// Copyright 2019 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "InputCommon/ControlReference/FunctionExpression.h" #include #include #include namespace ciface::ExpressionParser { using Clock = std::chrono::steady_clock; using FSec = std::chrono::duration; // usage: toggle(toggle_state_input, [clear_state_input]) class ToggleExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { // Optional 2nd argument for clearing state: if (args.size() == 1 || args.size() == 2) return ArgumentsAreValid{}; else return ExpectedArguments{"toggle_state_input, [clear_state_input]"}; } ControlState GetValue() const override { const ControlState inner_value = GetArg(0).GetValue(); if (inner_value < CONDITION_THRESHOLD) { m_released = true; } else if (m_released && inner_value > CONDITION_THRESHOLD) { m_released = false; m_state ^= true; } if (2 == GetArgCount() && GetArg(1).GetValue() > CONDITION_THRESHOLD) { m_state = false; } return m_state; } mutable bool m_released{}; mutable bool m_state{}; }; // usage: not(expression) class NotExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"expression"}; } ControlState GetValue() const override { return 1.0 - GetArg(0).GetValue(); } void SetValue(ControlState value) override { GetArg(0).SetValue(1.0 - value); } }; // usage: sin(expression) class SinExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"expression"}; } ControlState GetValue() const override { return std::sin(GetArg(0).GetValue()); } }; // usage: cos(expression) class CosExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"expression"}; } ControlState GetValue() const override { return std::cos(GetArg(0).GetValue()); } }; // usage: tan(expression) class TanExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"expression"}; } ControlState GetValue() const override { return std::tan(GetArg(0).GetValue()); } }; // usage: asin(expression) class ASinExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"expression"}; } ControlState GetValue() const override { return std::asin(GetArg(0).GetValue()); } }; // usage: acos(expression) class ACosExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"expression"}; } ControlState GetValue() const override { return std::acos(GetArg(0).GetValue()); } }; // usage: atan(expression) class ATanExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"expression"}; } ControlState GetValue() const override { return std::atan(GetArg(0).GetValue()); } }; // usage: atan2(y, x) class ATan2Expression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 2) return ArgumentsAreValid{}; else return ExpectedArguments{"y, x"}; } ControlState GetValue() const override { return std::atan2(GetArg(0).GetValue(), GetArg(1).GetValue()); } }; // usage: sqrt(expression) class SqrtExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"expression"}; } ControlState GetValue() const override { return std::sqrt(GetArg(0).GetValue()); } }; // usage: pow(base, exponent) class PowExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 2) return ArgumentsAreValid{}; else return ExpectedArguments{"base, exponent"}; } ControlState GetValue() const override { return std::pow(GetArg(0).GetValue(), GetArg(1).GetValue()); } }; // usage: min(a, b) class MinExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 2) return ArgumentsAreValid{}; else return ExpectedArguments{"a, b"}; } ControlState GetValue() const override { return std::min(GetArg(0).GetValue(), GetArg(1).GetValue()); } }; // usage: max(a, b) class MaxExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 2) return ArgumentsAreValid{}; else return ExpectedArguments{"a, b"}; } ControlState GetValue() const override { return std::max(GetArg(0).GetValue(), GetArg(1).GetValue()); } }; // usage: clamp(value, min, max) class ClampExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 3) return ArgumentsAreValid{}; else return ExpectedArguments{"value, min, max"}; } ControlState GetValue() const override { return std::clamp(GetArg(0).GetValue(), GetArg(1).GetValue(), GetArg(2).GetValue()); } }; // usage: timer(seconds) class TimerExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"seconds"}; } ControlState GetValue() const override { const auto now = Clock::now(); const auto elapsed = now - m_start_time; const ControlState val = GetArg(0).GetValue(); ControlState progress = std::chrono::duration_cast(elapsed).count() / val; if (std::isinf(progress) || progress < 0.0) { // User configured a non-positive timer. Reset the timer and return 0.0. progress = 0.0; m_start_time = now; } else if (progress >= 1.0) { const ControlState reset_count = std::floor(progress); m_start_time += std::chrono::duration_cast(FSec(val * reset_count)); progress -= reset_count; } return progress; } private: mutable Clock::time_point m_start_time = Clock::now(); }; // usage: if(condition, true_expression, false_expression) class IfExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 3) return ArgumentsAreValid{}; else return ExpectedArguments{"condition, true_expression, false_expression"}; } ControlState GetValue() const override { return (GetArg(0).GetValue() > CONDITION_THRESHOLD) ? GetArg(1).GetValue() : GetArg(2).GetValue(); } }; // usage: minus(expression) class UnaryMinusExpression : public FunctionExpression { private: ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 1) return ArgumentsAreValid{}; else return ExpectedArguments{"expression"}; } ControlState GetValue() const override { // Subtraction for clarity: return 0.0 - GetArg(0).GetValue(); } }; // usage: deadzone(input, amount) class DeadzoneExpression : public FunctionExpression { ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 2) return ArgumentsAreValid{}; else return ExpectedArguments{"input, amount"}; } ControlState GetValue() const override { const ControlState val = GetArg(0).GetValue(); const ControlState deadzone = GetArg(1).GetValue(); return std::copysign(std::max(0.0, std::abs(val) - deadzone) / (1.0 - deadzone), val); } }; // usage: smooth(input, seconds_up, seconds_down = seconds_up) // seconds is seconds to change from 0.0 to 1.0 class SmoothExpression : public FunctionExpression { ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 2 || args.size() == 3) return ArgumentsAreValid{}; else return ExpectedArguments{"input, seconds_up, seconds_down = seconds_up"}; } ControlState GetValue() const override { const auto now = Clock::now(); const auto elapsed = now - m_last_update; m_last_update = now; const ControlState desired_value = GetArg(0).GetValue(); const ControlState smooth_up = GetArg(1).GetValue(); const ControlState smooth_down = GetArgCount() == 3 ? GetArg(2).GetValue() : smooth_up; const ControlState smooth = (desired_value < m_value) ? smooth_down : smooth_up; const ControlState max_move = std::chrono::duration_cast(elapsed).count() / smooth; if (std::isinf(max_move)) { m_value = desired_value; } else { const ControlState diff = desired_value - m_value; m_value += std::copysign(std::min(max_move, std::abs(diff)), diff); } return m_value; } private: mutable ControlState m_value = 0.0; mutable Clock::time_point m_last_update = Clock::now(); }; // usage: hold(input, seconds) class HoldExpression : public FunctionExpression { ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 2) return ArgumentsAreValid{}; else return ExpectedArguments{"input, seconds"}; } ControlState GetValue() const override { const auto now = Clock::now(); const ControlState input = GetArg(0).GetValue(); if (input < CONDITION_THRESHOLD) { m_state = false; m_start_time = Clock::now(); } else if (!m_state) { const auto hold_time = now - m_start_time; if (std::chrono::duration_cast(hold_time).count() >= GetArg(1).GetValue()) m_state = true; } return m_state; } private: mutable bool m_state = false; mutable Clock::time_point m_start_time = Clock::now(); }; // usage: tap(input, seconds, taps=2) class TapExpression : public FunctionExpression { ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 2 || args.size() == 3) return ArgumentsAreValid{}; else return ExpectedArguments{"input, seconds, taps = 2"}; } ControlState GetValue() const override { const auto now = Clock::now(); const auto elapsed = std::chrono::duration_cast(now - m_start_time).count(); const ControlState input = GetArg(0).GetValue(); const ControlState seconds = GetArg(1).GetValue(); const bool is_time_up = elapsed > seconds; const u32 desired_taps = GetArgCount() == 3 ? u32(GetArg(2).GetValue() + 0.5) : 2; if (input < CONDITION_THRESHOLD) { m_released = true; if (m_taps > 0 && is_time_up) { m_taps = 0; } } else { if (m_released) { if (!m_taps) { m_start_time = now; } ++m_taps; m_released = false; } return desired_taps == m_taps; } return 0.0; } private: mutable bool m_released = true; mutable u32 m_taps = 0; mutable Clock::time_point m_start_time = Clock::now(); }; // usage: relative(input, speed, [max_abs_value, [shared_state]]) // speed is max movement per second class RelativeExpression : public FunctionExpression { ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() >= 2 && args.size() <= 4) return ArgumentsAreValid{}; else return ExpectedArguments{"input, speed, [max_abs_value, [shared_state]]"}; } ControlState GetValue() const override { // There is a lot of funky math in this function but it allows for a variety of uses: // // e.g. A single mapping with a relatively adjusted value between 0.0 and 1.0 // Potentially useful for a trigger input // relative(`Up` - `Down`, 2.0) // // e.g. A value with two mappings (such as analog stick Up/Down) // The shared state allows the two mappings to work together. // This mapping (for up) returns a value clamped between 0.0 and 1.0 // relative(`Up`, 2.0, 1.0, $y) // This mapping (for down) returns the negative value clamped between 0.0 and 1.0 // (Adjustments created by `Down` are applied negatively to the shared state) // relative(`Down`, 2.0, -1.0, $y) const auto now = Clock::now(); if (GetArgCount() >= 4) m_state = GetArg(3).GetValue(); const auto elapsed = std::chrono::duration_cast(now - m_last_update).count(); m_last_update = now; const ControlState input = GetArg(0).GetValue(); const ControlState speed = GetArg(1).GetValue(); const ControlState max_abs_value = (GetArgCount() >= 3) ? GetArg(2).GetValue() : 1.0; const ControlState max_move = input * elapsed * speed; const ControlState diff_from_zero = std::abs(0.0 - m_state); const ControlState diff_from_max = std::abs(max_abs_value - m_state); m_state += std::min(std::max(max_move, -diff_from_zero), diff_from_max) * std::copysign(1.0, max_abs_value); if (GetArgCount() >= 4) const_cast(GetArg(3)).SetValue(m_state); return std::max(0.0, m_state * std::copysign(1.0, max_abs_value)); } private: mutable ControlState m_state = 0.0; mutable Clock::time_point m_last_update = Clock::now(); }; // usage: pulse(input, seconds) class PulseExpression : public FunctionExpression { ArgumentValidation ValidateArguments(const std::vector>& args) override { if (args.size() == 2) return ArgumentsAreValid{}; else return ExpectedArguments{"input, seconds"}; } ControlState GetValue() const override { const auto now = Clock::now(); const ControlState input = GetArg(0).GetValue(); if (input < CONDITION_THRESHOLD) { m_released = true; } else if (m_released) { m_released = false; const auto seconds = std::chrono::duration_cast(FSec(GetArg(1).GetValue())); if (m_state) { m_release_time += seconds; } else { m_state = true; m_release_time = now + seconds; } } if (m_state && now >= m_release_time) { m_state = false; } return m_state; } private: mutable bool m_released = false; mutable bool m_state = false; mutable Clock::time_point m_release_time = Clock::now(); }; std::unique_ptr MakeFunctionExpression(std::string_view name) { if (name == "not") return std::make_unique(); if (name == "if") return std::make_unique(); if (name == "sin") return std::make_unique(); if (name == "cos") return std::make_unique(); if (name == "tan") return std::make_unique(); if (name == "asin") return std::make_unique(); if (name == "acos") return std::make_unique(); if (name == "atan") return std::make_unique(); if (name == "atan2") return std::make_unique(); if (name == "sqrt") return std::make_unique(); if (name == "pow") return std::make_unique(); if (name == "min") return std::make_unique(); if (name == "max") return std::make_unique(); if (name == "clamp") return std::make_unique(); if (name == "timer") return std::make_unique(); if (name == "toggle") return std::make_unique(); if (name == "minus") return std::make_unique(); if (name == "deadzone") return std::make_unique(); if (name == "smooth") return std::make_unique(); if (name == "hold") return std::make_unique(); if (name == "tap") return std::make_unique(); if (name == "relative") return std::make_unique(); if (name == "pulse") return std::make_unique(); return nullptr; } int FunctionExpression::CountNumControls() const { int result = 0; for (auto& arg : m_args) result += arg->CountNumControls(); return result; } void FunctionExpression::UpdateReferences(ControlEnvironment& env) { for (auto& arg : m_args) arg->UpdateReferences(env); } FunctionExpression::ArgumentValidation FunctionExpression::SetArguments(std::vector>&& args) { m_args = std::move(args); return ValidateArguments(m_args); } Expression& FunctionExpression::GetArg(u32 number) { return *m_args[number]; } const Expression& FunctionExpression::GetArg(u32 number) const { return *m_args[number]; } u32 FunctionExpression::GetArgCount() const { return u32(m_args.size()); } void FunctionExpression::SetValue(ControlState) { } } // namespace ciface::ExpressionParser