// Copyright 2009 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include "Common/CommonTypes.h" #include "VideoBackends/Software/EfbInterface.h" #include "VideoBackends/Software/NativeVertexFormat.h" #include "VideoBackends/Software/Rasterizer.h" #include "VideoBackends/Software/Tev.h" #include "VideoCommon/PerfQueryBase.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" namespace Rasterizer { static constexpr int BLOCK_SIZE = 2; static Slope ZSlope; static Slope WSlope; static Slope ColorSlopes[2][4]; static Slope TexSlopes[8][3]; static s32 vertex0X; static s32 vertex0Y; static float vertexOffsetX; static float vertexOffsetY; static Tev tev; static RasterBlock rasterBlock; void Init() { tev.Init(); // Set initial z reference plane in the unlikely case that zfreeze is enabled when drawing the // first primitive. // TODO: This is just a guess! ZSlope.dfdx = ZSlope.dfdy = 0.f; ZSlope.f0 = 1.f; } // Returns approximation of log2(f) in s28.4 // results are close enough to use for LOD static s32 FixedLog2(float f) { u32 x; std::memcpy(&x, &f, sizeof(u32)); s32 logInt = ((x & 0x7F800000) >> 19) - 2032; // integer part s32 logFract = (x & 0x007fffff) >> 19; // approximate fractional part return logInt + logFract; } static inline int iround(float x) { int t = (int)x; if ((x - t) >= 0.5) return t + 1; return t; } void SetTevReg(int reg, int comp, s16 color) { tev.SetRegColor(reg, comp, color); } static void Draw(s32 x, s32 y, s32 xi, s32 yi) { INCSTAT(stats.thisFrame.rasterizedPixels); float dx = vertexOffsetX + (float)(x - vertex0X); float dy = vertexOffsetY + (float)(y - vertex0Y); s32 z = (s32)std::clamp(ZSlope.GetValue(dx, dy), 0.0f, 16777215.0f); if (bpmem.UseEarlyDepthTest() && g_ActiveConfig.bZComploc) { // TODO: Test if perf regs are incremented even if test is disabled EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT_ZCOMPLOC); if (bpmem.zmode.testenable) { // early z if (!EfbInterface::ZCompare(x, y, z)) return; } EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT_ZCOMPLOC); } RasterBlockPixel& pixel = rasterBlock.Pixel[xi][yi]; tev.Position[0] = x; tev.Position[1] = y; tev.Position[2] = z; // colors for (unsigned int i = 0; i < bpmem.genMode.numcolchans; i++) { for (int comp = 0; comp < 4; comp++) { u16 color = (u16)ColorSlopes[i][comp].GetValue(dx, dy); // clamp color value to 0 u16 mask = ~(color >> 8); tev.Color[i][comp] = color & mask; } } // tex coords for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++) { // multiply by 128 because TEV stores UVs as s17.7 tev.Uv[i].s = (s32)(pixel.Uv[i][0] * 128); tev.Uv[i].t = (s32)(pixel.Uv[i][1] * 128); } for (unsigned int i = 0; i < bpmem.genMode.numindstages; i++) { tev.IndirectLod[i] = rasterBlock.IndirectLod[i]; tev.IndirectLinear[i] = rasterBlock.IndirectLinear[i]; } for (unsigned int i = 0; i <= bpmem.genMode.numtevstages; i++) { tev.TextureLod[i] = rasterBlock.TextureLod[i]; tev.TextureLinear[i] = rasterBlock.TextureLinear[i]; } tev.Draw(); } static void InitTriangle(float X1, float Y1, s32 xi, s32 yi) { vertex0X = xi; vertex0Y = yi; // adjust a little less than 0.5 const float adjust = 0.495f; vertexOffsetX = ((float)xi - X1) + adjust; vertexOffsetY = ((float)yi - Y1) + adjust; } static void InitSlope(Slope* slope, float f1, float f2, float f3, float DX31, float DX12, float DY12, float DY31) { float DF31 = f3 - f1; float DF21 = f2 - f1; float a = DF31 * -DY12 - DF21 * DY31; float b = DX31 * DF21 + DX12 * DF31; float c = -DX12 * DY31 - DX31 * -DY12; slope->dfdx = -a / c; slope->dfdy = -b / c; slope->f0 = f1; } static inline void CalculateLOD(s32* lodp, bool* linear, u32 texmap, u32 texcoord) { const FourTexUnits& texUnit = bpmem.tex[(texmap >> 2) & 1]; const u8 subTexmap = texmap & 3; // LOD calculation requires data from the texture mode for bias, etc. // it does not seem to use the actual texture size const TexMode0& tm0 = texUnit.texMode0[subTexmap]; const TexMode1& tm1 = texUnit.texMode1[subTexmap]; float sDelta, tDelta; if (tm0.diag_lod) { float* uv0 = rasterBlock.Pixel[0][0].Uv[texcoord]; float* uv1 = rasterBlock.Pixel[1][1].Uv[texcoord]; sDelta = fabsf(uv0[0] - uv1[0]); tDelta = fabsf(uv0[1] - uv1[1]); } else { float* uv0 = rasterBlock.Pixel[0][0].Uv[texcoord]; float* uv1 = rasterBlock.Pixel[1][0].Uv[texcoord]; float* uv2 = rasterBlock.Pixel[0][1].Uv[texcoord]; sDelta = std::max(fabsf(uv0[0] - uv1[0]), fabsf(uv0[0] - uv2[0])); tDelta = std::max(fabsf(uv0[1] - uv1[1]), fabsf(uv0[1] - uv2[1])); } // get LOD in s28.4 s32 lod = FixedLog2(std::max(sDelta, tDelta)); // bias is s2.5 int bias = tm0.lod_bias; bias >>= 1; lod += bias; *linear = ((lod > 0 && (tm0.min_filter & 4)) || (lod <= 0 && tm0.mag_filter)); // NOTE: The order of comparisons for this clamp check matters. if (lod > static_cast(tm1.max_lod)) lod = static_cast(tm1.max_lod); else if (lod < static_cast(tm1.min_lod)) lod = static_cast(tm1.min_lod); *lodp = lod; } static void BuildBlock(s32 blockX, s32 blockY) { for (s32 yi = 0; yi < BLOCK_SIZE; yi++) { for (s32 xi = 0; xi < BLOCK_SIZE; xi++) { RasterBlockPixel& pixel = rasterBlock.Pixel[xi][yi]; float dx = vertexOffsetX + (float)(xi + blockX - vertex0X); float dy = vertexOffsetY + (float)(yi + blockY - vertex0Y); float invW = 1.0f / WSlope.GetValue(dx, dy); pixel.InvW = invW; // tex coords for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++) { float projection = invW; if (xfmem.texMtxInfo[i].projection) { float q = TexSlopes[i][2].GetValue(dx, dy) * invW; if (q != 0.0f) projection = invW / q; } pixel.Uv[i][0] = TexSlopes[i][0].GetValue(dx, dy) * projection; pixel.Uv[i][1] = TexSlopes[i][1].GetValue(dx, dy) * projection; } } } u32 indref = bpmem.tevindref.hex; for (unsigned int i = 0; i < bpmem.genMode.numindstages; i++) { u32 texmap = indref & 3; indref >>= 3; u32 texcoord = indref & 3; indref >>= 3; CalculateLOD(&rasterBlock.IndirectLod[i], &rasterBlock.IndirectLinear[i], texmap, texcoord); } for (unsigned int i = 0; i <= bpmem.genMode.numtevstages; i++) { int stageOdd = i & 1; const TwoTevStageOrders& order = bpmem.tevorders[i >> 1]; if (order.getEnable(stageOdd)) { u32 texmap = order.getTexMap(stageOdd); u32 texcoord = order.getTexCoord(stageOdd); CalculateLOD(&rasterBlock.TextureLod[i], &rasterBlock.TextureLinear[i], texmap, texcoord); } } } void DrawTriangleFrontFace(const OutputVertexData* v0, const OutputVertexData* v1, const OutputVertexData* v2) { INCSTAT(stats.thisFrame.numTrianglesDrawn); // adapted from http://devmaster.net/posts/6145/advanced-rasterization // 28.4 fixed-pou32 coordinates. rounded to nearest and adjusted to match hardware output // could also take floor and adjust -8 const s32 Y1 = iround(16.0f * v0->screenPosition[1]) - 9; const s32 Y2 = iround(16.0f * v1->screenPosition[1]) - 9; const s32 Y3 = iround(16.0f * v2->screenPosition[1]) - 9; const s32 X1 = iround(16.0f * v0->screenPosition[0]) - 9; const s32 X2 = iround(16.0f * v1->screenPosition[0]) - 9; const s32 X3 = iround(16.0f * v2->screenPosition[0]) - 9; // Deltas const s32 DX12 = X1 - X2; const s32 DX23 = X2 - X3; const s32 DX31 = X3 - X1; const s32 DY12 = Y1 - Y2; const s32 DY23 = Y2 - Y3; const s32 DY31 = Y3 - Y1; // Fixed-pos32 deltas const s32 FDX12 = DX12 * 16; const s32 FDX23 = DX23 * 16; const s32 FDX31 = DX31 * 16; const s32 FDY12 = DY12 * 16; const s32 FDY23 = DY23 * 16; const s32 FDY31 = DY31 * 16; // Bounding rectangle s32 minx = (std::min(std::min(X1, X2), X3) + 0xF) >> 4; s32 maxx = (std::max(std::max(X1, X2), X3) + 0xF) >> 4; s32 miny = (std::min(std::min(Y1, Y2), Y3) + 0xF) >> 4; s32 maxy = (std::max(std::max(Y1, Y2), Y3) + 0xF) >> 4; // scissor int xoff = bpmem.scissorOffset.x * 2 - 342; int yoff = bpmem.scissorOffset.y * 2 - 342; s32 scissorLeft = bpmem.scissorTL.x - xoff - 342; if (scissorLeft < 0) scissorLeft = 0; s32 scissorTop = bpmem.scissorTL.y - yoff - 342; if (scissorTop < 0) scissorTop = 0; s32 scissorRight = bpmem.scissorBR.x - xoff - 341; if (scissorRight > EFB_WIDTH) scissorRight = EFB_WIDTH; s32 scissorBottom = bpmem.scissorBR.y - yoff - 341; if (scissorBottom > EFB_HEIGHT) scissorBottom = EFB_HEIGHT; minx = std::max(minx, scissorLeft); maxx = std::min(maxx, scissorRight); miny = std::max(miny, scissorTop); maxy = std::min(maxy, scissorBottom); if (minx >= maxx || miny >= maxy) return; // Setup slopes float fltx1 = v0->screenPosition.x; float flty1 = v0->screenPosition.y; float fltdx31 = v2->screenPosition.x - fltx1; float fltdx12 = fltx1 - v1->screenPosition.x; float fltdy12 = flty1 - v1->screenPosition.y; float fltdy31 = v2->screenPosition.y - flty1; InitTriangle(fltx1, flty1, (X1 + 0xF) >> 4, (Y1 + 0xF) >> 4); float w[3] = {1.0f / v0->projectedPosition.w, 1.0f / v1->projectedPosition.w, 1.0f / v2->projectedPosition.w}; InitSlope(&WSlope, w[0], w[1], w[2], fltdx31, fltdx12, fltdy12, fltdy31); // TODO: The zfreeze emulation is not quite correct, yet! // Many things might prevent us from reaching this line (culling, clipping, scissoring). // However, the zslope is always guaranteed to be calculated unless all vertices are trivially // rejected during clipping! // We're currently sloppy at this since we abort early if any of the culling/clipping/scissoring // tests fail. if (!bpmem.genMode.zfreeze || !g_ActiveConfig.bZFreeze) InitSlope(&ZSlope, v0->screenPosition[2], v1->screenPosition[2], v2->screenPosition[2], fltdx31, fltdx12, fltdy12, fltdy31); for (unsigned int i = 0; i < bpmem.genMode.numcolchans; i++) { for (int comp = 0; comp < 4; comp++) InitSlope(&ColorSlopes[i][comp], v0->color[i][comp], v1->color[i][comp], v2->color[i][comp], fltdx31, fltdx12, fltdy12, fltdy31); } for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++) { for (int comp = 0; comp < 3; comp++) InitSlope(&TexSlopes[i][comp], v0->texCoords[i][comp] * w[0], v1->texCoords[i][comp] * w[1], v2->texCoords[i][comp] * w[2], fltdx31, fltdx12, fltdy12, fltdy31); } // Half-edge constants s32 C1 = DY12 * X1 - DX12 * Y1; s32 C2 = DY23 * X2 - DX23 * Y2; s32 C3 = DY31 * X3 - DX31 * Y3; // Correct for fill convention if (DY12 < 0 || (DY12 == 0 && DX12 > 0)) C1++; if (DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++; if (DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++; // Start in corner of 8x8 block minx &= ~(BLOCK_SIZE - 1); miny &= ~(BLOCK_SIZE - 1); // Loop through blocks for (s32 y = miny; y < maxy; y += BLOCK_SIZE) { for (s32 x = minx; x < maxx; x += BLOCK_SIZE) { // Corners of block s32 x0 = x << 4; s32 x1 = (x + BLOCK_SIZE - 1) << 4; s32 y0 = y << 4; s32 y1 = (y + BLOCK_SIZE - 1) << 4; // Evaluate half-space functions bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0; bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0; bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0; bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0; int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3); bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0; bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0; bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0; bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0; int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3); bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0; bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0; bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0; bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0; int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3); // Skip block when outside an edge if (a == 0x0 || b == 0x0 || c == 0x0) continue; BuildBlock(x, y); // Accept whole block when totally covered if (a == 0xF && b == 0xF && c == 0xF) { for (s32 iy = 0; iy < BLOCK_SIZE; iy++) { for (s32 ix = 0; ix < BLOCK_SIZE; ix++) { Draw(x + ix, y + iy, ix, iy); } } } else // Partially covered block { s32 CY1 = C1 + DX12 * y0 - DY12 * x0; s32 CY2 = C2 + DX23 * y0 - DY23 * x0; s32 CY3 = C3 + DX31 * y0 - DY31 * x0; for (s32 iy = 0; iy < BLOCK_SIZE; iy++) { s32 CX1 = CY1; s32 CX2 = CY2; s32 CX3 = CY3; for (s32 ix = 0; ix < BLOCK_SIZE; ix++) { if (CX1 > 0 && CX2 > 0 && CX3 > 0) { Draw(x + ix, y + iy, ix, iy); } CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; } } } } } }