// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include "Common/FileUtil.h" #include "Common/MemoryUtil.h" #include "Common/StringUtil.h" #include "Core/ConfigManager.h" #include "Core/HW/Memmap.h" #include "VideoCommon/Debugger.h" #include "VideoCommon/FramebufferManagerBase.h" #include "VideoCommon/HiresTextures.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VideoConfig.h" static const u64 TEXHASH_INVALID = 0; static const int TEXTURE_KILL_THRESHOLD = 200; static const int RENDER_TARGET_KILL_THRESHOLD = 3; static const u64 FRAMECOUNT_INVALID = 0; TextureCache *g_texture_cache; GC_ALIGNED16(u8 *TextureCache::temp) = nullptr; size_t TextureCache::temp_size; TextureCache::TexCache TextureCache::textures; TextureCache::RenderTargetPool TextureCache::render_target_pool; TextureCache::BackupConfig TextureCache::backup_config; static bool invalidate_texture_cache_requested; TextureCache::TCacheEntryBase::~TCacheEntryBase() { } void TextureCache::CheckTempSize(size_t required_size) { if (required_size <= temp_size) return; temp_size = required_size; FreeAlignedMemory(temp); temp = (u8*)AllocateAlignedMemory(temp_size, 16); } TextureCache::TextureCache() { temp_size = 2048 * 2048 * 4; if (!temp) temp = (u8*)AllocateAlignedMemory(temp_size, 16); TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable, g_ActiveConfig.bTexFmtOverlayCenter); if (g_ActiveConfig.bHiresTextures && !g_ActiveConfig.bDumpTextures) HiresTexture::Init(SConfig::GetInstance().m_LocalCoreStartupParameter.m_strUniqueID); SetHash64Function(); invalidate_texture_cache_requested = false; } void TextureCache::RequestInvalidateTextureCache() { invalidate_texture_cache_requested = true; } void TextureCache::Invalidate() { for (auto& tex : textures) { delete tex.second; } textures.clear(); for (auto& rt : render_target_pool) { delete rt; } render_target_pool.clear(); } TextureCache::~TextureCache() { Invalidate(); FreeAlignedMemory(temp); temp = nullptr; } void TextureCache::OnConfigChanged(VideoConfig& config) { if (g_texture_cache) { // TODO: Invalidating texcache is really stupid in some of these cases if (config.iSafeTextureCache_ColorSamples != backup_config.s_colorsamples || config.bTexFmtOverlayEnable != backup_config.s_texfmt_overlay || config.bTexFmtOverlayCenter != backup_config.s_texfmt_overlay_center || config.bHiresTextures != backup_config.s_hires_textures || invalidate_texture_cache_requested) { g_texture_cache->Invalidate(); if (g_ActiveConfig.bHiresTextures) HiresTexture::Init(SConfig::GetInstance().m_LocalCoreStartupParameter.m_strUniqueID); TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable, g_ActiveConfig.bTexFmtOverlayCenter); invalidate_texture_cache_requested = false; } // TODO: Probably shouldn't clear all render targets here, just mark them dirty or something. if (config.bEFBCopyCacheEnable != backup_config.s_copy_cache_enable) // TODO: not sure if this is needed? { g_texture_cache->ClearRenderTargets(); } if ((config.iStereoMode > 0) != backup_config.s_stereo_3d || config.bStereoEFBMonoDepth != backup_config.s_efb_mono_depth) { g_texture_cache->DeleteShaders(); g_texture_cache->CompileShaders(); } } backup_config.s_colorsamples = config.iSafeTextureCache_ColorSamples; backup_config.s_texfmt_overlay = config.bTexFmtOverlayEnable; backup_config.s_texfmt_overlay_center = config.bTexFmtOverlayCenter; backup_config.s_hires_textures = config.bHiresTextures; backup_config.s_copy_cache_enable = config.bEFBCopyCacheEnable; backup_config.s_stereo_3d = config.iStereoMode > 0; backup_config.s_efb_mono_depth = config.bStereoEFBMonoDepth; } void TextureCache::Cleanup(int _frameCount) { TexCache::iterator iter = textures.begin(); TexCache::iterator tcend = textures.end(); while (iter != tcend) { if(iter->second->frameCount == FRAMECOUNT_INVALID) { iter->second->frameCount = _frameCount; } if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount && // EFB copies living on the host GPU are unrecoverable and thus shouldn't be deleted !iter->second->IsEfbCopy()) { delete iter->second; iter = textures.erase(iter); } else { ++iter; } } for (size_t i = 0; i < render_target_pool.size();) { auto rt = render_target_pool[i]; if (_frameCount > RENDER_TARGET_KILL_THRESHOLD + rt->frameCount) { delete rt; render_target_pool[i] = render_target_pool.back(); render_target_pool.pop_back(); } else { ++i; } } } void TextureCache::InvalidateRange(u32 start_address, u32 size) { TexCache::iterator iter = textures.begin(), tcend = textures.end(); while (iter != tcend) { if (iter->second->OverlapsMemoryRange(start_address, size)) { delete iter->second; textures.erase(iter++); } else { ++iter; } } } void TextureCache::MakeRangeDynamic(u32 start_address, u32 size) { TexCache::iterator iter = textures.lower_bound(start_address), tcend = textures.upper_bound(start_address + size); if (iter != textures.begin()) --iter; for (; iter != tcend; ++iter) { if (iter->second->OverlapsMemoryRange(start_address, size)) { iter->second->SetHashes(TEXHASH_INVALID); } } } bool TextureCache::Find(u32 start_address, u64 hash) { TexCache::iterator iter = textures.lower_bound(start_address); if (iter->second->hash == hash) return true; return false; } bool TextureCache::TCacheEntryBase::OverlapsMemoryRange(u32 range_address, u32 range_size) const { if (addr + size_in_bytes < range_address) return false; if (addr >= range_address + range_size) return false; return true; } void TextureCache::ClearRenderTargets() { TexCache::iterator iter = textures.begin(), tcend = textures.end(); while (iter != tcend) { if (iter->second->type == TCET_EC_VRAM) { delete iter->second; textures.erase(iter++); } else { ++iter; } } } void TextureCache::DumpTexture(TCacheEntryBase* entry, std::string basename, unsigned int level) { std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) + SConfig::GetInstance().m_LocalCoreStartupParameter.m_strUniqueID; // make sure that the directory exists if (!File::Exists(szDir) || !File::IsDirectory(szDir)) File::CreateDir(szDir); if (level > 0) { basename += StringFromFormat("_mip%i", level); } std::string filename = szDir + "/" + basename + ".png"; if (!File::Exists(filename)) entry->Save(filename, level); } static u32 CalculateLevelSize(u32 level_0_size, u32 level) { return (level_0_size + ((1 << level) - 1)) >> level; } // Used by TextureCache::Load static TextureCache::TCacheEntryBase* ReturnEntry(unsigned int stage, TextureCache::TCacheEntryBase* entry) { entry->frameCount = FRAMECOUNT_INVALID; entry->Bind(stage); GFX_DEBUGGER_PAUSE_AT(NEXT_TEXTURE_CHANGE, true); return entry; } TextureCache::TCacheEntryBase* TextureCache::Load(const u32 stage) { const FourTexUnits &tex = bpmem.tex[stage >> 2]; const u32 id = stage & 3; const u32 address = (tex.texImage3[id].image_base/* & 0x1FFFFF*/) << 5; u32 width = tex.texImage0[id].width + 1; u32 height = tex.texImage0[id].height + 1; const int texformat = tex.texImage0[id].format; const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9; const u32 tlutfmt = tex.texTlut[id].tlut_format; const bool use_mipmaps = (tex.texMode0[id].min_filter & 3) != 0; u32 tex_levels = (tex.texMode1[id].max_lod + 0xf) / 0x10 + 1; const bool from_tmem = tex.texImage1[id].image_type != 0; if (0 == address) return nullptr; // TexelSizeInNibbles(format) * width * height / 16; const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat) - 1; const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat) - 1; unsigned int expandedWidth = (width + bsw) & (~bsw); unsigned int expandedHeight = (height + bsh) & (~bsh); const unsigned int nativeW = width; const unsigned int nativeH = height; u32 texID = address; // Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup) u64 tex_hash = TEXHASH_INVALID; u64 tlut_hash = TEXHASH_INVALID; u32 full_format = texformat; PC_TexFormat pcfmt = PC_TEX_FMT_NONE; const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2); if (isPaletteTexture) full_format = texformat | (tlutfmt << 16); const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat); const u8* src_data; if (from_tmem) src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE]; else src_data = Memory::GetPointer(address); // TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should) tex_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples); u32 palette_size = 0; if (isPaletteTexture) { palette_size = TexDecoder_GetPaletteSize(texformat); tlut_hash = GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples); // NOTE: For non-paletted textures, texID is equal to the texture address. // A paletted texture, however, may have multiple texIDs assigned though depending on the currently used tlut. // This (changing texID depending on the tlut_hash) is a trick to get around // an issue with Metroid Prime's fonts (it has multiple sets of fonts on each other // stored in a single texture and uses the palette to make different characters // visible or invisible. Thus, unless we want to recreate the textures for every drawn character, // we must make sure that a paletted texture gets assigned multiple IDs for each tlut used. // // TODO: Because texID isn't always the same as the address now, CopyRenderTargetToTexture might be broken now texID ^= ((u32)tlut_hash) ^(u32)(tlut_hash >> 32); tex_hash ^= tlut_hash; } // D3D doesn't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain // e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,1x1, so we limit the mipmap count to 6 there while (g_ActiveConfig.backend_info.bUseMinimalMipCount && std::max(width, height) >> (tex_levels - 1) == 0) --tex_levels; TCacheEntryBase *entry = textures[texID]; if (entry) { // 1. Calculate reference hash: // calculated from RAM texture data for normal textures. Hashes for paletted textures are modified by tlut_hash. 0 for virtual EFB copies. if (g_ActiveConfig.bCopyEFBToTexture && entry->IsEfbCopy()) tex_hash = TEXHASH_INVALID; // 2. a) For EFB copies, only the hash and the texture address need to match if (entry->IsEfbCopy() && tex_hash == entry->hash && address == entry->addr) { entry->type = TCET_EC_VRAM; // TODO: Print a warning if the format changes! In this case, // we could reinterpret the internal texture object data to the new pixel format // (similar to what is already being done in Renderer::ReinterpretPixelFormat()) return ReturnEntry(stage, entry); } // 2. b) For normal textures, all texture parameters need to match if (address == entry->addr && tex_hash == entry->hash && full_format == entry->format && entry->config.levels >= tex_levels && entry->native_width == nativeW && entry->native_height == nativeH) { return ReturnEntry(stage, entry); } // 3. If we reach this line, we'll have to upload the new texture data to VRAM. // If we're lucky, the texture parameters didn't change and we can reuse the internal texture object instead of destroying and recreating it. // // TODO: Don't we need to force texture decoding to RGBA8 for dynamic EFB copies? // TODO: Actually, it should be enough if the internal texture format matches... if (((entry->type == TCET_NORMAL && width == entry->config.width && height == entry->config.height && full_format == entry->format && entry->config.levels >= tex_levels) || (entry->type == TCET_EC_DYNAMIC && entry->native_width == width && entry->native_height == height)) && entry->config.layers == 1) { // reuse the texture } else { // delete the texture and make a new one delete entry; entry = nullptr; } } std::unique_ptr hires_tex; if (g_ActiveConfig.bHiresTextures) { hires_tex.reset(HiresTexture::Search( src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat )); if (hires_tex) { auto& l = hires_tex->m_levels[0]; if (l.width != width || l.height != height) { width = l.width; height = l.height; // If we thought we could reuse the texture before, make sure to pool it now! if (entry) { delete entry; entry = nullptr; } } expandedWidth = l.width; expandedHeight = l.height; CheckTempSize(l.data_size); memcpy(temp, l.data, l.data_size); pcfmt = PC_TEX_FMT_RGBA32; } } if (!hires_tex) { if (!(texformat == GX_TF_RGBA8 && from_tmem)) { const u8* tlut = &texMem[tlutaddr]; pcfmt = TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlut, (TlutFormat) tlutfmt); } else { u8* src_data_gb = &texMem[bpmem.tex[stage/4].texImage2[stage%4].tmem_odd * TMEM_LINE_SIZE]; pcfmt = TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight); } } u32 texLevels = use_mipmaps ? tex_levels : 1; const bool using_custom_lods = hires_tex && hires_tex->m_levels.size() >= texLevels; // Only load native mips if their dimensions fit to our virtual texture dimensions const bool use_native_mips = use_mipmaps && !using_custom_lods && (width == nativeW && height == nativeH); texLevels = (use_native_mips || using_custom_lods) ? texLevels : 1; // TODO: Should be forced to 1 for non-pow2 textures (e.g. efb copies with automatically adjusted IR) // create the entry/texture if (nullptr == entry) { textures[texID] = entry = g_texture_cache->CreateTexture(width, height, texLevels, pcfmt); entry->type = TCET_NORMAL; GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true); } entry->SetGeneralParameters(address, texture_size, full_format); entry->SetDimensions(nativeW, nativeH); entry->hash = tex_hash; // load texture entry->Load(width, height, expandedWidth, 0); if (entry->IsEfbCopy() && !g_ActiveConfig.bCopyEFBToTexture) entry->type = TCET_EC_DYNAMIC; else entry->type = TCET_NORMAL; std::string basename = ""; if (g_ActiveConfig.bDumpTextures && !hires_tex) { basename = HiresTexture::GenBaseName( src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat ); DumpTexture(entry, basename, 0); } u32 level = 1; // load mips - TODO: Loading mipmaps from tmem is untested! if (pcfmt != PC_TEX_FMT_NONE) { if (use_native_mips) { src_data += texture_size; const u8* ptr_even = nullptr; const u8* ptr_odd = nullptr; if (from_tmem) { ptr_even = &texMem[bpmem.tex[stage/4].texImage1[stage%4].tmem_even * TMEM_LINE_SIZE + texture_size]; ptr_odd = &texMem[bpmem.tex[stage/4].texImage2[stage%4].tmem_odd * TMEM_LINE_SIZE]; } for (; level != texLevels; ++level) { const u32 mip_width = CalculateLevelSize(width, level); const u32 mip_height = CalculateLevelSize(height, level); const u32 expanded_mip_width = (mip_width + bsw) & (~bsw); const u32 expanded_mip_height = (mip_height + bsh) & (~bsh); const u8*& mip_src_data = from_tmem ? ((level % 2) ? ptr_odd : ptr_even) : src_data; const u8* tlut = &texMem[tlutaddr]; TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, (TlutFormat) tlutfmt); mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat); entry->Load(mip_width, mip_height, expanded_mip_width, level); if (g_ActiveConfig.bDumpTextures) DumpTexture(entry, basename, level); } } else if (using_custom_lods) { for (; level != texLevels; ++level) { auto& l = hires_tex->m_levels[level]; CheckTempSize(l.data_size); memcpy(temp, l.data, l.data_size); entry->Load(l.width, l.height, l.width, level); } } } INCSTAT(stats.numTexturesCreated); SETSTAT(stats.numTexturesAlive, textures.size()); return ReturnEntry(stage, entry); } void TextureCache::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, PEControl::PixelFormat srcFormat, const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf) { // Emulation methods: // // - EFB to RAM: // Encodes the requested EFB data at its native resolution to the emulated RAM using shaders. // Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again. // Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture // Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures. // // - EFB to texture: // Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders. // Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again. // Since we don't do any further encoding or decoding here, this method is much faster. // It also allows enhancing the visual quality by doing scaled EFB copies. // // - Hybrid EFB copies: // 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM) // 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range. // If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies. // 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before): // 2a) Entry doesn't exist: // - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture) // - Create a texture cache entry for the target (type = TCET_EC_VRAM) // - Store a hash of the encoded RAM data in the texcache entry. // 2b) Entry exists AND type is TCET_EC_VRAM: // - Like case 2a, but reuse the old texcache entry instead of creating a new one. // 2c) Entry exists AND type is TCET_EC_DYNAMIC: // - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry. // - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway. // 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM. // 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created // 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC. // Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now. // 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture. // Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture. // Compatibility is as good as EFB to RAM. // Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM. // EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway. // // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing. // // For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies. float colmat[28] = {0}; float *const fConstAdd = colmat + 16; float *const ColorMask = colmat + 20; ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f; unsigned int cbufid = -1; bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24; if (srcFormat == PEControl::Z24) { switch (dstFormat) { case 0: // Z4 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 0; break; case 1: // Z8 case 8: // Z8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f; cbufid = 1; break; case 3: // Z16 colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f; cbufid = 2; break; case 11: // Z16 (reverse order) colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 3; break; case 6: // Z24X8 colmat[0] = colmat[5] = colmat[10] = 1.0f; cbufid = 4; break; case 9: // Z8M colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 5; break; case 10: // Z8L colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 6; break; case 12: // Z16L - copy lower 16 depth bits // expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha) // Used e.g. in Zelda: Skyward Sword colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 7; break; default: ERROR_LOG(VIDEO, "Unknown copy zbuf format: 0x%x", dstFormat); colmat[2] = colmat[5] = colmat[8] = 1.0f; cbufid = 8; break; } } else if (isIntensity) { fConstAdd[0] = fConstAdd[1] = fConstAdd[2] = 16.0f/255.0f; switch (dstFormat) { case 0: // I4 case 1: // I8 case 2: // IA4 case 3: // IA8 case 8: // I8 // TODO - verify these coefficients colmat[0] = 0.257f; colmat[1] = 0.504f; colmat[2] = 0.098f; colmat[4] = 0.257f; colmat[5] = 0.504f; colmat[6] = 0.098f; colmat[8] = 0.257f; colmat[9] = 0.504f; colmat[10] = 0.098f; if (dstFormat < 2 || dstFormat == 8) { colmat[12] = 0.257f; colmat[13] = 0.504f; colmat[14] = 0.098f; fConstAdd[3] = 16.0f/255.0f; if (dstFormat == 0) { ColorMask[0] = ColorMask[1] = ColorMask[2] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 15.0f; cbufid = 9; } else { cbufid = 10; } } else// alpha { colmat[15] = 1; if (dstFormat == 2) { ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 15.0f; cbufid = 11; } else { cbufid = 12; } } break; default: ERROR_LOG(VIDEO, "Unknown copy intensity format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 13; break; } } else { switch (dstFormat) { case 0: // R4 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; ColorMask[0] = 15.0f; ColorMask[4] = 1.0f / 15.0f; cbufid = 14; break; case 1: // R8 case 8: // R8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; cbufid = 15; break; case 2: // RA4 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[7] = 1.0f / 15.0f; cbufid = 16; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 17; } break; case 3: // RA8 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; cbufid = 18; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 19; } break; case 7: // A8 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 20; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[0] = 1.0f; fConstAdd[1] = 1.0f; fConstAdd[2] = 1.0f; fConstAdd[3] = 1.0f; cbufid = 21; } break; case 9: // G8 colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 22; break; case 10: // B8 colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 23; break; case 11: // RG8 colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 24; break; case 12: // GB8 colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 25; break; case 4: // RGB565 colmat[0] = colmat[5] = colmat[10] = 1.0f; ColorMask[0] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[6] = 1.0f / 31.0f; ColorMask[1] = 63.0f; ColorMask[5] = 1.0f / 63.0f; fConstAdd[3] = 1.0f; // set alpha to 1 cbufid = 26; break; case 5: // RGB5A3 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[1] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 31.0f; ColorMask[3] = 7.0f; ColorMask[7] = 1.0f / 7.0f; cbufid = 27; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 28; } break; case 6: // RGBA8 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 29; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 30; } break; default: ERROR_LOG(VIDEO, "Unknown copy color format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 31; break; } } const unsigned int tex_w = scaleByHalf ? srcRect.GetWidth()/2 : srcRect.GetWidth(); const unsigned int tex_h = scaleByHalf ? srcRect.GetHeight()/2 : srcRect.GetHeight(); unsigned int scaled_tex_w = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledX(tex_w) : tex_w; unsigned int scaled_tex_h = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledY(tex_h) : tex_h; const unsigned int efb_layers = FramebufferManagerBase::GetEFBLayers(); TCacheEntryBase *entry = textures[dstAddr]; if (entry) { if (entry->type == TCET_EC_DYNAMIC && entry->native_width == tex_w && entry->native_height == tex_h && entry->config.layers == efb_layers) { scaled_tex_w = tex_w; scaled_tex_h = tex_h; } else if (!(entry->type == TCET_EC_VRAM && entry->config.width == scaled_tex_w && entry->config.height == scaled_tex_h && entry->config.layers == efb_layers)) { if (entry->type == TCET_EC_VRAM) { // try to re-use this render target later FreeRenderTarget(entry); } else { // remove it and recreate it as a render target delete entry; } entry = nullptr; } } if (nullptr == entry) { // create the texture textures[dstAddr] = entry = AllocateRenderTarget(scaled_tex_w, scaled_tex_h, FramebufferManagerBase::GetEFBLayers()); // TODO: Using the wrong dstFormat, dumb... entry->SetGeneralParameters(dstAddr, 0, dstFormat); entry->SetDimensions(tex_w, tex_h); entry->SetHashes(TEXHASH_INVALID); entry->type = TCET_EC_VRAM; } entry->frameCount = FRAMECOUNT_INVALID; entry->FromRenderTarget(dstAddr, dstFormat, srcFormat, srcRect, isIntensity, scaleByHalf, cbufid, colmat); } TextureCache::TCacheEntryBase* TextureCache::AllocateRenderTarget(unsigned int width, unsigned int height, unsigned int layers) { for (size_t i = 0; i < render_target_pool.size(); ++i) { auto rt = render_target_pool[i]; if (rt->config.width != width || rt->config.height != height || rt->config.layers != layers) continue; render_target_pool[i] = render_target_pool.back(); render_target_pool.pop_back(); return rt; } return g_texture_cache->CreateRenderTargetTexture(width, height, layers); } void TextureCache::FreeRenderTarget(TCacheEntryBase* entry) { render_target_pool.push_back(entry); }