/* Copyright (C) 2007-2010 Christian Kothe This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "FreeSurround/FreeSurroundDecoder.h" #include "FreeSurround/ChannelMaps.h" #include #undef min #undef max // FreeSurround implementation // DPL2FSDecoder::Init() must be called before using the decoder. DPL2FSDecoder::DPL2FSDecoder() { initialized = false; buffer_empty = true; } DPL2FSDecoder::~DPL2FSDecoder() { #pragma warning(suppress : 4150) delete forward; #pragma warning(suppress : 4150) delete inverse; } void DPL2FSDecoder::Init(channel_setup chsetup, unsigned int blsize, unsigned int sample_rate) { if (!initialized) { setup = chsetup; N = blsize; samplerate = sample_rate; // Initialize the parameters wnd = std::vector(N); inbuf = std::vector(3 * N); lt = std::vector(N); rt = std::vector(N); dst = std::vector(N); lf = std::vector(N / 2 + 1); rf = std::vector(N / 2 + 1); forward = kiss_fftr_alloc(N, 0, 0, 0); inverse = kiss_fftr_alloc(N, 1, 0, 0); C = static_cast(chn_alloc[setup].size()); // Allocate per-channel buffers outbuf.resize((N + N / 2) * C); signal.resize(C, std::vector(N)); // Init the window function for (unsigned int k = 0; k < N; k++) wnd[k] = sqrt(0.5 * (1 - cos(2 * pi * k / N)) / N); // set default parameters set_circular_wrap(90); set_shift(0); set_depth(1); set_focus(0); set_center_image(1); set_front_separation(1); set_rear_separation(1); set_low_cutoff(40.0f / samplerate * 2); set_high_cutoff(90.0f / samplerate * 2); set_bass_redirection(false); initialized = true; } } // decode a stereo chunk, produces a multichannel chunk of the same size // (lagged) float *DPL2FSDecoder::decode(float *input) { if (initialized) { // append incoming data to the end of the input buffer memcpy(&inbuf[N], &input[0], 8 * N); // process first and second half, overlapped buffered_decode(&inbuf[0]); buffered_decode(&inbuf[N]); // shift last half of the input to the beginning (for overlapping with a // future block) memcpy(&inbuf[0], &inbuf[2 * N], 4 * N); buffer_empty = false; return &outbuf[0]; } return 0; } // flush the internal buffers void DPL2FSDecoder::flush() { memset(&outbuf[0], 0, outbuf.size() * 4); memset(&inbuf[0], 0, inbuf.size() * 4); buffer_empty = true; } // number of samples currently held in the buffer unsigned int DPL2FSDecoder::buffered() { return buffer_empty ? 0 : N / 2; } // set soundfield & rendering parameters void DPL2FSDecoder::set_circular_wrap(float v) { circular_wrap = v; } void DPL2FSDecoder::set_shift(float v) { shift = v; } void DPL2FSDecoder::set_depth(float v) { depth = v; } void DPL2FSDecoder::set_focus(float v) { focus = v; } void DPL2FSDecoder::set_center_image(float v) { center_image = v; } void DPL2FSDecoder::set_front_separation(float v) { front_separation = v; } void DPL2FSDecoder::set_rear_separation(float v) { rear_separation = v; } void DPL2FSDecoder::set_low_cutoff(float v) { lo_cut = v * (N / 2); } void DPL2FSDecoder::set_high_cutoff(float v) { hi_cut = v * (N / 2); } void DPL2FSDecoder::set_bass_redirection(bool v) { use_lfe = v; } // helper functions inline float DPL2FSDecoder::sqr(double x) { return static_cast(x * x); } inline double DPL2FSDecoder::amplitude(const cplx &x) { return sqrt(sqr(x.real()) + sqr(x.imag())); } inline double DPL2FSDecoder::phase(const cplx &x) { return atan2(x.imag(), x.real()); } inline cplx DPL2FSDecoder::polar(double a, double p) { return cplx(a * cos(p), a * sin(p)); } inline float DPL2FSDecoder::min(double a, double b) { return static_cast(a < b ? a : b); } inline float DPL2FSDecoder::max(double a, double b) { return static_cast(a > b ? a : b); } inline float DPL2FSDecoder::clamp(double x) { return max(-1, min(1, x)); } inline float DPL2FSDecoder::sign(double x) { return static_cast(x < 0 ? -1 : (x > 0 ? 1 : 0)); } // get the distance of the soundfield edge, along a given angle inline double DPL2FSDecoder::edgedistance(double a) { return min(sqrt(1 + sqr(tan(a))), sqrt(1 + sqr(1 / tan(a)))); } // get the index (and fractional offset!) in a piecewise-linear channel // allocation grid int DPL2FSDecoder::map_to_grid(double &x) { double gp = ((x + 1) * 0.5) * (grid_res - 1), i = min(grid_res - 2, floor(gp)); x = gp - i; return static_cast(i); } // decode a block of data and overlap-add it into outbuf void DPL2FSDecoder::buffered_decode(float *input) { // demultiplex and apply window function for (unsigned int k = 0; k < N; k++) { lt[k] = wnd[k] * input[k * 2 + 0]; rt[k] = wnd[k] * input[k * 2 + 1]; } // map into spectral domain kiss_fftr(forward, <[0], (kiss_fft_cpx *)&lf[0]); kiss_fftr(forward, &rt[0], (kiss_fft_cpx *)&rf[0]); // compute multichannel output signal in the spectral domain for (unsigned int f = 1; f < N / 2; f++) { // get Lt/Rt amplitudes & phases double ampL = amplitude(lf[f]), ampR = amplitude(rf[f]); double phaseL = phase(lf[f]), phaseR = phase(rf[f]); // calculate the amplitude & phase differences double ampDiff = clamp((ampL + ampR < epsilon) ? 0 : (ampR - ampL) / (ampR + ampL)); double phaseDiff = abs(phaseL - phaseR); if (phaseDiff > pi) phaseDiff = 2 * pi - phaseDiff; // decode into x/y soundfield position double x, y; transform_decode(ampDiff, phaseDiff, x, y); // add wrap control transform_circular_wrap(x, y, circular_wrap); // add shift control y = clamp(y - shift); // add depth control y = clamp(1 - (1 - y) * depth); // add focus control transform_focus(x, y, focus); // add crossfeed control x = clamp(x * (front_separation * (1 + y) / 2 + rear_separation * (1 - y) / 2)); // get total signal amplitude double amp_total = sqrt(ampL * ampL + ampR * ampR); // and total L/C/R signal phases double phase_of[] = { phaseL, atan2(lf[f].imag() + rf[f].imag(), lf[f].real() + rf[f].real()), phaseR}; // compute 2d channel map indexes p/q and update x/y to fractional offsets // in the map grid int p = map_to_grid(x), q = map_to_grid(y); // map position to channel volumes for (unsigned int c = 0; c < C - 1; c++) { // look up channel map at respective position (with bilinear // interpolation) and build the // signal std::vector &a = chn_alloc[setup][c]; signal[c][f] = polar( amp_total * ((1 - x) * (1 - y) * a[q][p] + x * (1 - y) * a[q][p + 1] + (1 - x) * y * a[q + 1][p] + x * y * a[q + 1][p + 1]), phase_of[1 + static_cast(sign(chn_xsf[setup][c]))]); } // optionally redirect bass if (use_lfe && f < hi_cut) { // level of LFE channel according to normalized frequency double lfe_level = f < lo_cut ? 1 : 0.5 * (1 + cos(pi * (f - lo_cut) / (hi_cut - lo_cut))); // assign LFE channel signal[C - 1][f] = lfe_level * polar(amp_total, phase_of[1]); // subtract the signal from the other channels for (unsigned int c = 0; c < C - 1; c++) signal[c][f] *= (1 - lfe_level); } } // shift the last 2/3 to the first 2/3 of the output buffer memcpy(&outbuf[0], &outbuf[C * N / 2], N * C * 4); // and clear the rest memset(&outbuf[C * N], 0, C * 4 * N / 2); // backtransform each channel and overlap-add for (unsigned int c = 0; c < C; c++) { // back-transform into time domain kiss_fftri(inverse, (kiss_fft_cpx *)&signal[c][0], &dst[0]); // add the result to the last 2/3 of the output buffer, windowed (and // remultiplex) for (unsigned int k = 0; k < N; k++) outbuf[C * (k + N / 2) + c] += static_cast(wnd[k] * dst[k]); } } // transform amp/phase difference space into x/y soundfield space void DPL2FSDecoder::transform_decode(double a, double p, double &x, double &y) { x = clamp(1.0047 * a + 0.46804 * a * p * p * p - 0.2042 * a * p * p * p * p + 0.0080586 * a * p * p * p * p * p * p * p - 0.0001526 * a * p * p * p * p * p * p * p * p * p * p - 0.073512 * a * a * a * p - 0.2499 * a * a * a * p * p * p * p + 0.016932 * a * a * a * p * p * p * p * p * p * p - 0.00027707 * a * a * a * p * p * p * p * p * p * p * p * p * p + 0.048105 * a * a * a * a * a * p * p * p * p * p * p * p - 0.0065947 * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p + 0.0016006 * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p * p - 0.0071132 * a * a * a * a * a * a * a * p * p * p * p * p * p * p * p * p + 0.0022336 * a * a * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p * p - 0.0004804 * a * a * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p * p * p); y = clamp( 0.98592 - 0.62237 * p + 0.077875 * p * p - 0.0026929 * p * p * p * p * p + 0.4971 * a * a * p - 0.00032124 * a * a * p * p * p * p * p * p + 9.2491e-006 * a * a * a * a * p * p * p * p * p * p * p * p * p * p + 0.051549 * a * a * a * a * a * a * a * a + 1.0727e-014 * a * a * a * a * a * a * a * a * a * a); } // apply a circular_wrap transformation to some position void DPL2FSDecoder::transform_circular_wrap(double &x, double &y, double refangle) { if (refangle == 90) return; refangle = refangle * pi / 180; double baseangle = 90 * pi / 180; // translate into edge-normalized polar coordinates double ang = atan2(x, y), len = sqrt(x * x + y * y); len = len / edgedistance(ang); // apply circular_wrap transform if (abs(ang) < baseangle / 2) // angle falls within the front region (to be enlarged) ang *= refangle / baseangle; else // angle falls within the rear region (to be shrunken) ang = pi - (-(((refangle - 2 * pi) * (pi - abs(ang)) * sign(ang)) / (2 * pi - baseangle))); // translate back into soundfield position len = len * edgedistance(ang); x = clamp(sin(ang) * len); y = clamp(cos(ang) * len); } // apply a focus transformation to some position void DPL2FSDecoder::transform_focus(double &x, double &y, double focus) { if (focus == 0) return; // translate into edge-normalized polar coordinates double ang = atan2(x, y), len = clamp(sqrt(x * x + y * y) / edgedistance(ang)); // apply focus len = focus > 0 ? 1 - pow(1 - len, 1 + focus * 20) : pow(len, 1 - focus * 20); // back-transform into euclidian soundfield position len = len * edgedistance(ang); x = clamp(sin(ang) * len); y = clamp(cos(ang) * len); }