// Copyright 2013 Max Eliaser // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include "InputCommon/ControllerInterface/Xlib/XInput2.h" // This is an input plugin using the XInput 2.0 extension to the X11 protocol, // loosely based on the old XLib plugin. (Has nothing to do with the XInput // API on Windows.) // This plugin creates one KeyboardMouse object for each master pointer/ // keyboard pair. Each KeyboardMouse object exports four types of controls: // * Mouse button controls: hardcoded at five of them, but could be made to // support infinitely many mouse buttons in theory; XInput2 has no limit. // * Mouse cursor controls: one for each cardinal direction. Calculated by // comparing the absolute position of the mouse pointer on screen to the // center of the emulator window. // * Mouse axis controls: one for each cardinal direction. Calculated using // a running average of relative mouse motion on each axis. // * Key controls: these correspond to a limited subset of the keyboard // keys. // Mouse axis control tuning. Unlike absolute mouse position, relative mouse // motion data needs to be tweaked and smoothed out a bit to be usable. // Mouse axis control output is simply divided by this number. In practice, // that just means you can use a smaller "dead zone" if you bind axis controls // to a joystick. No real need to make this customizable. #define MOUSE_AXIS_SENSITIVITY 8.0f // The mouse axis controls use a weighted running average. Each frame, the new // value is the average of the old value and the amount of relative mouse // motion during that frame. The old value is weighted by a ratio of // MOUSE_AXIS_SMOOTHING:1 compared to the new value. Increasing // MOUSE_AXIS_SMOOTHING makes the controls smoother, decreasing it makes them // more responsive. This might be useful as a user-customizable option. #define MOUSE_AXIS_SMOOTHING 1.5f namespace ciface { namespace XInput2 { // This function will add zero or more KeyboardMouse objects to devices. void Init(std::vector& devices, void* const hwnd) { Display* dpy = XOpenDisplay(nullptr); // xi_opcode is important; it will be used to identify XInput events by // the polling loop in UpdateInput. int xi_opcode, event, error; // verify that the XInput extension is available if (!XQueryExtension(dpy, "XInputExtension", &xi_opcode, &event, &error)) return; // verify that the XInput extension is at at least version 2.0 int major = 2, minor = 0; if (XIQueryVersion(dpy, &major, &minor) != Success) return; // register all master devices with Dolphin XIDeviceInfo* all_masters; XIDeviceInfo* current_master; int num_masters; all_masters = XIQueryDevice(dpy, XIAllMasterDevices, &num_masters); for (int i = 0; i < num_masters; i++) { current_master = &all_masters[i]; if (current_master->use == XIMasterPointer) // Since current_master is a master pointer, its attachment must // be a master keyboard. devices.push_back(new KeyboardMouse((Window)hwnd, xi_opcode, current_master->deviceid, current_master->attachment)); } XCloseDisplay(dpy); XIFreeDeviceInfo(all_masters); } // Apply the event mask to the device and all its slaves. Only used in the // constructor. Remember, each KeyboardMouse has its own copy of the event // stream, which is how multiple event masks can "coexist." void KeyboardMouse::SelectEventsForDevice(Window window, XIEventMask *mask, int deviceid) { // Set the event mask for the master device. mask->deviceid = deviceid; XISelectEvents(m_display, window, mask, 1); // Query all the master device's slaves and set the same event mask for // those too. There are two reasons we want to do this. For mouse devices, // we want the raw motion events, and only slaves (i.e. physical hardware // devices) emit those. For keyboard devices, selecting slaves avoids // dealing with key focus. XIDeviceInfo* all_slaves; XIDeviceInfo* current_slave; int num_slaves; all_slaves = XIQueryDevice(m_display, XIAllDevices, &num_slaves); for (int i = 0; i < num_slaves; i++) { current_slave = &all_slaves[i]; if ((current_slave->use != XISlavePointer && current_slave->use != XISlaveKeyboard) || current_slave->attachment != deviceid) continue; mask->deviceid = current_slave->deviceid; XISelectEvents(m_display, window, mask, 1); } XIFreeDeviceInfo(all_slaves); } KeyboardMouse::KeyboardMouse(Window window, int opcode, int pointer, int keyboard) : m_window(window), xi_opcode(opcode), pointer_deviceid(pointer), keyboard_deviceid(keyboard) { memset(&m_state, 0, sizeof(m_state)); // The cool thing about each KeyboardMouse object having its own Display // is that each one gets its own separate copy of the X11 event stream, // which it can individually filter to get just the events it's interested // in. So be aware that each KeyboardMouse object actually has its own X11 // "context." m_display = XOpenDisplay(nullptr); int min_keycode, max_keycode; XDisplayKeycodes(m_display, &min_keycode, &max_keycode); int unused; // should always be 1 XIDeviceInfo* pointer_device = XIQueryDevice(m_display, pointer_deviceid, &unused); name = std::string(pointer_device->name); XIFreeDeviceInfo(pointer_device); XIEventMask mask; unsigned char mask_buf[(XI_LASTEVENT + 7)/8]; mask.mask_len = sizeof(mask_buf); mask.mask = mask_buf; memset(mask_buf, 0, sizeof(mask_buf)); XISetMask(mask_buf, XI_ButtonPress); XISetMask(mask_buf, XI_ButtonRelease); XISetMask(mask_buf, XI_RawMotion); XISetMask(mask_buf, XI_KeyPress); XISetMask(mask_buf, XI_KeyRelease); SelectEventsForDevice(DefaultRootWindow(m_display), &mask, pointer_deviceid); SelectEventsForDevice(DefaultRootWindow(m_display), &mask, keyboard_deviceid); // Keyboard Keys for (int i = min_keycode; i <= max_keycode; ++i) { Key* temp_key = new Key(m_display, i, m_state.keyboard); if (temp_key->m_keyname.length()) AddInput(temp_key); else delete temp_key; } // Mouse Buttons for (int i = 0; i < 5; i++) AddInput(new Button(i, &m_state.buttons)); // Mouse Cursor, X-/+ and Y-/+ for (int i = 0; i != 4; ++i) AddInput(new Cursor(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.cursor.y : &m_state.cursor.x)); // Mouse Axis, X-/+ and Y-/+ for (int i = 0; i != 4; ++i) AddInput(new Axis(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.axis.y : &m_state.axis.x)); } KeyboardMouse::~KeyboardMouse() { XCloseDisplay(m_display); } // Update the mouse cursor controls void KeyboardMouse::UpdateCursor() { double root_x, root_y, win_x, win_y; Window root, child; // unused-- we're not interested in button presses here, as those are // updated using events XIButtonState button_state; XIModifierState mods; XIGroupState group; XIQueryPointer(m_display, pointer_deviceid, m_window, &root, &child, &root_x, &root_y, &win_x, &win_y, &button_state, &mods, &group); free (button_state.mask); XWindowAttributes win_attribs; XGetWindowAttributes(m_display, m_window, &win_attribs); // the mouse position as a range from -1 to 1 m_state.cursor.x = win_x / (float)win_attribs.width * 2 - 1; m_state.cursor.y = win_y / (float)win_attribs.height * 2 - 1; } void KeyboardMouse::UpdateInput() { XFlush(m_display); // Get the absolute position of the mouse pointer UpdateCursor(); // for the axis controls float delta_x = 0.0f, delta_y = 0.0f; double delta_delta; // Iterate through the event queue - update the axis controls, mouse // button controls, and keyboard controls. XEvent event; while (XPending(m_display)) { XNextEvent(m_display, &event); if (event.xcookie.type != GenericEvent) continue; if (event.xcookie.extension != xi_opcode) continue; if (!XGetEventData(m_display, &event.xcookie)) continue; // only one of these will get used XIDeviceEvent* dev_event = (XIDeviceEvent*)event.xcookie.data; XIRawEvent* raw_event = (XIRawEvent*)event.xcookie.data; switch (event.xcookie.evtype) { case XI_ButtonPress: m_state.buttons |= 1<<(dev_event->detail-1); break; case XI_ButtonRelease: m_state.buttons &= ~(1<<(dev_event->detail-1)); break; case XI_KeyPress: m_state.keyboard[dev_event->detail / 8] |= 1<<(dev_event->detail % 8); break; case XI_KeyRelease: m_state.keyboard[dev_event->detail / 8] &= ~(1<<(dev_event->detail % 8)); break; case XI_RawMotion: // always safe because there is always at least one byte in // raw_event->valuators.mask, and if a bit is set in the mask, // then the value in raw_values is also available. if (XIMaskIsSet(raw_event->valuators.mask, 0)) { delta_delta = raw_event->raw_values[0]; // test for inf and nan if (delta_delta == delta_delta && 1+delta_delta != delta_delta) delta_x += delta_delta; } if (XIMaskIsSet(raw_event->valuators.mask, 1)) { delta_delta = raw_event->raw_values[1]; // test for inf and nan if (delta_delta == delta_delta && 1+delta_delta != delta_delta) delta_y += delta_delta; } break; } XFreeEventData(m_display, &event.xcookie); } // apply axis smoothing m_state.axis.x *= MOUSE_AXIS_SMOOTHING; m_state.axis.x += delta_x; m_state.axis.x /= MOUSE_AXIS_SMOOTHING+1.0f; m_state.axis.y *= MOUSE_AXIS_SMOOTHING; m_state.axis.y += delta_y; m_state.axis.y /= MOUSE_AXIS_SMOOTHING+1.0f; } std::string KeyboardMouse::GetName() const { // This is the name string we got from the X server for this master // pointer/keyboard pair. return name; } std::string KeyboardMouse::GetSource() const { return "XInput2"; } int KeyboardMouse::GetId() const { return -1; } KeyboardMouse::Key::Key(Display* const display, KeyCode keycode, const char* keyboard) : m_display(display), m_keyboard(keyboard), m_keycode(keycode) { int i = 0; KeySym keysym = 0; do { keysym = XkbKeycodeToKeysym(m_display, keycode, i, 0); i++; } while (keysym == NoSymbol && i < 8); // Convert to upper case for the keyname if (keysym >= 97 && keysym <= 122) keysym -= 32; // 0x0110ffff is the top of the unicode character range according // to keysymdef.h although it is probably more than we need. if (keysym == NoSymbol || keysym > 0x0110ffff || XKeysymToString(keysym) == nullptr) m_keyname = std::string(); else m_keyname = std::string(XKeysymToString(keysym)); } ControlState KeyboardMouse::Key::GetState() const { return (m_keyboard[m_keycode / 8] & (1 << (m_keycode % 8))) != 0; } KeyboardMouse::Button::Button(unsigned int index, unsigned int* buttons) : m_buttons(buttons), m_index(index) { // this will be a problem if we remove the hardcoded five-button limit name = std::string("Click ") + (char)('1' + m_index); } ControlState KeyboardMouse::Button::GetState() const { return ((*m_buttons & (1 << m_index)) != 0); } KeyboardMouse::Cursor::Cursor(u8 index, bool positive, const float* cursor) : m_cursor(cursor), m_index(index), m_positive(positive) { name = std::string("Cursor ") + (char)('X' + m_index) + (m_positive ? '+' : '-'); } ControlState KeyboardMouse::Cursor::GetState() const { return std::max(0.0f, *m_cursor / (m_positive ? 1.0f : -1.0f)); } KeyboardMouse::Axis::Axis(u8 index, bool positive, const float* axis) : m_axis(axis), m_index(index), m_positive(positive) { name = std::string("Axis ") + (char)('X' + m_index) + (m_positive ? '+' : '-'); } ControlState KeyboardMouse::Axis::GetState() const { return std::max(0.0f, *m_axis / (m_positive ? MOUSE_AXIS_SENSITIVITY : -MOUSE_AXIS_SENSITIVITY)); } } }