// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "DiscIO/VolumeWii.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Common/Align.h" #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Common/Swap.h" #include "DiscIO/Blob.h" #include "DiscIO/DiscExtractor.h" #include "DiscIO/Enums.h" #include "DiscIO/FileSystemGCWii.h" #include "DiscIO/Filesystem.h" #include "DiscIO/Volume.h" #include "DiscIO/WiiSaveBanner.h" namespace DiscIO { VolumeWii::VolumeWii(std::unique_ptr reader) : m_reader(std::move(reader)), m_game_partition(PARTITION_NONE), m_last_decrypted_block(UINT64_MAX) { ASSERT(m_reader); m_encrypted = m_reader->ReadSwapped(0x60) == u32(0); for (u32 partition_group = 0; partition_group < 4; ++partition_group) { const std::optional number_of_partitions = m_reader->ReadSwapped(0x40000 + (partition_group * 8)); if (!number_of_partitions) continue; const std::optional partition_table_offset = ReadSwappedAndShifted(0x40000 + (partition_group * 8) + 4, PARTITION_NONE); if (!partition_table_offset) continue; for (u32 i = 0; i < number_of_partitions; i++) { const std::optional partition_offset = ReadSwappedAndShifted(*partition_table_offset + (i * 8), PARTITION_NONE); if (!partition_offset) continue; const Partition partition(*partition_offset); const std::optional partition_type = m_reader->ReadSwapped(*partition_table_offset + (i * 8) + 4); if (!partition_type) continue; // If this is the game partition, set m_game_partition if (m_game_partition == PARTITION_NONE && *partition_type == 0) m_game_partition = partition; auto get_ticket = [this, partition]() -> IOS::ES::TicketReader { std::vector ticket_buffer(sizeof(IOS::ES::Ticket)); if (!m_reader->Read(partition.offset, ticket_buffer.size(), ticket_buffer.data())) return INVALID_TICKET; return IOS::ES::TicketReader{std::move(ticket_buffer)}; }; auto get_tmd = [this, partition]() -> IOS::ES::TMDReader { const std::optional tmd_size = m_reader->ReadSwapped(partition.offset + 0x2a4); const std::optional tmd_address = ReadSwappedAndShifted(partition.offset + 0x2a8, PARTITION_NONE); if (!tmd_size || !tmd_address) return INVALID_TMD; if (!IOS::ES::IsValidTMDSize(*tmd_size)) { // This check is normally done by ES in ES_DiVerify, but that would happen too late // (after allocating the buffer), so we do the check here. PanicAlert("Invalid TMD size"); return INVALID_TMD; } std::vector tmd_buffer(*tmd_size); if (!m_reader->Read(partition.offset + *tmd_address, *tmd_size, tmd_buffer.data())) return INVALID_TMD; return IOS::ES::TMDReader{std::move(tmd_buffer)}; }; auto get_cert_chain = [this, partition]() -> std::vector { const std::optional size = m_reader->ReadSwapped(partition.offset + 0x2ac); const std::optional address = ReadSwappedAndShifted(partition.offset + 0x2b0, PARTITION_NONE); if (!size || !address) return {}; std::vector cert_chain(*size); if (!m_reader->Read(partition.offset + *address, *size, cert_chain.data())) return {}; return cert_chain; }; auto get_h3_table = [this, partition]() -> std::vector { if (!m_encrypted) return {}; const std::optional h3_table_offset = ReadSwappedAndShifted(partition.offset + 0x2b4, PARTITION_NONE); if (!h3_table_offset) return {}; std::vector h3_table(H3_TABLE_SIZE); if (!m_reader->Read(partition.offset + *h3_table_offset, H3_TABLE_SIZE, h3_table.data())) return {}; return h3_table; }; auto get_key = [this, partition]() -> std::unique_ptr { const IOS::ES::TicketReader& ticket = *m_partitions[partition].ticket; if (!ticket.IsValid()) return nullptr; const std::array key = ticket.GetTitleKey(); std::unique_ptr aes_context = std::make_unique(); mbedtls_aes_setkey_dec(aes_context.get(), key.data(), 128); return aes_context; }; auto get_file_system = [this, partition]() -> std::unique_ptr { auto file_system = std::make_unique(this, partition); return file_system->IsValid() ? std::move(file_system) : nullptr; }; auto get_data_offset = [this, partition]() -> u64 { return ReadSwappedAndShifted(partition.offset + 0x2b8, PARTITION_NONE).value_or(0); }; m_partitions.emplace( partition, PartitionDetails{Common::Lazy>(get_key), Common::Lazy(get_ticket), Common::Lazy(get_tmd), Common::Lazy>(get_cert_chain), Common::Lazy>(get_h3_table), Common::Lazy>(get_file_system), Common::Lazy(get_data_offset), *partition_type}); } } } VolumeWii::~VolumeWii() { } bool VolumeWii::Read(u64 offset, u64 length, u8* buffer, const Partition& partition) const { if (partition == PARTITION_NONE) return m_reader->Read(offset, length, buffer); auto it = m_partitions.find(partition); if (it == m_partitions.end()) return false; const PartitionDetails& partition_details = it->second; if (m_reader->SupportsReadWiiDecrypted()) { return m_reader->ReadWiiDecrypted(offset, length, buffer, partition.offset + *partition_details.data_offset); } if (!m_encrypted) { return m_reader->Read(partition.offset + *partition_details.data_offset + offset, length, buffer); } mbedtls_aes_context* aes_context = partition_details.key->get(); if (!aes_context) return false; std::vector read_buffer(BLOCK_TOTAL_SIZE); while (length > 0) { // Calculate offsets u64 block_offset_on_disc = partition.offset + *partition_details.data_offset + offset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE; u64 data_offset_in_block = offset % BLOCK_DATA_SIZE; if (m_last_decrypted_block != block_offset_on_disc) { // Read the current block if (!m_reader->Read(block_offset_on_disc, BLOCK_TOTAL_SIZE, read_buffer.data())) return false; // Decrypt the block's data. // 0x3D0 - 0x3DF in read_buffer will be overwritten, // but that won't affect anything, because we won't // use the content of read_buffer anymore after this mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, BLOCK_DATA_SIZE, &read_buffer[0x3D0], &read_buffer[BLOCK_HEADER_SIZE], m_last_decrypted_block_data); m_last_decrypted_block = block_offset_on_disc; // The only thing we currently use from the 0x000 - 0x3FF part // of the block is the IV (at 0x3D0), but it also contains SHA-1 // hashes that IOS uses to check that discs aren't tampered with. // http://wiibrew.org/wiki/Wii_Disc#Encrypted } // Copy the decrypted data u64 copy_size = std::min(length, BLOCK_DATA_SIZE - data_offset_in_block); memcpy(buffer, &m_last_decrypted_block_data[data_offset_in_block], static_cast(copy_size)); // Update offsets length -= copy_size; buffer += copy_size; offset += copy_size; } return true; } bool VolumeWii::IsEncryptedAndHashed() const { return m_encrypted; } std::vector VolumeWii::GetPartitions() const { std::vector partitions; for (const auto& pair : m_partitions) partitions.push_back(pair.first); return partitions; } Partition VolumeWii::GetGamePartition() const { return m_game_partition; } std::optional VolumeWii::GetPartitionType(const Partition& partition) const { auto it = m_partitions.find(partition); return it != m_partitions.end() ? it->second.type : std::optional(); } std::optional VolumeWii::GetTitleID(const Partition& partition) const { const IOS::ES::TicketReader& ticket = GetTicket(partition); if (!ticket.IsValid()) return {}; return ticket.GetTitleId(); } const IOS::ES::TicketReader& VolumeWii::GetTicket(const Partition& partition) const { auto it = m_partitions.find(partition); return it != m_partitions.end() ? *it->second.ticket : INVALID_TICKET; } const IOS::ES::TMDReader& VolumeWii::GetTMD(const Partition& partition) const { auto it = m_partitions.find(partition); return it != m_partitions.end() ? *it->second.tmd : INVALID_TMD; } const std::vector& VolumeWii::GetCertificateChain(const Partition& partition) const { auto it = m_partitions.find(partition); return it != m_partitions.end() ? *it->second.cert_chain : INVALID_CERT_CHAIN; } const FileSystem* VolumeWii::GetFileSystem(const Partition& partition) const { auto it = m_partitions.find(partition); return it != m_partitions.end() ? it->second.file_system->get() : nullptr; } u64 VolumeWii::EncryptedPartitionOffsetToRawOffset(u64 offset, const Partition& partition, u64 partition_data_offset) { if (partition == PARTITION_NONE) return offset; return partition.offset + partition_data_offset + (offset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE) + (offset % BLOCK_DATA_SIZE); } u64 VolumeWii::PartitionOffsetToRawOffset(u64 offset, const Partition& partition) const { auto it = m_partitions.find(partition); if (it == m_partitions.end()) return offset; const u64 data_offset = *it->second.data_offset; if (!m_encrypted) return partition.offset + data_offset + offset; return EncryptedPartitionOffsetToRawOffset(offset, partition, data_offset); } std::string VolumeWii::GetGameID(const Partition& partition) const { char id[6]; if (!Read(0, sizeof(id), reinterpret_cast(id), partition)) return std::string(); return DecodeString(id); } std::string VolumeWii::GetGameTDBID(const Partition& partition) const { // Don't return an ID for Datel discs if (m_game_partition == PARTITION_NONE) return ""; return GetGameID(partition); } Region VolumeWii::GetRegion() const { const std::optional region_code = m_reader->ReadSwapped(0x4E000); if (!region_code) return Region::Unknown; const Region region = static_cast(*region_code); return region <= Region::NTSC_K ? region : Region::Unknown; } Country VolumeWii::GetCountry(const Partition& partition) const { // The 0 that we use as a default value is mapped to Country::Unknown and Region::Unknown const u8 country_byte = ReadSwapped(3, partition).value_or(0); const Region region = GetRegion(); const std::optional revision = GetRevision(); if (CountryCodeToRegion(country_byte, Platform::WiiDisc, region, revision) != region) return TypicalCountryForRegion(region); return CountryCodeToCountry(country_byte, Platform::WiiDisc, region, revision); } std::string VolumeWii::GetMakerID(const Partition& partition) const { char maker_id[2]; if (!Read(0x4, sizeof(maker_id), reinterpret_cast(&maker_id), partition)) return std::string(); return DecodeString(maker_id); } std::optional VolumeWii::GetRevision(const Partition& partition) const { std::optional revision = ReadSwapped(7, partition); return revision ? *revision : std::optional(); } std::string VolumeWii::GetInternalName(const Partition& partition) const { char name_buffer[0x60]; if (Read(0x20, sizeof(name_buffer), reinterpret_cast(&name_buffer), partition)) return DecodeString(name_buffer); return ""; } std::map VolumeWii::GetLongNames() const { std::vector names(NAMES_TOTAL_CHARS); names.resize(ReadFile(*this, GetGamePartition(), "opening.bnr", reinterpret_cast(names.data()), NAMES_TOTAL_BYTES, 0x5C)); return ReadWiiNames(names); } std::vector VolumeWii::GetBanner(u32* width, u32* height) const { *width = 0; *height = 0; const std::optional title_id = GetTitleID(GetGamePartition()); if (!title_id) return std::vector(); return WiiSaveBanner(*title_id).GetBanner(width, height); } std::string VolumeWii::GetApploaderDate(const Partition& partition) const { char date[16]; if (!Read(0x2440, sizeof(date), reinterpret_cast(&date), partition)) return std::string(); return DecodeString(date); } Platform VolumeWii::GetVolumeType() const { return Platform::WiiDisc; } std::optional VolumeWii::GetDiscNumber(const Partition& partition) const { return ReadSwapped(6, partition); } BlobType VolumeWii::GetBlobType() const { return m_reader->GetBlobType(); } u64 VolumeWii::GetSize() const { return m_reader->GetDataSize(); } bool VolumeWii::IsSizeAccurate() const { return m_reader->IsDataSizeAccurate(); } u64 VolumeWii::GetRawSize() const { return m_reader->GetRawSize(); } bool VolumeWii::CheckH3TableIntegrity(const Partition& partition) const { auto it = m_partitions.find(partition); if (it == m_partitions.end()) return false; const PartitionDetails& partition_details = it->second; const std::vector& h3_table = *partition_details.h3_table; if (h3_table.size() != H3_TABLE_SIZE) return false; const IOS::ES::TMDReader& tmd = *partition_details.tmd; if (!tmd.IsValid()) return false; const std::vector contents = tmd.GetContents(); if (contents.size() != 1) return false; std::array h3_table_sha1; mbedtls_sha1_ret(h3_table.data(), h3_table.size(), h3_table_sha1.data()); return h3_table_sha1 == contents[0].sha1; } bool VolumeWii::CheckBlockIntegrity(u64 block_index, const std::vector& encrypted_data, const Partition& partition) const { if (encrypted_data.size() != BLOCK_TOTAL_SIZE) return false; auto it = m_partitions.find(partition); if (it == m_partitions.end()) return false; const PartitionDetails& partition_details = it->second; if (block_index / BLOCKS_PER_GROUP * SHA1_SIZE >= partition_details.h3_table->size()) return false; mbedtls_aes_context* aes_context = partition_details.key->get(); if (!aes_context) return false; HashBlock hashes; u8 iv[16] = {0}; mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, sizeof(HashBlock), iv, encrypted_data.data(), reinterpret_cast(&hashes)); u8 cluster_data[BLOCK_DATA_SIZE]; std::memcpy(iv, encrypted_data.data() + 0x3D0, 16); mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, sizeof(cluster_data), iv, encrypted_data.data() + sizeof(HashBlock), cluster_data); for (u32 hash_index = 0; hash_index < 31; ++hash_index) { u8 h0_hash[SHA1_SIZE]; mbedtls_sha1_ret(cluster_data + hash_index * 0x400, 0x400, h0_hash); if (memcmp(h0_hash, hashes.h0[hash_index], SHA1_SIZE)) return false; } u8 h1_hash[SHA1_SIZE]; mbedtls_sha1_ret(reinterpret_cast(hashes.h0), sizeof(hashes.h0), h1_hash); if (memcmp(h1_hash, hashes.h1[block_index % 8], SHA1_SIZE)) return false; u8 h2_hash[SHA1_SIZE]; mbedtls_sha1_ret(reinterpret_cast(hashes.h1), sizeof(hashes.h1), h2_hash); if (memcmp(h2_hash, hashes.h2[block_index / 8 % 8], SHA1_SIZE)) return false; u8 h3_hash[SHA1_SIZE]; mbedtls_sha1_ret(reinterpret_cast(hashes.h2), sizeof(hashes.h2), h3_hash); if (memcmp(h3_hash, partition_details.h3_table->data() + block_index / 64 * SHA1_SIZE, SHA1_SIZE)) return false; return true; } bool VolumeWii::CheckBlockIntegrity(u64 block_index, const Partition& partition) const { auto it = m_partitions.find(partition); if (it == m_partitions.end()) return false; const PartitionDetails& partition_details = it->second; const u64 cluster_offset = partition.offset + *partition_details.data_offset + block_index * BLOCK_TOTAL_SIZE; std::vector cluster(BLOCK_TOTAL_SIZE); if (!m_reader->Read(cluster_offset, cluster.size(), cluster.data())) return false; return CheckBlockIntegrity(block_index, cluster, partition); } bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset, u64 partition_data_decrypted_size, const std::array& key, BlobReader* blob, std::array* out) { std::vector> unencrypted_data(BLOCKS_PER_GROUP); std::vector unencrypted_hashes(BLOCKS_PER_GROUP); std::array, BLOCKS_PER_GROUP> hash_futures; bool error_occurred = false; for (size_t i = 0; i < BLOCKS_PER_GROUP; ++i) { if (!error_occurred) { if (offset + (i + 1) * BLOCK_DATA_SIZE <= partition_data_decrypted_size) { if (!blob->ReadWiiDecrypted(offset + i * BLOCK_DATA_SIZE, BLOCK_DATA_SIZE, unencrypted_data[i].data(), partition_data_offset)) { error_occurred = true; } } else { unencrypted_data[i].fill(0); } } hash_futures[i] = std::async(std::launch::async, [&unencrypted_data, &unencrypted_hashes, &hash_futures, error_occurred, i]() { const size_t h1_base = Common::AlignDown(i, 8); if (!error_occurred) { // H0 hashes for (size_t j = 0; j < 31; ++j) { mbedtls_sha1_ret(unencrypted_data[i].data() + j * 0x400, 0x400, unencrypted_hashes[i].h0[j]); } // H0 padding std::memset(unencrypted_hashes[i].padding_0, 0, sizeof(HashBlock::padding_0)); // H1 hash mbedtls_sha1_ret(reinterpret_cast(unencrypted_hashes[i].h0), sizeof(HashBlock::h0), unencrypted_hashes[h1_base].h1[i - h1_base]); } if (i % 8 == 7) { for (size_t j = 0; j < 7; ++j) hash_futures[h1_base + j].get(); if (!error_occurred) { // H1 padding std::memset(unencrypted_hashes[h1_base].padding_1, 0, sizeof(HashBlock::padding_1)); // H1 copies for (size_t j = 1; j < 8; ++j) { std::memcpy(unencrypted_hashes[h1_base + j].h1, unencrypted_hashes[h1_base].h1, sizeof(HashBlock::h1)); } // H2 hash mbedtls_sha1_ret(reinterpret_cast(unencrypted_hashes[i].h1), sizeof(HashBlock::h1), unencrypted_hashes[0].h2[h1_base / 8]); } if (i == BLOCKS_PER_GROUP - 1) { for (size_t j = 0; j < 7; ++j) hash_futures[j * 8 + 7].get(); if (!error_occurred) { // H2 padding std::memset(unencrypted_hashes[0].padding_2, 0, sizeof(HashBlock::padding_2)); // H2 copies for (size_t j = 1; j < BLOCKS_PER_GROUP; ++j) { std::memcpy(unencrypted_hashes[j].h2, unencrypted_hashes[0].h2, sizeof(HashBlock::h2)); } } } } }); } // Wait for all the async tasks to finish hash_futures.back().get(); if (error_occurred) return false; const unsigned int threads = std::min(BLOCKS_PER_GROUP, std::max(1, std::thread::hardware_concurrency())); std::vector> encryption_futures(threads); mbedtls_aes_context aes_context; mbedtls_aes_setkey_enc(&aes_context, key.data(), 128); for (size_t i = 0; i < threads; ++i) { encryption_futures[i] = std::async( std::launch::async, [&unencrypted_data, &unencrypted_hashes, &aes_context, &out](size_t start, size_t end) { for (size_t i = start; i < end; ++i) { u8* out_ptr = out->data() + i * BLOCK_TOTAL_SIZE; u8 iv[16] = {}; mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_HEADER_SIZE, iv, reinterpret_cast(&unencrypted_hashes[i]), out_ptr); std::memcpy(iv, out_ptr + 0x3D0, sizeof(iv)); mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_DATA_SIZE, iv, unencrypted_data[i].data(), out_ptr + BLOCK_HEADER_SIZE); } }, i * BLOCKS_PER_GROUP / threads, (i + 1) * BLOCKS_PER_GROUP / threads); } for (std::future& future : encryption_futures) future.get(); return true; } } // namespace DiscIO