// Copyright 2022 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoBackends/Metal/MTLGfx.h" #include "VideoBackends/Metal/MTLBoundingBox.h" #include "VideoBackends/Metal/MTLObjectCache.h" #include "VideoBackends/Metal/MTLPipeline.h" #include "VideoBackends/Metal/MTLStateTracker.h" #include "VideoBackends/Metal/MTLTexture.h" #include "VideoBackends/Metal/MTLUtil.h" #include "VideoBackends/Metal/MTLVertexFormat.h" #include "VideoBackends/Metal/MTLVertexManager.h" #include "VideoCommon/FramebufferManager.h" #include "VideoCommon/Present.h" #include "VideoCommon/VideoBackendBase.h" #include Metal::Gfx::Gfx(MRCOwned layer) : m_layer(std::move(layer)) { UpdateActiveConfig(); [m_layer setDisplaySyncEnabled:g_ActiveConfig.bVSyncActive]; SetupSurface(); g_state_tracker->FlushEncoders(); } Metal::Gfx::~Gfx() = default; bool Metal::Gfx::IsHeadless() const { return m_layer == nullptr; } // MARK: Texture Creation std::unique_ptr Metal::Gfx::CreateTexture(const TextureConfig& config, std::string_view name) { @autoreleasepool { MRCOwned desc = MRCTransfer([MTLTextureDescriptor new]); [desc setTextureType:config.samples > 1 ? MTLTextureType2DMultisampleArray : MTLTextureType2DArray]; [desc setPixelFormat:Util::FromAbstract(config.format)]; [desc setWidth:config.width]; [desc setHeight:config.height]; [desc setMipmapLevelCount:config.levels]; [desc setArrayLength:config.layers]; [desc setSampleCount:config.samples]; [desc setStorageMode:MTLStorageModePrivate]; MTLTextureUsage usage = MTLTextureUsageShaderRead; if (config.IsRenderTarget()) usage |= MTLTextureUsageRenderTarget; if (config.IsComputeImage()) usage |= MTLTextureUsageShaderWrite; [desc setUsage:usage]; id texture = [g_device newTextureWithDescriptor:desc]; if (!texture) return nullptr; if (name.empty()) [texture setLabel:[NSString stringWithFormat:@"Texture %d", m_texture_counter++]]; else [texture setLabel:MRCTransfer([[NSString alloc] initWithBytes:name.data() length:name.size() encoding:NSUTF8StringEncoding])]; return std::make_unique(MRCTransfer(texture), config); } } std::unique_ptr Metal::Gfx::CreateStagingTexture(StagingTextureType type, const TextureConfig& config) { @autoreleasepool { const size_t stride = config.GetStride(); const size_t buffer_size = stride * static_cast(config.height); MTLResourceOptions options = MTLStorageModeShared; if (type == StagingTextureType::Upload) options |= MTLResourceCPUCacheModeWriteCombined; id buffer = [g_device newBufferWithLength:buffer_size options:options]; if (!buffer) return nullptr; [buffer setLabel:[NSString stringWithFormat:@"Staging Texture %d", m_staging_texture_counter++]]; return std::make_unique(MRCTransfer(buffer), type, config); } } std::unique_ptr Metal::Gfx::CreateFramebuffer(AbstractTexture* color_attachment, AbstractTexture* depth_attachment, std::vector additional_color_attachments) { AbstractTexture* const either_attachment = color_attachment ? color_attachment : depth_attachment; return std::make_unique( color_attachment, depth_attachment, std::move(additional_color_attachments), either_attachment->GetWidth(), either_attachment->GetHeight(), either_attachment->GetLayers(), either_attachment->GetSamples()); } // MARK: Pipeline Creation std::unique_ptr Metal::Gfx::CreateShaderFromSource(ShaderStage stage, std::string_view source, std::string_view name) { std::optional msl = Util::TranslateShaderToMSL(stage, source); if (!msl.has_value()) { PanicAlertFmt("Failed to convert shader {} to MSL", name); return nullptr; } return CreateShaderFromMSL(stage, std::move(*msl), source, name); } std::unique_ptr Metal::Gfx::CreateShaderFromBinary(ShaderStage stage, const void* data, size_t length, std::string_view name) { return CreateShaderFromMSL(stage, std::string(static_cast(data), length), {}, name); } // clang-format off static const char* StageFilename(ShaderStage stage) { switch (stage) { case ShaderStage::Vertex: return "vs"; case ShaderStage::Geometry: return "gs"; case ShaderStage::Pixel: return "ps"; case ShaderStage::Compute: return "cs"; } } static NSString* GenericShaderName(ShaderStage stage) { switch (stage) { case ShaderStage::Vertex: return @"Vertex shader %d"; case ShaderStage::Geometry: return @"Geometry shader %d"; case ShaderStage::Pixel: return @"Pixel shader %d"; case ShaderStage::Compute: return @"Compute shader %d"; } } // clang-format on std::unique_ptr Metal::Gfx::CreateShaderFromMSL(ShaderStage stage, std::string msl, std::string_view glsl, std::string_view name) { @autoreleasepool { NSError* err = nullptr; auto DumpBadShader = [&](std::string_view msg) { static int counter = 0; std::string filename = VideoBackendBase::BadShaderFilename(StageFilename(stage), counter++); std::ofstream stream(filename); if (stream.good()) { stream << msl << std::endl; stream << "/*" << std::endl; stream << msg << std::endl; stream << "Error:" << std::endl; stream << [[err localizedDescription] UTF8String] << std::endl; if (!glsl.empty()) { stream << "Original GLSL:" << std::endl; stream << glsl << std::endl; } else { stream << "Shader was created with cached MSL so no GLSL is available." << std::endl; } } stream << std::endl; stream << "Dolphin Version: " << Common::GetScmRevStr() << std::endl; stream << "Video Backend: " << g_video_backend->GetDisplayName() << std::endl; stream << "*/" << std::endl; stream.close(); PanicAlertFmt("{} (written to {})\n", msg, filename); }; auto lib = MRCTransfer([g_device newLibraryWithSource:[NSString stringWithUTF8String:msl.data()] options:nil error:&err]); if (err) { DumpBadShader(fmt::format("Failed to compile {}", name)); return nullptr; } auto fn = MRCTransfer([lib newFunctionWithName:@"main0"]); if (!fn) { DumpBadShader(fmt::format("Shader {} is missing its main0 function", name)); return nullptr; } if (!name.empty()) [fn setLabel:MRCTransfer([[NSString alloc] initWithBytes:name.data() length:name.size() encoding:NSUTF8StringEncoding])]; else [fn setLabel:[NSString stringWithFormat:GenericShaderName(stage), m_shader_counter[static_cast(stage)]++]]; [lib setLabel:[fn label]]; if (stage == ShaderStage::Compute) { MTLComputePipelineReflection* reflection = nullptr; auto desc = [MTLComputePipelineDescriptor new]; [desc setComputeFunction:fn]; [desc setLabel:[fn label]]; MRCOwned> pipeline = MRCTransfer([g_device newComputePipelineStateWithDescriptor:desc options:MTLPipelineOptionArgumentInfo reflection:&reflection error:&err]); if (err) { DumpBadShader(fmt::format("Failed to compile compute pipeline {}", name)); return nullptr; } return std::make_unique(stage, reflection, std::move(msl), std::move(fn), std::move(pipeline)); } return std::make_unique(stage, std::move(msl), std::move(fn)); } } std::unique_ptr Metal::Gfx::CreateNativeVertexFormat(const PortableVertexDeclaration& vtx_decl) { @autoreleasepool { return std::make_unique(vtx_decl); } } std::unique_ptr Metal::Gfx::CreatePipeline(const AbstractPipelineConfig& config, const void* cache_data, size_t cache_data_length) { return g_object_cache->CreatePipeline(config); } void Metal::Gfx::Flush() { @autoreleasepool { g_state_tracker->FlushEncoders(); } } void Metal::Gfx::WaitForGPUIdle() { @autoreleasepool { g_state_tracker->FlushEncoders(); g_state_tracker->WaitForFlushedEncoders(); } } void Metal::Gfx::OnConfigChanged(u32 bits) { AbstractGfx::OnConfigChanged(bits); if (bits & CONFIG_CHANGE_BIT_VSYNC) [m_layer setDisplaySyncEnabled:g_ActiveConfig.bVSyncActive]; if (bits & CONFIG_CHANGE_BIT_ANISOTROPY) { g_object_cache->ReloadSamplers(); g_state_tracker->ReloadSamplers(); } } void Metal::Gfx::ClearRegion(const MathUtil::Rectangle& target_rc, bool color_enable, bool alpha_enable, bool z_enable, u32 color, u32 z) { u32 framebuffer_width = m_current_framebuffer->GetWidth(); u32 framebuffer_height = m_current_framebuffer->GetHeight(); // All Metal render passes are fullscreen, so we can only run a fast clear if the target is too if (target_rc == MathUtil::Rectangle(0, 0, framebuffer_width, framebuffer_height)) { // Determine whether the EFB has an alpha channel. If it doesn't, we can clear the alpha // channel to 0xFF. This hopefully allows us to use the fast path in most cases. if (bpmem.zcontrol.pixel_format == PixelFormat::RGB565_Z16 || bpmem.zcontrol.pixel_format == PixelFormat::RGB8_Z24 || bpmem.zcontrol.pixel_format == PixelFormat::Z24) { // Force alpha writes, and clear the alpha channel. This is different from the other backends, // where the existing values of the alpha channel are preserved. alpha_enable = true; color &= 0x00FFFFFF; } bool c_ok = (color_enable && alpha_enable) || g_state_tracker->GetCurrentFramebuffer()->GetColorFormat() == AbstractTextureFormat::Undefined; bool z_ok = z_enable || g_state_tracker->GetCurrentFramebuffer()->GetDepthFormat() == AbstractTextureFormat::Undefined; if (c_ok && z_ok) { @autoreleasepool { // clang-format off MTLClearColor clear_color = MTLClearColorMake( static_cast((color >> 16) & 0xFF) / 255.0, static_cast((color >> 8) & 0xFF) / 255.0, static_cast((color >> 0) & 0xFF) / 255.0, static_cast((color >> 24) & 0xFF) / 255.0); // clang-format on float z_normalized = static_cast(z & 0xFFFFFF) / 16777216.0f; if (!g_Config.backend_info.bSupportsReversedDepthRange) z_normalized = 1.f - z_normalized; g_state_tracker->BeginClearRenderPass(clear_color, z_normalized); return; } } } g_state_tracker->EnableEncoderLabel(false); AbstractGfx::ClearRegion(target_rc, color_enable, alpha_enable, z_enable, color, z); g_state_tracker->EnableEncoderLabel(true); } void Metal::Gfx::SetPipeline(const AbstractPipeline* pipeline) { g_state_tracker->SetPipeline(static_cast(pipeline)); } void Metal::Gfx::SetFramebuffer(AbstractFramebuffer* framebuffer) { // Shouldn't be bound as a texture. if (AbstractTexture* color = framebuffer->GetColorAttachment()) g_state_tracker->UnbindTexture(static_cast(color)->GetMTLTexture()); if (AbstractTexture* depth = framebuffer->GetDepthAttachment()) g_state_tracker->UnbindTexture(static_cast(depth)->GetMTLTexture()); m_current_framebuffer = framebuffer; g_state_tracker->SetCurrentFramebuffer(static_cast(framebuffer)); } void Metal::Gfx::SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer) { @autoreleasepool { SetFramebuffer(framebuffer); g_state_tracker->BeginRenderPass(MTLLoadActionDontCare); } } void Metal::Gfx::SetAndClearFramebuffer(AbstractFramebuffer* framebuffer, const ClearColor& color_value, float depth_value) { @autoreleasepool { SetFramebuffer(framebuffer); MTLClearColor color = MTLClearColorMake(color_value[0], color_value[1], color_value[2], color_value[3]); g_state_tracker->BeginClearRenderPass(color, depth_value); } } void Metal::Gfx::SetScissorRect(const MathUtil::Rectangle& rc) { g_state_tracker->SetScissor(rc); } void Metal::Gfx::SetTexture(u32 index, const AbstractTexture* texture) { g_state_tracker->SetTexture( index, texture ? static_cast(texture)->GetMTLTexture() : nullptr); } void Metal::Gfx::SetSamplerState(u32 index, const SamplerState& state) { g_state_tracker->SetSampler(index, state); } void Metal::Gfx::SetComputeImageTexture(u32 index, AbstractTexture* texture, bool read, bool write) { g_state_tracker->SetTexture(index + VideoCommon::MAX_COMPUTE_SHADER_SAMPLERS, texture ? static_cast(texture)->GetMTLTexture() : nullptr); } void Metal::Gfx::UnbindTexture(const AbstractTexture* texture) { g_state_tracker->UnbindTexture(static_cast(texture)->GetMTLTexture()); } void Metal::Gfx::SetViewport(float x, float y, float width, float height, float near_depth, float far_depth) { g_state_tracker->SetViewport(x, y, width, height, near_depth, far_depth); } void Metal::Gfx::Draw(u32 base_vertex, u32 num_vertices) { @autoreleasepool { g_state_tracker->Draw(base_vertex, num_vertices); } } void Metal::Gfx::DrawIndexed(u32 base_index, u32 num_indices, u32 base_vertex) { @autoreleasepool { g_state_tracker->DrawIndexed(base_index, num_indices, base_vertex); } } void Metal::Gfx::DispatchComputeShader(const AbstractShader* shader, // u32 groupsize_x, u32 groupsize_y, u32 groupsize_z, u32 groups_x, u32 groups_y, u32 groups_z) { @autoreleasepool { g_state_tracker->SetPipeline(static_cast(shader)); g_state_tracker->DispatchComputeShader(groupsize_x, groupsize_y, groupsize_z, // groups_x, groups_y, groups_z); } } void Metal::Gfx::BindBackbuffer(const ClearColor& clear_color) { @autoreleasepool { CheckForSurfaceChange(); CheckForSurfaceResize(); m_drawable = MRCRetain([m_layer nextDrawable]); m_backbuffer->UpdateBackbufferTexture([m_drawable texture]); SetAndClearFramebuffer(m_backbuffer.get(), clear_color); } } void Metal::Gfx::PresentBackbuffer() { @autoreleasepool { g_state_tracker->EndRenderPass(); if (m_drawable) { // PresentDrawable refuses to allow Dolphin to present faster than the display's refresh rate // when windowed (or fullscreen with vsync enabled, but that's more understandable). // On the other hand, it helps Xcode's GPU captures start and stop on frame boundaries // which is convenient. Put it here as a default-off config, which we can override in Xcode. // It also seems to improve frame pacing, so enable it by default with vsync if (g_ActiveConfig.iUsePresentDrawable == TriState::On || (g_ActiveConfig.iUsePresentDrawable == TriState::Auto && g_ActiveConfig.bVSyncActive)) [g_state_tracker->GetRenderCmdBuf() presentDrawable:m_drawable]; else [g_state_tracker->GetRenderCmdBuf() addScheduledHandler:[drawable = std::move(m_drawable)](id) { [drawable present]; }]; m_backbuffer->UpdateBackbufferTexture(nullptr); m_drawable = nullptr; } g_state_tracker->FlushEncoders(); } } void Metal::Gfx::CheckForSurfaceChange() { if (!g_presenter->SurfaceChangedTestAndClear()) return; m_layer = MRCRetain(static_cast(g_presenter->GetNewSurfaceHandle())); SetupSurface(); } void Metal::Gfx::CheckForSurfaceResize() { if (!g_presenter->SurfaceResizedTestAndClear()) return; SetupSurface(); } void Metal::Gfx::SetupSurface() { auto info = GetSurfaceInfo(); [m_layer setDrawableSize:{static_cast(info.width), static_cast(info.height)}]; TextureConfig cfg(info.width, info.height, 1, 1, 1, info.format, AbstractTextureFlag_RenderTarget); m_bb_texture = std::make_unique(nullptr, cfg); m_backbuffer = std::make_unique( m_bb_texture.get(), nullptr, std::vector{}, info.width, info.height, 1, 1); if (g_presenter) g_presenter->SetBackbuffer(info); } SurfaceInfo Metal::Gfx::GetSurfaceInfo() const { if (!m_layer) // Headless return {}; CGSize size = [m_layer bounds].size; const float scale = [m_layer contentsScale]; return {static_cast(size.width * scale), static_cast(size.height * scale), scale, Util::ToAbstract([m_layer pixelFormat])}; }