// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #pragma once #include "d3d11.h" #include "FramebufferManagerBase.h" #include "D3DTexture.h" namespace DX11 { // On the GameCube, the game sends a request for the graphics processor to // transfer its internal EFB (Embedded Framebuffer) to an area in GameCube RAM // called the XFB (External Framebuffer). The size and location of the XFB is // decided at the time of the copy, and the format is always YUYV. The video // interface is given a pointer to the XFB, which will be decoded and // displayed on the TV. // // There are two ways for Dolphin to emulate this: // // Real XFB mode: // // Dolphin will behave like the GameCube and encode the EFB to // a portion of GameCube RAM. The emulated video interface will decode the data // for output to the screen. // // Advantages: Behaves exactly like the GameCube. // Disadvantages: Resolution will be limited. // // Virtual XFB mode: // // When a request is made to copy the EFB to an XFB, Dolphin // will remember the RAM location and size of the XFB in a Virtual XFB list. // The video interface will look up the XFB in the list and use the enhanced // data stored there, if available. // // Advantages: Enables high resolution graphics, better than real hardware. // Disadvantages: If the GameCube CPU writes directly to the XFB (which is // possible but uncommon), the Virtual XFB will not capture this information. // There may be multiple XFBs in GameCube RAM. This is the maximum number to // virtualize. struct XFBSource : public XFBSourceBase { XFBSource(D3DTexture2D *_tex) : tex(_tex) {} ~XFBSource() { tex->Release(); } void Draw(const MathUtil::Rectangle &sourcerc, const MathUtil::Rectangle &drawrc) const; void DecodeToTexture(u32 xfbAddr, u32 fbWidth, u32 fbHeight); void CopyEFB(float Gamma); D3DTexture2D* const tex; }; class FramebufferManager : public FramebufferManagerBase { public: FramebufferManager(); ~FramebufferManager(); static D3DTexture2D* &GetEFBColorTexture(); static ID3D11Texture2D* &GetEFBColorStagingBuffer(); static D3DTexture2D* &GetEFBDepthTexture(); static D3DTexture2D* &GetEFBDepthReadTexture(); static ID3D11Texture2D* &GetEFBDepthStagingBuffer(); static D3DTexture2D* &GetResolvedEFBColorTexture(); static D3DTexture2D* &GetResolvedEFBDepthTexture(); static D3DTexture2D* &GetEFBColorTempTexture() { return m_efb.color_temp_tex; } static void SwapReinterpretTexture() { D3DTexture2D* swaptex = GetEFBColorTempTexture(); m_efb.color_temp_tex = GetEFBColorTexture(); m_efb.color_tex = swaptex; } private: XFBSourceBase* CreateXFBSource(unsigned int target_width, unsigned int target_height); void GetTargetSize(unsigned int *width, unsigned int *height, const EFBRectangle& sourceRc); void CopyToRealXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc,float Gamma); static struct Efb { D3DTexture2D* color_tex; ID3D11Texture2D* color_staging_buf; D3DTexture2D* depth_tex; ID3D11Texture2D* depth_staging_buf; D3DTexture2D* depth_read_texture; D3DTexture2D* color_temp_tex; D3DTexture2D* resolved_color_tex; D3DTexture2D* resolved_depth_tex; } m_efb; }; } // namespace DX11