// Copyright 2009 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/OGL/FramebufferManager.h" #include #include #include "Common/Common.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Core/HW/Memmap.h" #include "VideoBackends/OGL/Render.h" #include "VideoBackends/OGL/SamplerCache.h" #include "VideoBackends/OGL/TextureConverter.h" #include "VideoBackends/OGL/VertexManager.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/VertexShaderGen.h" #include "VideoCommon/VideoBackendBase.h" constexpr const char* GLSL_REINTERPRET_PIXELFMT_VS = R"GLSL( flat out int layer; void main(void) { layer = 0; vec2 rawpos = vec2(gl_VertexID & 1, gl_VertexID & 2); gl_Position = vec4(rawpos* 2.0 - 1.0, 0.0, 1.0); })GLSL"; constexpr const char* GLSL_SHADER_FS = R"GLSL( #define MULTILAYER %d #define MSAA %d #if MSAA #if MULTILAYER SAMPLER_BINDING(9) uniform sampler2DMSArray samp9; #else SAMPLER_BINDING(9) uniform sampler2DMS samp9; #endif #else SAMPLER_BINDING(9) uniform sampler2DArray samp9; #endif vec4 sampleEFB(ivec3 pos) { #if MSAA #if MULTILAYER return texelFetch(samp9, pos, gl_SampleID); #else return texelFetch(samp9, pos.xy, gl_SampleID); #endif #else return texelFetch(samp9, pos, 0); #endif })GLSL"; constexpr const char* GLSL_SAMPLE_EFB_FS = R"GLSL( #define MULTILAYER %d #if MULTILAYER SAMPLER_BINDING(9) uniform sampler2DMSArray samp9; #else SAMPLER_BINDING(9) uniform sampler2DMS samp9; #endif vec4 sampleEFB(ivec3 pos) { vec4 color = vec4(0.0, 0.0, 0.0, 0.0); for (int i = 0; i < %d; i++) #if MULTILAYER color += texelFetch(samp9, pos, i); #else color += texelFetch(samp9, pos.xy, i); #endif return color / %d; })GLSL"; constexpr const char* GLSL_RGBA6_TO_RGB8_FS = R"GLSL( flat in int layer; out vec4 ocol0; void main() { ivec4 src6 = ivec4(round(sampleEFB(ivec3(gl_FragCoord.xy, layer)) * 63.f)); ivec4 dst8; dst8.r = (src6.r << 2) | (src6.g >> 4); dst8.g = ((src6.g & 0xF) << 4) | (src6.b >> 2); dst8.b = ((src6.b & 0x3) << 6) | src6.a; dst8.a = 255; ocol0 = float4(dst8) / 255.f; })GLSL"; constexpr const char* GLSL_RGB8_TO_RGBA6_FS = R"GLSL( flat in int layer; out vec4 ocol0; void main() { ivec4 src8 = ivec4(round(sampleEFB(ivec3(gl_FragCoord.xy, layer)) * 255.f)); ivec4 dst6; dst6.r = src8.r >> 2; dst6.g = ((src8.r & 0x3) << 4) | (src8.g >> 4); dst6.b = ((src8.g & 0xF) << 2) | (src8.b >> 6); dst6.a = src8.b & 0x3F; ocol0 = float4(dst6) / 63.f; })GLSL"; constexpr const char* GLSL_GS = R"GLSL( layout(triangles) in; layout(triangle_strip, max_vertices = %d) out; flat out int layer; void main() { for (int j = 0; j < %d; ++j) { for (int i = 0; i < 3; ++i) { layer = j; gl_Layer = j; gl_Position = gl_in[i].gl_Position; EmitVertex(); } EndPrimitive(); } })GLSL"; constexpr const char* GLSL_EFB_POKE_VERTEX_VS = R"GLSL( in vec2 rawpos; in vec4 rawcolor0; // color in int rawcolor1; // depth out vec4 v_c; out float v_z; void main(void) { gl_Position = vec4(((rawpos + 0.5) / vec2(640.0, 528.0) * 2.0 - 1.0) * vec2(1.0, -1.0), 0.0, 1.0); gl_PointSize = %d.0 / 640.0; v_c = rawcolor0.bgra; v_z = float(rawcolor1 & 0xFFFFFF) / 16777216.0; })GLSL"; constexpr const char* GLSL_EFB_POKE_PIXEL_FS = R"GLSL( in vec4 %s_c; in float %s_z; out vec4 ocol0; void main(void) { ocol0 = %s_c; gl_FragDepth = %s_z; })GLSL"; constexpr const char* GLSL_EFB_POKE_GEOMETRY_GS = R"GLSL( layout(points) in; layout(points, max_vertices = %d) out; in vec4 v_c[1]; in float v_z[1]; out vec4 g_c; out float g_z; void main() { for (int j = 0; j < %d; ++j) { gl_Layer = j; gl_Position = gl_in[0].gl_Position; gl_PointSize = %d.0 / 640.0; g_c = v_c[0]; g_z = v_z[0]; EmitVertex(); EndPrimitive(); } })GLSL"; namespace OGL { int FramebufferManager::m_targetWidth; int FramebufferManager::m_targetHeight; int FramebufferManager::m_msaaSamples; bool FramebufferManager::m_enable_stencil_buffer; GLenum FramebufferManager::m_textureType; std::vector FramebufferManager::m_efbFramebuffer; GLuint FramebufferManager::m_efbColor; GLuint FramebufferManager::m_efbDepth; GLuint FramebufferManager::m_efbColorSwap; // for hot swap when reinterpreting EFB pixel formats // Only used in MSAA mode. std::vector FramebufferManager::m_resolvedFramebuffer; GLuint FramebufferManager::m_resolvedColorTexture; GLuint FramebufferManager::m_resolvedDepthTexture; // reinterpret pixel format SHADER FramebufferManager::m_pixel_format_shaders[2]; // EFB pokes GLuint FramebufferManager::m_EfbPokes_VBO; GLuint FramebufferManager::m_EfbPokes_VAO; SHADER FramebufferManager::m_EfbPokes; GLuint FramebufferManager::CreateTexture(GLenum texture_type, GLenum internal_format, GLenum pixel_format, GLenum data_type) { GLuint texture; glActiveTexture(GL_TEXTURE9); glGenTextures(1, &texture); glBindTexture(texture_type, texture); if (texture_type == GL_TEXTURE_2D_ARRAY) { glTexParameteri(texture_type, GL_TEXTURE_MAX_LEVEL, 0); glTexImage3D(texture_type, 0, internal_format, m_targetWidth, m_targetHeight, m_EFBLayers, 0, pixel_format, data_type, nullptr); } else if (texture_type == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) { if (g_ogl_config.bSupports3DTextureStorageMultisample) glTexStorage3DMultisample(texture_type, m_msaaSamples, internal_format, m_targetWidth, m_targetHeight, m_EFBLayers, false); else glTexImage3DMultisample(texture_type, m_msaaSamples, internal_format, m_targetWidth, m_targetHeight, m_EFBLayers, false); } else if (texture_type == GL_TEXTURE_2D_MULTISAMPLE) { if (g_ogl_config.bSupports2DTextureStorageMultisample) glTexStorage2DMultisample(texture_type, m_msaaSamples, internal_format, m_targetWidth, m_targetHeight, false); else glTexImage2DMultisample(texture_type, m_msaaSamples, internal_format, m_targetWidth, m_targetHeight, false); } else { PanicAlert("Unhandled texture type %d", texture_type); } glBindTexture(texture_type, 0); return texture; } void FramebufferManager::BindLayeredTexture(GLuint texture, const std::vector& framebuffers, GLenum attachment, GLenum texture_type) { glBindFramebuffer(GL_FRAMEBUFFER, framebuffers[0]); FramebufferTexture(GL_FRAMEBUFFER, attachment, texture_type, texture, 0); // Bind all the other layers as separate FBOs for blitting. for (unsigned int i = 1; i < m_EFBLayers; i++) { glBindFramebuffer(GL_FRAMEBUFFER, framebuffers[i]); glFramebufferTextureLayer(GL_FRAMEBUFFER, attachment, texture, 0, i); } } bool FramebufferManager::HasStencilBuffer() { return m_enable_stencil_buffer; } FramebufferManager::FramebufferManager(int targetWidth, int targetHeight, int msaaSamples, bool enable_stencil_buffer) { m_efbColor = 0; m_efbDepth = 0; m_efbColorSwap = 0; m_resolvedColorTexture = 0; m_resolvedDepthTexture = 0; m_targetWidth = targetWidth; m_targetHeight = targetHeight; m_msaaSamples = msaaSamples; m_enable_stencil_buffer = enable_stencil_buffer; // The EFB can be set to different pixel formats by the game through the // BPMEM_ZCOMPARE register (which should probably have a different name). // They are: // - 24-bit RGB (8-bit components) with 24-bit Z // - 24-bit RGBA (6-bit components) with 24-bit Z // - Multisampled 16-bit RGB (5-6-5 format) with 16-bit Z // We only use one EFB format here: 32-bit ARGB with 24-bit Z. // Multisampling depends on user settings. // The distinction becomes important for certain operations, i.e. the // alpha channel should be ignored if the EFB does not have one. glActiveTexture(GL_TEXTURE9); m_EFBLayers = (g_ActiveConfig.stereo_mode != StereoMode::Off) ? 2 : 1; m_efbFramebuffer.resize(m_EFBLayers); m_resolvedFramebuffer.resize(m_EFBLayers); GLenum depth_internal_format = GL_DEPTH_COMPONENT32F; GLenum depth_pixel_format = GL_DEPTH_COMPONENT; GLenum depth_data_type = GL_FLOAT; if (m_enable_stencil_buffer) { depth_internal_format = GL_DEPTH32F_STENCIL8; depth_pixel_format = GL_DEPTH_STENCIL; depth_data_type = GL_FLOAT_32_UNSIGNED_INT_24_8_REV; } const bool multilayer = m_EFBLayers > 1; if (m_msaaSamples <= 1) { m_textureType = GL_TEXTURE_2D_ARRAY; } else { // Only use a layered multisample texture if needed. Some drivers // slow down significantly with single-layered multisample textures. m_textureType = multilayer ? GL_TEXTURE_2D_MULTISAMPLE_ARRAY : GL_TEXTURE_2D_MULTISAMPLE; // Although we are able to access the multisampled texture directly, we don't do it // everywhere. The old way is to "resolve" this multisampled texture by copying it into a // non-sampled texture. This would lead to an unneeded copy of the EFB, so we are going to // avoid it. But as this job isn't done right now, we do need that texture for resolving: GLenum resolvedType = GL_TEXTURE_2D_ARRAY; m_resolvedColorTexture = CreateTexture(resolvedType, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE); m_resolvedDepthTexture = CreateTexture(resolvedType, depth_internal_format, depth_pixel_format, depth_data_type); // Bind resolved textures to resolved framebuffer. glGenFramebuffers(m_EFBLayers, m_resolvedFramebuffer.data()); BindLayeredTexture(m_resolvedColorTexture, m_resolvedFramebuffer, GL_COLOR_ATTACHMENT0, resolvedType); BindLayeredTexture(m_resolvedDepthTexture, m_resolvedFramebuffer, GL_DEPTH_ATTACHMENT, resolvedType); if (m_enable_stencil_buffer) BindLayeredTexture(m_resolvedDepthTexture, m_resolvedFramebuffer, GL_STENCIL_ATTACHMENT, resolvedType); } m_efbColor = CreateTexture(m_textureType, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE); m_efbDepth = CreateTexture(m_textureType, depth_internal_format, depth_pixel_format, depth_data_type); m_efbColorSwap = CreateTexture(m_textureType, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE); // Bind target textures to EFB framebuffer. glGenFramebuffers(m_EFBLayers, m_efbFramebuffer.data()); BindLayeredTexture(m_efbColor, m_efbFramebuffer, GL_COLOR_ATTACHMENT0, m_textureType); BindLayeredTexture(m_efbDepth, m_efbFramebuffer, GL_DEPTH_ATTACHMENT, m_textureType); if (m_enable_stencil_buffer) BindLayeredTexture(m_efbDepth, m_efbFramebuffer, GL_STENCIL_ATTACHMENT, m_textureType); // EFB framebuffer is currently bound, make sure to clear it before use. glViewport(0, 0, m_targetWidth, m_targetHeight); glScissor(0, 0, m_targetWidth, m_targetHeight); glClearColor(0.f, 0.f, 0.f, 0.f); glClearDepthf(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); if (m_enable_stencil_buffer) { glClearStencil(0); glClear(GL_STENCIL_BUFFER_BIT); } // reinterpret pixel format std::string vs = GLSL_REINTERPRET_PIXELFMT_VS; // The way to sample the EFB is based on the on the current configuration. // As we use the same sampling way for both interpreting shaders, the sampling // shader are generated first: std::string sampler; if (m_msaaSamples <= 1) { // non-msaa, so just fetch the pixel sampler = StringFromFormat(GLSL_SHADER_FS, multilayer, false); } else if (g_ActiveConfig.backend_info.bSupportsSSAA) { // msaa + sample shading available, so just fetch the sample // This will lead to sample shading, but it's the only way to not loose // the values of each sample. sampler = StringFromFormat(GLSL_SHADER_FS, multilayer, true); } else { // msaa without sample shading: calculate the mean value of the pixel sampler = StringFromFormat(GLSL_SAMPLE_EFB_FS, multilayer, m_msaaSamples, m_msaaSamples); } std::string ps_rgba6_to_rgb8 = sampler + GLSL_RGBA6_TO_RGB8_FS; std::string ps_rgb8_to_rgba6 = sampler + GLSL_RGB8_TO_RGBA6_FS; std::string gs = StringFromFormat(GLSL_GS, m_EFBLayers * 3, m_EFBLayers); ProgramShaderCache::CompileShader(m_pixel_format_shaders[0], vs, ps_rgb8_to_rgba6, multilayer ? gs : ""); ProgramShaderCache::CompileShader(m_pixel_format_shaders[1], vs, ps_rgba6_to_rgb8, multilayer ? gs : ""); const auto prefix = multilayer ? "g" : "v"; ProgramShaderCache::CompileShader( m_EfbPokes, StringFromFormat(GLSL_EFB_POKE_VERTEX_VS, m_targetWidth), StringFromFormat(GLSL_EFB_POKE_PIXEL_FS, prefix, prefix, prefix, prefix), multilayer ? StringFromFormat(GLSL_EFB_POKE_GEOMETRY_GS, m_EFBLayers, m_EFBLayers, m_targetWidth) : ""); glGenBuffers(1, &m_EfbPokes_VBO); glGenVertexArrays(1, &m_EfbPokes_VAO); glBindBuffer(GL_ARRAY_BUFFER, m_EfbPokes_VBO); glBindVertexArray(m_EfbPokes_VAO); glEnableVertexAttribArray(SHADER_POSITION_ATTRIB); glVertexAttribPointer(SHADER_POSITION_ATTRIB, 2, GL_UNSIGNED_SHORT, 0, sizeof(EfbPokeData), (void*)offsetof(EfbPokeData, x)); glEnableVertexAttribArray(SHADER_COLOR0_ATTRIB); glVertexAttribPointer(SHADER_COLOR0_ATTRIB, 4, GL_UNSIGNED_BYTE, 1, sizeof(EfbPokeData), (void*)offsetof(EfbPokeData, data)); glEnableVertexAttribArray(SHADER_COLOR1_ATTRIB); glVertexAttribIPointer(SHADER_COLOR1_ATTRIB, 1, GL_INT, sizeof(EfbPokeData), (void*)offsetof(EfbPokeData, data)); glBindBuffer(GL_ARRAY_BUFFER, static_cast(g_vertex_manager.get())->GetVertexBufferHandle()); if (!static_cast(g_renderer.get())->IsGLES()) glEnable(GL_PROGRAM_POINT_SIZE); } FramebufferManager::~FramebufferManager() { glBindFramebuffer(GL_FRAMEBUFFER, 0); GLuint glObj[3]; // Note: OpenGL deletion functions silently ignore parameters of "0". glDeleteFramebuffers(m_EFBLayers, m_efbFramebuffer.data()); glDeleteFramebuffers(m_EFBLayers, m_resolvedFramebuffer.data()); // Required, as these are static class members m_efbFramebuffer.clear(); m_resolvedFramebuffer.clear(); glObj[0] = m_resolvedColorTexture; glObj[1] = m_resolvedDepthTexture; glDeleteTextures(2, glObj); m_resolvedColorTexture = 0; m_resolvedDepthTexture = 0; glObj[0] = m_efbColor; glObj[1] = m_efbDepth; glObj[2] = m_efbColorSwap; glDeleteTextures(3, glObj); m_efbColor = 0; m_efbDepth = 0; m_efbColorSwap = 0; // reinterpret pixel format m_pixel_format_shaders[0].Destroy(); m_pixel_format_shaders[1].Destroy(); // EFB pokes glDeleteBuffers(1, &m_EfbPokes_VBO); glDeleteVertexArrays(1, &m_EfbPokes_VAO); m_EfbPokes_VBO = 0; m_EfbPokes_VAO = 0; m_EfbPokes.Destroy(); } GLuint FramebufferManager::GetEFBColorTexture(const EFBRectangle& sourceRc) { if (m_msaaSamples <= 1) { return m_efbColor; } else { // Transfer the EFB to a resolved texture. EXT_framebuffer_blit is // required. TargetRectangle targetRc = g_renderer->ConvertEFBRectangle(sourceRc); targetRc.ClampUL(0, 0, m_targetWidth, m_targetHeight); // Resolve. for (unsigned int i = 0; i < m_EFBLayers; i++) { glBindFramebuffer(GL_READ_FRAMEBUFFER, m_efbFramebuffer[i]); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_resolvedFramebuffer[i]); glBlitFramebuffer(targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, GL_COLOR_BUFFER_BIT, GL_NEAREST); } // Return to EFB. glBindFramebuffer(GL_FRAMEBUFFER, m_efbFramebuffer[0]); return m_resolvedColorTexture; } } GLuint FramebufferManager::GetEFBDepthTexture(const EFBRectangle& sourceRc) { if (m_msaaSamples <= 1) { return m_efbDepth; } else { // Transfer the EFB to a resolved texture. TargetRectangle targetRc = g_renderer->ConvertEFBRectangle(sourceRc); targetRc.ClampUL(0, 0, m_targetWidth, m_targetHeight); // Resolve. for (unsigned int i = 0; i < m_EFBLayers; i++) { glBindFramebuffer(GL_READ_FRAMEBUFFER, m_efbFramebuffer[i]); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_resolvedFramebuffer[i]); glBlitFramebuffer(targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, GL_DEPTH_BUFFER_BIT, GL_NEAREST); } // Return to EFB. glBindFramebuffer(GL_FRAMEBUFFER, m_efbFramebuffer[0]); return m_resolvedDepthTexture; } } void FramebufferManager::ResolveEFBStencilTexture() { if (m_msaaSamples <= 1) return; // Resolve. for (unsigned int i = 0; i < m_EFBLayers; i++) { glBindFramebuffer(GL_READ_FRAMEBUFFER, m_efbFramebuffer[i]); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_resolvedFramebuffer[i]); glBlitFramebuffer(0, 0, m_targetWidth, m_targetHeight, 0, 0, m_targetWidth, m_targetHeight, GL_STENCIL_BUFFER_BIT, GL_NEAREST); } // Return to EFB. glBindFramebuffer(GL_FRAMEBUFFER, m_efbFramebuffer[0]); } GLuint FramebufferManager::GetResolvedFramebuffer() { if (m_msaaSamples <= 1) return m_efbFramebuffer[0]; return m_resolvedFramebuffer[0]; } void FramebufferManager::SetFramebuffer(GLuint fb) { glBindFramebuffer(GL_FRAMEBUFFER, fb != 0 ? fb : GetEFBFramebuffer()); } void FramebufferManager::FramebufferTexture(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level) { if (textarget == GL_TEXTURE_2D_ARRAY || textarget == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) { if (m_EFBLayers > 1) glFramebufferTexture(target, attachment, texture, level); else glFramebufferTextureLayer(target, attachment, texture, level, 0); } else { glFramebufferTexture2D(target, attachment, textarget, texture, level); } } // Apply AA if enabled GLuint FramebufferManager::ResolveAndGetRenderTarget(const EFBRectangle& source_rect) { return GetEFBColorTexture(source_rect); } GLuint FramebufferManager::ResolveAndGetDepthTarget(const EFBRectangle& source_rect) { return GetEFBDepthTexture(source_rect); } void FramebufferManager::ReinterpretPixelData(unsigned int convtype) { g_renderer->ResetAPIState(); GLuint src_texture = 0; // We aren't allowed to render and sample the same texture in one draw call, // so we have to create a new texture and overwrite it completely. // To not allocate one big texture every time, we've allocated two on // initialization and just swap them here: src_texture = m_efbColor; m_efbColor = m_efbColorSwap; m_efbColorSwap = src_texture; FramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_textureType, m_efbColor, 0); glViewport(0, 0, m_targetWidth, m_targetHeight); glActiveTexture(GL_TEXTURE9); glBindTexture(m_textureType, src_texture); g_sampler_cache->BindNearestSampler(9); m_pixel_format_shaders[convtype ? 1 : 0].Bind(); ProgramShaderCache::BindVertexFormat(nullptr); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindTexture(m_textureType, 0); g_renderer->RestoreAPIState(); } void FramebufferManager::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) { g_renderer->ResetAPIState(); if (type == EFBAccessType::PokeZ) { glDepthMask(GL_TRUE); glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_ALWAYS); } glBindVertexArray(m_EfbPokes_VAO); glBindBuffer(GL_ARRAY_BUFFER, m_EfbPokes_VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(EfbPokeData) * num_points, points, GL_STREAM_DRAW); m_EfbPokes.Bind(); glViewport(0, 0, m_targetWidth, m_targetHeight); glDrawArrays(GL_POINTS, 0, (GLsizei)num_points); glBindBuffer(GL_ARRAY_BUFFER, static_cast(g_vertex_manager.get())->GetVertexBufferHandle()); g_renderer->RestoreAPIState(); // TODO: Could just update the EFB cache with the new value ClearEFBCache(); } } // namespace OGL