// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include "AudioCommon/AudioCommon.h" #include "AudioCommon/Mixer.h" #include "Common/Atomic.h" #include "Common/CPUDetect.h" #include "Common/MathUtil.h" #include "Core/ConfigManager.h" #include "Core/Core.h" #include "Core/HW/AudioInterface.h" #include "Core/HW/VideoInterface.h" // UGLINESS #include "Core/PowerPC/PowerPC.h" #if _M_SSE >= 0x301 && !(defined __GNUC__ && !defined __SSSE3__) #include #endif // Executed from sound stream thread unsigned int CMixer::MixerFifo::Mix(short* samples, unsigned int numSamples, bool consider_framelimit) { unsigned int currentSample = 0; // Cache access in non-volatile variable // This is the only function changing the read value, so it's safe to // cache it locally although it's written here. // The writing pointer will be modified outside, but it will only increase, // so we will just ignore new written data while interpolating. // Without this cache, the compiler wouldn't be allowed to optimize the // interpolation loop. u32 indexR = Common::AtomicLoad(m_indexR); u32 indexW = Common::AtomicLoad(m_indexW); float numLeft = ((indexW - indexR) & INDEX_MASK) / 2; m_numLeftI = (numLeft + m_numLeftI*(CONTROL_AVG-1)) / CONTROL_AVG; float offset = (m_numLeftI - LOW_WATERMARK) * CONTROL_FACTOR; if (offset > MAX_FREQ_SHIFT) offset = MAX_FREQ_SHIFT; if (offset < -MAX_FREQ_SHIFT) offset = -MAX_FREQ_SHIFT; //render numleft sample pairs to samples[] //advance indexR with sample position //remember fractional offset u32 framelimit = SConfig::GetInstance().m_Framelimit; float aid_sample_rate = m_input_sample_rate + offset; if (consider_framelimit && framelimit > 2) { aid_sample_rate = aid_sample_rate * (framelimit - 1) * 5 / VideoInterface::TargetRefreshRate; } static u32 frac = 0; const u32 ratio = (u32)( 65536.0f * aid_sample_rate / (float)m_mixer->m_sampleRate ); if (ratio > 0x10000) ERROR_LOG(AUDIO, "ratio out of range"); for (; currentSample < numSamples*2 && ((indexW-indexR) & INDEX_MASK) > 2; currentSample+=2) { u32 indexR2 = indexR + 2; //next sample s16 l1 = Common::swap16(m_buffer[indexR & INDEX_MASK]); //current s16 l2 = Common::swap16(m_buffer[indexR2 & INDEX_MASK]); //next int sampleL = ((l1 << 16) + (l2 - l1) * (u16)frac) >> 16; sampleL += samples[currentSample + 1]; MathUtil::Clamp(&sampleL, -32767, 32767); samples[currentSample+1] = sampleL; s16 r1 = Common::swap16(m_buffer[(indexR + 1) & INDEX_MASK]); //current s16 r2 = Common::swap16(m_buffer[(indexR2 + 1) & INDEX_MASK]); //next int sampleR = ((r1 << 16) + (r2 - r1) * (u16)frac) >> 16; sampleR += samples[currentSample]; MathUtil::Clamp(&sampleR, -32767, 32767); samples[currentSample] = sampleR; frac += ratio; indexR += 2 * (u16)(frac >> 16); frac &= 0xffff; } // Padding short s[2]; s[0] = Common::swap16(m_buffer[(indexR - 1) & INDEX_MASK]); s[1] = Common::swap16(m_buffer[(indexR - 2) & INDEX_MASK]); for (; currentSample < numSamples*2; currentSample+=2) { int sampleR = s[0] + samples[currentSample]; MathUtil::Clamp(&sampleR, -32767, 32767); samples[currentSample] = sampleR; int sampleL = s[1] + samples[currentSample + 1]; MathUtil::Clamp(&sampleL, -32767, 32767); samples[currentSample + 1] = sampleL; } // Flush cached variable Common::AtomicStore(m_indexR, indexR); return numSamples; } unsigned int CMixer::Mix(short* samples, unsigned int num_samples, bool consider_framelimit) { if (!samples) return 0; std::lock_guard lk(m_csMixing); memset(samples, 0, num_samples * 2 * sizeof(short)); if (PowerPC::GetState() != PowerPC::CPU_RUNNING) { // Silence return num_samples; } m_dma_mixer.Mix(samples, num_samples, consider_framelimit); m_streaming_mixer.Mix(samples, num_samples, consider_framelimit); if (m_logAudio) g_wave_writer.AddStereoSamples(samples, num_samples); return num_samples; } void CMixer::MixerFifo::PushSamples(const short *samples, unsigned int num_samples) { // Cache access in non-volatile variable // indexR isn't allowed to cache in the audio throttling loop as it // needs to get updates to not deadlock. u32 indexW = Common::AtomicLoad(m_indexW); if (m_mixer->m_throttle) { // The auto throttle function. This loop will put a ceiling on the CPU MHz. while (num_samples * 2 + ((indexW - Common::AtomicLoad(m_indexR)) & INDEX_MASK) >= MAX_SAMPLES * 2) { if (*PowerPC::GetStatePtr() != PowerPC::CPU_RUNNING || soundStream->IsMuted()) break; // Shortcut key for Throttle Skipping if (Core::GetIsFramelimiterTempDisabled()) break; SLEEP(1); soundStream->Update(); } } // Check if we have enough free space // indexW == m_indexR results in empty buffer, so indexR must always be smaller than indexW if (num_samples * 2 + ((indexW - Common::AtomicLoad(m_indexR)) & INDEX_MASK) >= MAX_SAMPLES * 2) return; // AyuanX: Actual re-sampling work has been moved to sound thread // to alleviate the workload on main thread // and we simply store raw data here to make fast mem copy int over_bytes = num_samples * 4 - (MAX_SAMPLES * 2 - (indexW & INDEX_MASK)) * sizeof(short); if (over_bytes > 0) { memcpy(&m_buffer[indexW & INDEX_MASK], samples, num_samples * 4 - over_bytes); memcpy(&m_buffer[0], samples + (num_samples * 4 - over_bytes) / sizeof(short), over_bytes); } else { memcpy(&m_buffer[indexW & INDEX_MASK], samples, num_samples * 4); } Common::AtomicAdd(m_indexW, num_samples * 2); return; } void CMixer::PushSamples(const short *samples, unsigned int num_samples) { m_dma_mixer.PushSamples(samples, num_samples); } void CMixer::PushStreamingSamples(const short *samples, unsigned int num_samples) { m_streaming_mixer.PushSamples(samples, num_samples); }