// Copyright (C) 2003-2008 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Globals.h" #include "Profiler.h" #include "Config.h" #include "GLUtil.h" #include #include #include #include "Statistics.h" #include "ImageWrite.h" #include "Render.h" #include "VertexShader.h" #include "VertexShaderManager.h" #include "VertexManager.h" #include "VertexLoader.h" #include "BPMemory.h" #include "XFMemory.h" VertexShaderMngr::VSCache VertexShaderMngr::vshaders; VERTEXSHADER* VertexShaderMngr::pShaderLast = NULL; float GC_ALIGNED16(g_fProjectionMatrix[16]); extern int A, B; extern float AR; extern int nBackbufferWidth, nBackbufferHeight; // Internal Variables static int s_nMaxVertexInstructions; static float s_fMaterials[16]; static float rawViewport[6] = {0}; static float rawProjection[7] = {0}; // track changes static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged; static int nMaterialsChanged; static int nTransformMatricesChanged[2]; // min,max static int nNormalMatricesChanged[2]; // min,max static int nPostTransformMatricesChanged[2]; // min,max static int nLightsChanged[2]; // min,max void VertexShaderMngr::SetVSConstant4f(int const_number, float f1, float f2, float f3, float f4) { glProgramEnvParameter4fARB(GL_VERTEX_PROGRAM_ARB, const_number, f1, f2, f3, f4); } void VertexShaderMngr::SetVSConstant4fv(int const_number, const float *f) { glProgramEnvParameter4fvARB(GL_VERTEX_PROGRAM_ARB, const_number, f); } void VertexShaderMngr::Init() { nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1; nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1; nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1; nLightsChanged[0] = nLightsChanged[1] = -1; bTexMatricesChanged[0] = bTexMatricesChanged[1] = false; bPosNormalMatrixChanged = bProjectionChanged = bViewportChanged = false; nMaterialsChanged = 0; memset(&xfregs, 0, sizeof(xfregs)); memset(xfmem, 0, sizeof(xfmem)); glGetProgramivARB(GL_VERTEX_PROGRAM_ARB, GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB, (GLint *)&s_nMaxVertexInstructions); } void VertexShaderMngr::Shutdown() { for (VSCache::iterator iter = vshaders.begin(); iter != vshaders.end(); iter++) iter->second.Destroy(); vshaders.clear(); } float VertexShaderMngr::GetPixelAspectRatio() { return rawViewport[0] != 0 ? (float)Renderer::GetTargetWidth() / 640.0f : 1.0f; } VERTEXSHADER* VertexShaderMngr::GetShader(u32 components) { DVSTARTPROFILE(); VERTEXSHADERUID uid; GetVertexShaderId(uid, components); VSCache::iterator iter = vshaders.find(uid); if (iter != vshaders.end()) { iter->second.frameCount = frameCount; VSCacheEntry &entry = iter->second; if (&entry.shader != pShaderLast) { pShaderLast = &entry.shader; } return pShaderLast; } VSCacheEntry& entry = vshaders[uid]; char *code = GenerateVertexShader(components, Renderer::GetZBufferTarget() != 0); #if defined(_DEBUG) || defined(DEBUGFAST) if (g_Config.iLog & CONF_SAVESHADERS && code) { static int counter = 0; char szTemp[MAX_PATH]; sprintf(szTemp, "%s/vs_%04i.txt", g_Config.texDumpPath, counter++); SaveData(szTemp, code); } #endif if (!code || !VertexShaderMngr::CompileVertexShader(entry.shader, code)) { ERROR_LOG("failed to create vertex shader\n"); return NULL; } //Make an entry in the table entry.frameCount=frameCount; pShaderLast = &entry.shader; INCSTAT(stats.numVertexShadersCreated); SETSTAT(stats.numVertexShadersAlive,vshaders.size()); return pShaderLast; } void VertexShaderMngr::Cleanup() { VSCache::iterator iter=vshaders.begin(); while (iter != vshaders.end()) { VSCacheEntry &entry = iter->second; if (entry.frameCount < frameCount-200) { entry.Destroy(); #ifdef _WIN32 iter = vshaders.erase(iter); #else vshaders.erase(iter++); #endif } else { ++iter; } } // static int frame = 0; // if( frame++ > 30 ) { // VSCache::iterator iter=vshaders.begin(); // while(iter!=vshaders.end()) { // iter->second.Destroy(); // ++iter; // } // vshaders.clear(); // } SETSTAT(stats.numPixelShadersAlive,vshaders.size()); } bool VertexShaderMngr::CompileVertexShader(VERTEXSHADER& vs, const char* pstrprogram) { char stropt[64]; sprintf(stropt, "MaxLocalParams=256,MaxInstructions=%d", s_nMaxVertexInstructions); const char *opts[] = {"-profileopts", stropt, "-O2", "-q", NULL}; CGprogram tempprog = cgCreateProgram(g_cgcontext, CG_SOURCE, pstrprogram, g_cgvProf, "main", opts); if (!cgIsProgram(tempprog) || cgGetError() != CG_NO_ERROR) { ERROR_LOG("Failed to load vs %s:\n", cgGetLastListing(g_cgcontext)); ERROR_LOG(pstrprogram); return false; } //ERROR_LOG(pstrprogram); //ERROR_LOG("id: %d\n", g_Config.iSaveTargetId); char* pcompiledprog = (char*)cgGetProgramString(tempprog, CG_COMPILED_PROGRAM); char* plocal = strstr(pcompiledprog, "program.local"); while (plocal != NULL) { const char* penv = " program.env"; memcpy(plocal, penv, 13); plocal = strstr(plocal+13, "program.local"); } glGenProgramsARB(1, &vs.glprogid); glBindProgramARB(GL_VERTEX_PROGRAM_ARB, vs.glprogid); glProgramStringARB(GL_VERTEX_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, (GLsizei)strlen(pcompiledprog), pcompiledprog); GLenum err = GL_NO_ERROR; GL_REPORT_ERROR(); if( err != GL_NO_ERROR ) { ERROR_LOG(pstrprogram); ERROR_LOG(pcompiledprog); } cgDestroyProgram(tempprog); // printf("Compiled vertex shader %i\n", vs.glprogid); #ifdef _DEBUG vs.strprog = pstrprogram; #endif return true; } const u16 s_mtrltable[16][2] = {{0, 0}, {0, 1}, {1, 1}, {0, 2}, {2, 1}, {0, 3}, {1, 2}, {0, 3}, {3, 1}, {0, 4}, {1, 3}, {0, 4}, {2, 2}, {0, 4}, {1, 3}, {0, 4}}; // ======================================================================================= // Syncs the shader constant buffers with xfmem // ---------------- void VertexShaderMngr::SetConstants() { //nTransformMatricesChanged[0] = 0; nTransformMatricesChanged[1] = 256; //nNormalMatricesChanged[0] = 0; nNormalMatricesChanged[1] = 96; //nPostTransformMatricesChanged[0] = 0; nPostTransformMatricesChanged[1] = 256; //nLightsChanged[0] = 0; nLightsChanged[1] = 0x80; //bPosNormalMatrixChanged = true; //bTexMatricesChanged[0] = bTexMatricesChanged[1] = true; //bProjectionChanged = true; // bPosNormalMatrixChanged = bTexMatricesChanged[0] = bTexMatricesChanged[1] = true; // nMaterialsChanged = 15; if (nTransformMatricesChanged[0] >= 0) { int startn = nTransformMatricesChanged[0]/4; int endn = (nTransformMatricesChanged[1]+3)/4; const float* pstart = (const float*)&xfmem[startn*4]; for(int i = startn; i < endn; ++i, pstart += 4) SetVSConstant4fv(C_TRANSFORMMATRICES+i, pstart); nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1; } if (nNormalMatricesChanged[0] >= 0) { int startn = nNormalMatricesChanged[0]/3; int endn = (nNormalMatricesChanged[1]+2)/3; const float* pnstart = (const float*)&xfmem[XFMEM_NORMALMATRICES+3*startn]; for(int i = startn; i < endn; ++i, pnstart += 3) SetVSConstant4fv(C_NORMALMATRICES+i, pnstart); nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1; } if (nPostTransformMatricesChanged[0] >= 0) { int startn = nPostTransformMatricesChanged[0]/4; int endn = (nPostTransformMatricesChanged[1]+3)/4; const float* pstart = (const float*)&xfmem[XFMEM_POSTMATRICES + startn*4]; for(int i = startn; i < endn; ++i, pstart += 4) SetVSConstant4fv(C_POSTTRANSFORMMATRICES + i, pstart); } if (nLightsChanged[0] >= 0) { // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats int istart = nLightsChanged[0] / 0x10; int iend = (nLightsChanged[1] + 15) / 0x10; const float* xfmemptr = (const float*)&xfmem[0x10*istart + XFMEM_LIGHTS]; for (int i = istart; i < iend; ++i) { u32 color = *(const u32*)(xfmemptr + 3); SetVSConstant4f(C_LIGHTS + 5*i, ((color >> 24) & 0xFF)/255.0f, ((color >> 16) & 0xFF)/255.0f, ((color >> 8) & 0xFF)/255.0f, ((color) & 0xFF)/255.0f); xfmemptr += 4; for (int j = 0; j < 4; ++j, xfmemptr += 3) { if (j == 1 && fabs(xfmemptr[0]) < 0.00001f && fabs(xfmemptr[1]) < 0.00001f && fabs(xfmemptr[2]) < 0.00001f) { // dist attenuation, make sure not equal to 0!!! SetVSConstant4f(C_LIGHTS+5*i+j+1, 0.00001f, xfmemptr[1], xfmemptr[2], 0); } else SetVSConstant4fv(C_LIGHTS+5*i+j+1, xfmemptr); } } nLightsChanged[0] = nLightsChanged[1] = -1; } if (nMaterialsChanged) { for (int i = 0; i < 4; ++i) { if (nMaterialsChanged & (1 << i)) SetVSConstant4fv(C_MATERIALS + i, &s_fMaterials[4*i]); } nMaterialsChanged = 0; } if (bPosNormalMatrixChanged) { bPosNormalMatrixChanged = false; float* pos = (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4; float* norm = (float*)xfmem + XFMEM_NORMALMATRICES + 3 * (MatrixIndexA.PosNormalMtxIdx & 31); SetVSConstant4fv(C_POSNORMALMATRIX, pos); SetVSConstant4fv(C_POSNORMALMATRIX+1, pos+4); SetVSConstant4fv(C_POSNORMALMATRIX+2, pos+8); SetVSConstant4fv(C_POSNORMALMATRIX+3, norm); SetVSConstant4fv(C_POSNORMALMATRIX+4, norm+3); SetVSConstant4fv(C_POSNORMALMATRIX+5, norm+6); } if (bTexMatricesChanged[0]) { bTexMatricesChanged[0] = false; float* fptrs[] = { (float*)xfmem + MatrixIndexA.Tex0MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex1MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex2MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex3MtxIdx * 4 }; for (int i = 0; i < 4; ++i) { SetVSConstant4fv(C_TEXMATRICES+3*i, fptrs[i]); SetVSConstant4fv(C_TEXMATRICES+3*i+1, fptrs[i]+4); SetVSConstant4fv(C_TEXMATRICES+3*i+2, fptrs[i]+8); } } if (bTexMatricesChanged[1]) { bTexMatricesChanged[1] = false; float* fptrs[] = {(float*)xfmem + MatrixIndexB.Tex4MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex5MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex6MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex7MtxIdx * 4 }; for (int i = 0; i < 4; ++i) { SetVSConstant4fv(C_TEXMATRICES+3*i+12, fptrs[i]); SetVSConstant4fv(C_TEXMATRICES+3*i+12+1, fptrs[i]+4); SetVSConstant4fv(C_TEXMATRICES+3*i+12+2, fptrs[i]+8); } } if (bViewportChanged) { bViewportChanged = false; // reversed gxsetviewport(xorig, yorig, width, height, nearz, farz) // [0] = width/2 // [1] = height/2 // [2] = 16777215 * (farz-nearz) // [3] = xorig + width/2 + 342 // [4] = yorig + height/2 + 342 // [5] = 16777215 * farz /*INFO_LOG("view: topleft=(%f,%f), wh=(%f,%f), z=(%f,%f)\n", rawViewport[3]-rawViewport[0]-342, rawViewport[4]+rawViewport[1]-342, 2 * rawViewport[0], 2 * rawViewport[1], (rawViewport[5] - rawViewport[2]) / 16777215.0f, rawViewport[5] / 16777215.0f);*/ // Keep aspect ratio at 4:3 // rawViewport[0] = 320, rawViewport[1] = -240 int scissorXOff = bpmem.scissorOffset.x * 2 - 342; int scissorYOff = bpmem.scissorOffset.y * 2 - 342; float fourThree = 4.0f / 3.0f; float ratio = AR / fourThree; float wAdj, hAdj; float actualRatiow, actualRatioh; int overfl; int xoffs = 0, yoffs = 0; int wid, hei, actualWid, actualHei; int winw = nBackbufferWidth; int winh = nBackbufferHeight; if (g_Config.bKeepAR) { // Check if height or width is the limiting factor if (ratio > 1) // then we are to wide and have to limit the width { wAdj = ratio; hAdj = 1; wid = ceil(fabs(2 * rawViewport[0]) / wAdj); hei = ceil(fabs(2 * rawViewport[1]) / hAdj); actualWid = ceil((float)winw / ratio); actualRatiow = (float)actualWid / (float)wid; // the picture versus the screen overfl = (winw - actualWid) / actualRatiow; xoffs = overfl / 2; } else // the window is to high, we have to limit the height { ratio = 1 / ratio; wAdj = 1; hAdj = ratio; wid = ceil(fabs(2 * rawViewport[0]) / wAdj); hei = ceil(fabs(2 * rawViewport[1]) / hAdj); actualHei = ceil((float)winh / ratio); actualRatioh = (float)actualHei / (float)hei; // the picture versus the screen overfl = (winh - actualHei) / actualRatioh; yoffs = overfl / 2; } } else { wid = ceil(fabs(2 * rawViewport[0])); hei = ceil(fabs(2 * rawViewport[1])); } if (g_Config.bStretchToFit) { glViewport( (int)(rawViewport[3]-rawViewport[0]-342-scissorXOff) + xoffs, Renderer::GetTargetHeight() - ((int)(rawViewport[4]-rawViewport[1]-342-scissorYOff)) + yoffs, wid, // width hei // height ); } else { glViewport((int)(rawViewport[3]-rawViewport[0]-342-scissorXOff) * MValueX, Renderer::GetTargetHeight()-((int)(rawViewport[4]-rawViewport[1]-342-scissorYOff)) * MValueY, abs((int)(2 * rawViewport[0])) * MValueX, abs((int)(2 * rawViewport[1])) * MValueY); } // Metroid Prime 1 & 2 likes this glDepthRange(-(0.0f - (rawViewport[5]-rawViewport[2])/16777215.0f), rawViewport[5]/16777215.0f); // FZero stage likes this (a sonic hack) // glDepthRange(-(0.0f - (rawViewport[5]-rawViewport[2])/-16777215.0f), rawViewport[5]/16777215.0f); } if (bProjectionChanged) { bProjectionChanged = false; if (rawProjection[6] == 0) { g_fProjectionMatrix[0] = rawProjection[0]; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = rawProjection[1]; g_fProjectionMatrix[3] = 0; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = rawProjection[2]; g_fProjectionMatrix[6] = rawProjection[3]; g_fProjectionMatrix[7] = 0; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; g_fProjectionMatrix[10] = rawProjection[4]; // Working bloom in ZTP g_fProjectionMatrix[11] = -(0.0f - rawProjection[5]); // Yes, it's important that it's done this way. // Working projection in PSO // g_fProjectionMatrix[11] = -(1.0f - rawProjection[5]); g_fProjectionMatrix[12] = 0.0f; g_fProjectionMatrix[13] = 0.0f; g_fProjectionMatrix[14] = -1.0f; g_fProjectionMatrix[15] = 0.0f; } else { g_fProjectionMatrix[0] = rawProjection[0]; g_fProjectionMatrix[1] = 0.0f; g_fProjectionMatrix[2] = 0.0f; g_fProjectionMatrix[3] = rawProjection[1]; g_fProjectionMatrix[4] = 0.0f; g_fProjectionMatrix[5] = rawProjection[2]; g_fProjectionMatrix[6] = 0.0f; g_fProjectionMatrix[7] = rawProjection[3]; g_fProjectionMatrix[8] = 0.0f; g_fProjectionMatrix[9] = 0.0f; g_fProjectionMatrix[10] = rawProjection[4]; // Working bloom in ZTP g_fProjectionMatrix[11] = -(-1.0f - rawProjection[5]); // Yes, it's important that it's done this way. // Working projection in PSO // g_fProjectionMatrix[11] = -(0.0f - rawProjection[5]); g_fProjectionMatrix[12] = 0; g_fProjectionMatrix[13] = 0; g_fProjectionMatrix[14] = 0.0f; g_fProjectionMatrix[15] = 1.0f; } PRIM_LOG("Projection: %f %f %f %f %f %f\n", rawProjection[0], rawProjection[1], rawProjection[2], rawProjection[3], rawProjection[4], rawProjection[5]); SetVSConstant4fv(C_PROJECTION, &g_fProjectionMatrix[0]); SetVSConstant4fv(C_PROJECTION+1, &g_fProjectionMatrix[4]); SetVSConstant4fv(C_PROJECTION+2, &g_fProjectionMatrix[8]); SetVSConstant4fv(C_PROJECTION+3, &g_fProjectionMatrix[12]); } } void VertexShaderMngr::InvalidateXFRange(int start, int end) { if (((u32)start >= (u32)MatrixIndexA.PosNormalMtxIdx*4 && (u32)start < (u32)MatrixIndexA.PosNormalMtxIdx*4 + 12) || ((u32)start >= XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31)*3 && (u32)start < XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31)*3 + 9)) { bPosNormalMatrixChanged = true; } if (((u32)start >= (u32)MatrixIndexA.Tex0MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex0MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexA.Tex1MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex1MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexA.Tex2MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex2MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexA.Tex3MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex3MtxIdx*4+12)) { bTexMatricesChanged[0] = true; } if (((u32)start >= (u32)MatrixIndexB.Tex4MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex4MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexB.Tex5MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex5MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexB.Tex6MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex6MtxIdx*4+12) || ((u32)start >= (u32)MatrixIndexB.Tex7MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex7MtxIdx*4+12)) { bTexMatricesChanged[1] = true; } if (start < XFMEM_POSMATRICES_END) { if (nTransformMatricesChanged[0] == -1) { nTransformMatricesChanged[0] = start; nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } else { if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start; if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end; } } if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES) { int _start = start < XFMEM_NORMALMATRICES ? 0 : start-XFMEM_NORMALMATRICES; int _end = end < XFMEM_NORMALMATRICES_END ? end-XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END-XFMEM_NORMALMATRICES; if (nNormalMatricesChanged[0] == -1 ) { nNormalMatricesChanged[0] = _start; nNormalMatricesChanged[1] = _end; } else { if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start; if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end; } } if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES) { int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start-XFMEM_POSTMATRICES; int _end = end < XFMEM_POSTMATRICES_END ? end-XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END-XFMEM_POSTMATRICES; if (nPostTransformMatricesChanged[0] == -1 ) { nPostTransformMatricesChanged[0] = _start; nPostTransformMatricesChanged[1] = _end; } else { if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start; if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end; } } if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS) { int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS; int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS; if (nLightsChanged[0] == -1 ) { nLightsChanged[0] = _start; nLightsChanged[1] = _end; } else { if (nLightsChanged[0] > _start) nLightsChanged[0] = _start; if (nLightsChanged[1] < _end) nLightsChanged[1] = _end; } } } void VertexShaderMngr::SetTexMatrixChangedA(u32 Value) { if (MatrixIndexA.Hex != Value) { VertexManager::Flush(); if (MatrixIndexA.PosNormalMtxIdx != (Value&0x3f)) bPosNormalMatrixChanged = true; bTexMatricesChanged[0] = true; MatrixIndexA.Hex = Value; } } void VertexShaderMngr::SetTexMatrixChangedB(u32 Value) { if (MatrixIndexB.Hex != Value) { VertexManager::Flush(); bTexMatricesChanged[1] = true; MatrixIndexB.Hex = Value; } } void VertexShaderMngr::SetViewport(float* _Viewport) { // Workaround for paper mario, yep this is bizarre. for (size_t i = 0; i < ARRAYSIZE(rawViewport); ++i) { if (*(u32*)(_Viewport + i) == 0x7f800000) // invalid fp number return; } memcpy(rawViewport, _Viewport, sizeof(rawViewport)); bViewportChanged = true; } void VertexShaderMngr::SetViewportChanged() { bViewportChanged = true; } void VertexShaderMngr::SetProjection(float* _pProjection, int constantIndex) { memcpy(rawProjection, _pProjection, sizeof(rawProjection)); bProjectionChanged = true; } // LoadXFReg 0x10 void VertexShaderMngr::LoadXFReg(u32 transferSize, u32 baseAddress, u32 *pData) { u32 address = baseAddress; for (int i = 0; i < (int)transferSize; i++) { address = baseAddress + i; // Setup a Matrix if (address < 0x1000) { VertexManager::Flush(); InvalidateXFRange(address, address+transferSize); //PRIM_LOG("xfmem write: 0x%x-0x%x\n", address, address+transferSize); u32* p1 = &xfmem[address]; memcpy_gc(p1, &pData[i], transferSize*4); i += transferSize; } else if (address<0x2000) { u32 data = pData[i]; switch (address) { case 0x1000: // error break; case 0x1001: // diagnostics break; case 0x1002: // internal state 0 break; case 0x1003: // internal state 1 break; case 0x1004: // xf_clock break; case 0x1005: // clipdisable if (data & 1) { // disable clipping detection } if (data & 2) { // disable trivial rejection } if (data & 4) { // disable cpoly clipping acceleration } break; case 0x1006: //SetGPMetric break; case 0x1008: //__GXXfVtxSpecs, wrote 0004 xfregs.hostinfo = *(INVTXSPEC*)&data; break; case 0x1009: //GXSetNumChans (no) if ((u32)xfregs.nNumChans != (data&3)) { VertexManager::Flush(); xfregs.nNumChans = data&3; } break; case 0x100a: //GXSetChanAmbientcolor if (xfregs.colChans[0].ambColor != data) { VertexManager::Flush(); nMaterialsChanged |= 1; xfregs.colChans[0].ambColor = data; s_fMaterials[0] = ((data>>24)&0xFF)/255.0f; s_fMaterials[1] = ((data>>16)&0xFF)/255.0f; s_fMaterials[2] = ((data>>8)&0xFF)/255.0f; s_fMaterials[3] = ((data)&0xFF)/255.0f; } break; case 0x100b: //GXSetChanAmbientcolor if (xfregs.colChans[1].ambColor != data) { VertexManager::Flush(); nMaterialsChanged |= 2; xfregs.colChans[1].ambColor = data; s_fMaterials[4] = ((data>>24)&0xFF)/255.0f; s_fMaterials[5] = ((data>>16)&0xFF)/255.0f; s_fMaterials[6] = ((data>>8)&0xFF)/255.0f; s_fMaterials[7] = ((data)&0xFF)/255.0f; } break; case 0x100c: //GXSetChanMatcolor (rgba) if (xfregs.colChans[0].matColor != data) { VertexManager::Flush(); nMaterialsChanged |= 4; xfregs.colChans[0].matColor = data; s_fMaterials[8] = ((data>>24)&0xFF)/255.0f; s_fMaterials[9] = ((data>>16)&0xFF)/255.0f; s_fMaterials[10] = ((data>>8)&0xFF)/255.0f; s_fMaterials[11] = ((data)&0xFF)/255.0f; } break; case 0x100d: //GXSetChanMatcolor (rgba) if (xfregs.colChans[1].matColor != data) { VertexManager::Flush(); nMaterialsChanged |= 8; xfregs.colChans[1].matColor = data; s_fMaterials[12] = ((data>>24)&0xFF)/255.0f; s_fMaterials[13] = ((data>>16)&0xFF)/255.0f; s_fMaterials[14] = ((data>>8)&0xFF)/255.0f; s_fMaterials[15] = ((data)&0xFF)/255.0f; } break; case 0x100e: // color0 if (xfregs.colChans[0].color.hex != (data&0x7fff) ) { VertexManager::Flush(); xfregs.colChans[0].color.hex = data; } break; case 0x100f: // color1 if (xfregs.colChans[1].color.hex != (data&0x7fff) ) { VertexManager::Flush(); xfregs.colChans[1].color.hex = data; } break; case 0x1010: // alpha0 if (xfregs.colChans[0].alpha.hex != (data&0x7fff) ) { VertexManager::Flush(); xfregs.colChans[0].alpha.hex = data; } break; case 0x1011: // alpha1 if (xfregs.colChans[1].alpha.hex != (data&0x7fff) ) { VertexManager::Flush(); xfregs.colChans[1].alpha.hex = data; } break; case 0x1012: // dual tex transform if (xfregs.bEnableDualTexTransform != (data&1)) { VertexManager::Flush(); xfregs.bEnableDualTexTransform = data&1; } break; case 0x1013: case 0x1014: case 0x1015: case 0x1016: case 0x1017: DEBUG_LOG("xf addr: %x=%x\n", address, data); break; case 0x1018: //_assert_msg_(GX_XF, 0, "XF matrixindex0"); SetTexMatrixChangedA(data); //? break; case 0x1019: //_assert_msg_(GX_XF, 0, "XF matrixindex1"); SetTexMatrixChangedB(data); //? break; case 0x101a: VertexManager::Flush(); SetViewport((float*)&pData[i]); i += 6; break; case 0x101c: // paper mario writes 16777216.0f, 1677721.75 break; case 0x101f: // paper mario writes 16777216.0f, 5033165.0f break; case 0x1020: VertexManager::Flush(); VertexShaderMngr::SetProjection((float*)&pData[i]); i += 7; return; case 0x103f: // GXSetNumTexGens if ((u32)xfregs.numTexGens != data) { VertexManager::Flush(); xfregs.numTexGens = data; } break; case 0x1040: xfregs.texcoords[0].texmtxinfo.hex = data; break; case 0x1041: xfregs.texcoords[1].texmtxinfo.hex = data; break; case 0x1042: xfregs.texcoords[2].texmtxinfo.hex = data; break; case 0x1043: xfregs.texcoords[3].texmtxinfo.hex = data; break; case 0x1044: xfregs.texcoords[4].texmtxinfo.hex = data; break; case 0x1045: xfregs.texcoords[5].texmtxinfo.hex = data; break; case 0x1046: xfregs.texcoords[6].texmtxinfo.hex = data; break; case 0x1047: xfregs.texcoords[7].texmtxinfo.hex = data; break; case 0x1048: case 0x1049: case 0x104a: case 0x104b: case 0x104c: case 0x104d: case 0x104e: case 0x104f: DEBUG_LOG("xf addr: %x=%x\n", address, data); break; case 0x1050: xfregs.texcoords[0].postmtxinfo.hex = data; break; case 0x1051: xfregs.texcoords[1].postmtxinfo.hex = data; break; case 0x1052: xfregs.texcoords[2].postmtxinfo.hex = data; break; case 0x1053: xfregs.texcoords[3].postmtxinfo.hex = data; break; case 0x1054: xfregs.texcoords[4].postmtxinfo.hex = data; break; case 0x1055: xfregs.texcoords[5].postmtxinfo.hex = data; break; case 0x1056: xfregs.texcoords[6].postmtxinfo.hex = data; break; case 0x1057: xfregs.texcoords[7].postmtxinfo.hex = data; break; default: DEBUG_LOG("xf addr: %x=%x\n", address, data); break; } } else if (address>=0x4000) { // MessageBox(NULL, "1", "1", MB_OK); //4010 __GXSetGenMode } } } // TODO - verify that it is correct. Seems to work, though. void VertexShaderMngr::LoadIndexedXF(u32 val, int array) { int index = val >> 16; int address = val & 0xFFF; //check mask int size = ((val >> 12) & 0xF) + 1; //load stuff from array to address in xf mem VertexManager::Flush(); InvalidateXFRange(address, address+size); //PRIM_LOG("xfmem iwrite: 0x%x-0x%x\n", address, address+size); for (int i = 0; i < size; i++) xfmem[address + i] = Memory_Read_U32(arraybases[array] + arraystrides[array]*index + i*4); } float* VertexShaderMngr::GetPosNormalMat() { return (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4; } // Mash together all the inputs that contribute to the code of a generated vertex shader into // a unique identifier, basically containing all the bits. Yup, it's a lot .... void VertexShaderMngr::GetVertexShaderId(VERTEXSHADERUID& id, u32 components) { u32 zbufrender = (bpmem.ztex2.op == ZTEXTURE_ADD) || Renderer::GetZBufferTarget() != 0; id.values[0] = components | (xfregs.numTexGens << 23) | (xfregs.nNumChans << 27) | ((u32)xfregs.bEnableDualTexTransform << 29) | (zbufrender << 30); for (int i = 0; i < 2; ++i) { id.values[1+i] = xfregs.colChans[i].color.enablelighting ? (u32)xfregs.colChans[i].color.hex : (u32)xfregs.colChans[i].color.matsource; id.values[1+i] |= (xfregs.colChans[i].alpha.enablelighting ? (u32)xfregs.colChans[i].alpha.hex : (u32)xfregs.colChans[i].alpha.matsource) << 15; } // fog id.values[1] |= (((u32)bpmem.fog.c_proj_fsel.fsel & 3) << 30); id.values[2] |= (((u32)bpmem.fog.c_proj_fsel.fsel >> 2) << 30); u32* pcurvalue = &id.values[3]; for (int i = 0; i < xfregs.numTexGens; ++i) { TexMtxInfo tinfo = xfregs.texcoords[i].texmtxinfo; if (tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP) tinfo.hex &= 0x7ff; if (tinfo.texgentype != XF_TEXGEN_REGULAR) tinfo.projection = 0; u32 val = ((tinfo.hex >> 1) & 0x1ffff); if (xfregs.bEnableDualTexTransform && tinfo.texgentype == XF_TEXGEN_REGULAR) { // rewrite normalization and post index val |= ((u32)xfregs.texcoords[i].postmtxinfo.index << 17) | ((u32)xfregs.texcoords[i].postmtxinfo.normalize << 23); } switch (i & 3) { case 0: pcurvalue[0] |= val; break; case 1: pcurvalue[0] |= val << 24; pcurvalue[1] = val >> 8; ++pcurvalue; break; case 2: pcurvalue[0] |= val << 16; pcurvalue[1] = val >> 16; ++pcurvalue; break; case 3: pcurvalue[0] |= val << 8; ++pcurvalue; break; } } }