC16(FunctionPointer func, u32 param1, u16 param2) { MOV(32, R(ABI_PARAM1), Imm32(param1)); MOV(32, R(ABI_PARAM2), Imm32(param2)); ABI_CallFunction(func); } template void ABI_CallFunctionC(FunctionPointer func, u32 param1) { MOV(32, R(ABI_PARAM1), Imm32(param1)); ABI_CallFunction(func); } template void ABI_CallFunctionCC(FunctionPointer func, u32 param1, u32 param2) { MOV(32, R(ABI_PARAM1), Imm32(param1)); MOV(32, R(ABI_PARAM2), Imm32(param2)); ABI_CallFunction(func); } template void ABI_CallFunctionCP(FunctionPointer func, u32 param1, const void* param2) { MOV(32, R(ABI_PARAM1), Imm32(param1)); MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast(param2))); ABI_CallFunction(func); } template void ABI_CallFunctionCCC(FunctionPointer func, u32 param1, u32 param2, u32 param3) { MOV(32, R(ABI_PARAM1), Imm32(param1)); MOV(32, R(ABI_PARAM2), Imm32(param2)); MOV(32, R(ABI_PARAM3), Imm32(param3)); ABI_CallFunction(func); } template void ABI_CallFunctionCCP(FunctionPointer func, u32 param1, u32 param2, const void* param3) { MOV(32, R(ABI_PARAM1), Imm32(param1)); MOV(32, R(ABI_PARAM2), Imm32(param2)); MOV(64, R(ABI_PARAM3), Imm64(reinterpret_cast(param3))); ABI_CallFunction(func); } template void ABI_CallFunctionCCCP(FunctionPointer func, u32 param1, u32 param2, u32 param3, const void* param4) { MOV(32, R(ABI_PARAM1), Imm32(param1)); MOV(32, R(ABI_PARAM2), Imm32(param2)); MOV(32, R(ABI_PARAM3), Imm32(param3)); MOV(64, R(ABI_PARAM4), Imm64(reinterpret_cast(param4))); ABI_CallFunction(func); } template void ABI_CallFunctionP(FunctionPointer func, const void* param1) { MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast(param1))); ABI_CallFunction(func); } template void ABI_CallFunctionPC(FunctionPointer func, const void* param1, u32 param2) { MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast(param1))); MOV(32, R(ABI_PARAM2), Imm32(param2)); ABI_CallFunction(func); } template void ABI_CallFunctionPPC(FunctionPointer func, const void* param1, const void* param2, u32 param3) { MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast(param1))); MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast(param2))); MOV(32, R(ABI_PARAM3), Imm32(param3)); ABI_CallFunction(func); } // Pass a register as a parameter. template void ABI_CallFunctionR(FunctionPointer func, X64Reg reg1) { if (reg1 != ABI_PARAM1) MOV(32, R(ABI_PARAM1), R(reg1)); ABI_CallFunction(func); } // Pass a pointer and register as a parameter. template void ABI_CallFunctionPR(FunctionPointer func, const void* ptr, X64Reg reg1) { MOV(64, R(ABI_PARAM2), R(reg1)); MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast(ptr))); ABI_CallFunction(func); } // Pass two registers as parameters. template void ABI_CallFunctionRR(FunctionPointer func, X64Reg reg1, X64Reg reg2) { MOVTwo(64, ABI_PARAM1, reg1, 0, ABI_PARAM2, reg2); ABI_CallFunction(func); } // Pass a pointer and two registers as parameters. template void ABI_CallFunctionPRR(FunctionPointer func, const void* ptr, X64Reg reg1, X64Reg reg2) { MOVTwo(64, ABI_PARAM2, reg1, 0, ABI_PARAM3, reg2); MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast(ptr))); ABI_CallFunction(func); } template void ABI_CallFunctionAC(int bits, FunctionPointer func, const Gen::OpArg& arg1, u32 param2) { if (!arg1.IsSimpleReg(ABI_PARAM1)) MOV(bits, R(ABI_PARAM1), arg1); MOV(32, R(ABI_PARAM2), Imm32(param2)); ABI_CallFunction(func); } template void ABI_CallFunctionA(int bits, FunctionPointer func, const Gen::OpArg& arg1) { if (!arg1.IsSimpleReg(ABI_PARAM1)) MOV(bits, R(ABI_PARAM1), arg1); ABI_CallFunction(func); } // Helper method for ABI functions related to calling functions. May be used by itself as well. void MOVTwo(int bits, X64Reg dst1, X64Reg src1, s32 offset, X64Reg dst2, X64Reg src2); // Saves/restores the registers and adjusts the stack to be aligned as // required by the ABI, where the previous alignment was as specified. // Push returns the size of the shadow space, i.e. the offset of the frame. size_t ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size = 0); void ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size = 0); // Utility to generate a call to a std::function object. // // Unfortunately, calling operator() directly is undefined behavior in C++ // (this method might be a thunk in the case of multi-inheritance) so we // have to go through a trampoline function. template static T CallLambdaTrampoline(const std::function* f, Args... args) { return (*f)(args...); } template void ABI_CallLambdaPC(const std::function* f, void* p1, u32 p2) { auto trampoline = &XEmitter::CallLambdaTrampoline; ABI_CallFunctionPPC(trampoline, reinterpret_cast(f), p1, p2); } }; // class XEmitter class X64CodeBlock : public Common::CodeBlock { private: void PoisonMemory() override { // x86/64: 0xCC = breakpoint memset(region, 0xCC, region_size); } }; } // namespace Gen