// Copyright (C) 2003-2009 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include #include #include "../../../Core/InputCommon/Src/SDL.h" // Core #include "../../../Core/InputCommon/Src/XInput.h" #include "Common.h" // Common #include "MathUtil.h" #include "StringUtil.h" // for ArrayToString() #include "IniFile.h" #include "pluginspecs_wiimote.h" #include "EmuDefinitions.h" // Local #include "main.h" #include "wiimote_hid.h" #include "EmuSubroutines.h" #include "EmuMain.h" #include "Encryption.h" // for extension encryption #include "Config.h" // for g_Config namespace WiiMoteEmu { //****************************************************************************** // Accelerometer functions //****************************************************************************** ////////////////////////////////////////////////////////////////////////////////////////// // Test the calculations // ŻŻŻŻŻŻŻŻŻŻŻŻŻ void TiltTest(u8 x, u8 y, u8 z) { int Roll, Pitch, RollAdj, PitchAdj; PitchAccelerometerToDegree(x, y, z, Roll, Pitch, RollAdj, PitchAdj); std::string From = StringFromFormat("From: X:%i Y:%i Z:%i Roll:%s Pitch:%s", x, y, z, (Roll >= 0) ? StringFromFormat(" %03i", Roll).c_str() : StringFromFormat("%04i", Roll).c_str(), (Pitch >= 0) ? StringFromFormat(" %03i", Pitch).c_str() : StringFromFormat("%04i", Pitch).c_str()); float _Roll = (float)Roll, _Pitch = (float)Pitch; PitchDegreeToAccelerometer(_Roll, _Pitch, x, y, z); std::string To = StringFromFormat("%s\nTo: X:%i Y:%i Z:%i Roll:%s Pitch:%s", From.c_str(), x, y, z, (_Roll >= 0) ? StringFromFormat(" %03i", (int)_Roll).c_str() : StringFromFormat("%04i", (int)_Roll).c_str(), (_Pitch >= 0) ? StringFromFormat(" %03i", (int)_Pitch).c_str() : StringFromFormat("%04i", (int)_Pitch).c_str()); INFO_LOG(CONSOLE, "%s\n", To.c_str()); } //////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// /* Angles adjustment for the upside down state when both roll and pitch is used. When the absolute values of the angles go over 90° the Wiimote is upside down and these adjustments are needed. */ // ŻŻŻŻŻŻŻŻŻŻŻŻŻ void AdjustAngles(float &Roll, float &Pitch) { float OldPitch = Pitch; if (abs(Roll) > 90) { if (Pitch >= 0) Pitch = 180 - Pitch; // 15 to 165 else if (Pitch < 0) Pitch = -180 - Pitch; // -15 to -165 } if (abs(OldPitch) > 90) { if (Roll >= 0) Roll = 180 - Roll; // 15 to 165 else if (Roll < 0) Roll = -180 - Roll; // -15 to -165 } } //////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// // Angles to accelerometer values // ŻŻŻŻŻŻŻŻŻŻŻŻŻ void PitchDegreeToAccelerometer(float _Roll, float _Pitch, u8 &_x, u8 &_y, u8 &_z) { // We need radiands for the math functions _Roll = InputCommon::Deg2Rad(_Roll); _Pitch = InputCommon::Deg2Rad(_Pitch); // We need decimal values float x = (float)_x, y = (float)_y, z = (float)_z; // In these cases we can use the simple and accurate formula if(g_Config.Trigger.Range.Pitch == 0) { x = sin(_Roll); z = cos(_Roll); } else if (g_Config.Trigger.Range.Roll == 0) { y = sin(_Pitch); z = cos(_Pitch); } else { // ==================================================== /* This seems to always produce the exact same combination of x, y, z and Roll and Pitch that the real Wiimote produce. There is an unlimited amount of x, y, z combinations for any combination of Roll and Pitch. But if we select a Z from the smallest of the absolute value of cos(Roll) and cos (Pitch) we get the right values. */ // --------- if (abs(cos(_Roll)) < abs(cos(_Pitch))) z = cos(_Roll); else z = cos(_Pitch); /* I got these from reversing the calculation in PitchAccelerometerToDegree() in a math program I don't know if we can derive these from some kind of matrix or something */ float x_num = 2 * tanf(0.5f * _Roll) * z; float x_den = pow2f(tanf(0.5f * _Roll)) - 1; x = - (x_num / x_den); float y_num = 2 * tanf(0.5f * _Pitch) * z; float y_den = pow2f(tanf(0.5f * _Pitch)) - 1; y = - (y_num / y_den); // ========================= } // Multiply with the neutral of z and its g float xg = g_wm.cal_g.x; float yg = g_wm.cal_g.y; float zg = g_wm.cal_g.z; float x_zero = g_wm.cal_zero.x; float y_zero = g_wm.cal_zero.y; float z_zero = g_wm.cal_zero.z; int ix = (int) (x_zero + xg * x); int iy = (int) (y_zero + yg * y); int iz = (int) (z_zero + zg * z); // Boundaries if (ix < 0) ix = 0; if (ix > 255) ix = 255; if (iy < 0) iy = 0; if (iy > 255) iy = 255; if (iz < 0) iz = 0; if (iz > 255) iz = 255; if(g_Config.Trigger.Range.Roll != 0) _x = ix; if(g_Config.Trigger.Range.Pitch != 0) _y = iy; _z = iz; } ////////////////////////////////////////////////////////////////////////////////////////// // Accelerometer to roll and pitch angles // ŻŻŻŻŻŻŻŻŻŻŻŻŻ float AccelerometerToG(float Current, float Neutral, float G) { float _G = (Current - Neutral) / G; return _G; } void PitchAccelerometerToDegree(u8 _x, u8 _y, u8 _z, int &_Roll, int &_Pitch, int &_RollAdj, int &_PitchAdj) { // Definitions float Roll = 0, Pitch = 0; // Calculate how many g we are from the neutral float x = AccelerometerToG((float)_x, (float)g_wm.cal_zero.x, (float)g_wm.cal_g.x); float y = AccelerometerToG((float)_y, (float)g_wm.cal_zero.y, (float)g_wm.cal_g.y); float z = AccelerometerToG((float)_z, (float)g_wm.cal_zero.z, (float)g_wm.cal_g.z); // If it is over 1g then it is probably accelerating and may not reliable //if (abs(accel->x - ac->cal_zero.x) <= ac->cal_g.x) { // Calculate the degree Roll = InputCommon::Rad2Deg(atan2(x, z)); } //if (abs(_y - g_wm.cal_zero.y) <= g_wm.cal_g.y) { // Calculate the degree Pitch = InputCommon::Rad2Deg(atan2(y, z)); } _Roll = (int)Roll; _Pitch = (int)Pitch; /* Don't allow forces bigger than 1g */ if (x < -1.0) x = -1.0; else if (x > 1.0) x = 1.0; if (y < -1.0) y = -1.0; else if (y > 1.0) y = 1.0; if (z < -1.0) z = -1.0; else if (z > 1.0) z = 1.0; Roll = InputCommon::Rad2Deg(atan2(x, z)); Pitch = InputCommon::Rad2Deg(atan2(y, z)); _RollAdj = (int)Roll; _PitchAdj = (int)Pitch; } //****************************************************************************** // IR data functions //****************************************************************************** ////////////////////////////////////////////////////////////////////////////////////////// // Calculate dot positions from the basic 10 byte IR data // ŻŻŻŻŻŻŻŻŻŻŻŻŻ void IRData2DotsBasic(u8 *Data) { struct SDot* Dot = g_Wiimote_kbd.IR.Dot; Dot[0].Rx = 1023 - (Data[0] | ((Data[2] & 0x30) << 4)); Dot[0].Ry = Data[1] | ((Data[2] & 0xc0) << 2); Dot[1].Rx = 1023 - (Data[3] | ((Data[2] & 0x03) << 8)); Dot[1].Ry = Data[4] | ((Data[2] & 0x0c) << 6); Dot[2].Rx = 1023 - (Data[5] | ((Data[7] & 0x30) << 4)); Dot[2].Ry = Data[6] | ((Data[7] & 0xc0) << 2); Dot[3].Rx = 1023 - (Data[8] | ((Data[7] & 0x03) << 8)); Dot[3].Ry = Data[9] | ((Data[7] & 0x0c) << 6); /* set each IR spot to visible if spot is in range */ for (int i = 0; i < 4; ++i) { if (Dot[i].Ry == 1023) { Dot[i].Visible = 0; } else { Dot[i].Visible = 1; Dot[i].Size = 0; /* since we don't know the size, set it as 0 */ } // For now we let our virtual resolution be the same as the default one Dot[i].X = Dot[i].Rx; Dot[i].Y = Dot[i].Ry; } // Calculate the other values ReorderIRDots(); IRData2Distance(); } ////////////////////////////////////////////////////////////////////////////////////////// // Calculate dot positions from the extented 12 byte IR data // ŻŻŻŻŻŻŻŻŻŻŻŻŻ void IRData2Dots(u8 *Data) { struct SDot* Dot = g_Wiimote_kbd.IR.Dot; for (int i = 0; i < 4; ++i) { //Console::Print("Rx: %i\n", Dot[i].Rx); Dot[i].Rx = 1023 - (Data[3*i] | ((Data[(3*i)+2] & 0x30) << 4)); Dot[i].Ry = Data[(3*i)+1] | ((Data[(3*i)+2] & 0xc0) << 2); Dot[i].Size = Data[(3*i)+2] & 0x0f; /* if in range set to visible */ if (Dot[i].Ry == 1023) Dot[i].Visible = false; else Dot[i].Visible = true; //Console::Print("Rx: %i\n", Dot[i].Rx); // For now we let our virtual resolution be the same as the default one Dot[i].X = Dot[i].Rx; Dot[i].Y = Dot[i].Ry; } // Calculate the other values ReorderIRDots(); IRData2Distance(); } //////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// // Reorder the IR dots according to their x-axis value // ŻŻŻŻŻŻŻŻŻŻŻŻŻ void ReorderIRDots() { // Create a shortcut struct SDot* Dot = g_Wiimote_kbd.IR.Dot; // Variables int i, j, order; // Reset the dot ordering to zero for (i = 0; i < 4; ++i) Dot[i].Order = 0; for (order = 1; order < 5; ++order) { i = 0; // for (; !Dot[i].Visible || Dot[i].Order; ++i) if (i > 4) return; // for (j = 0; j < 4; ++j) { if (Dot[j].Visible && !Dot[j].Order && (Dot[j].X < Dot[i].X)) i = j; } Dot[i].Order = order; } } //////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// // Calculate dot positions from the extented 12 byte IR data // ŻŻŻŻŻŻŻŻŻŻŻŻŻ void IRData2Distance() { // Create a shortcut struct SDot* Dot = g_Wiimote_kbd.IR.Dot; // Make these ones global int i1, i2; for (i1 = 0; i1 < 4; ++i1) if (Dot[i1].Visible) break; // Only one dot was visible, we can not calculate the distance if (i1 == 4) { g_Wiimote_kbd.IR.Distance = 0; return; } // Look at the next dot for (i2 = i1 + 1; i2 < 4; ++i2) if (Dot[i2].Visible) break; // Only one dot was visible, we can not calculate the distance if (i2 == 4) { g_Wiimote_kbd.IR.Distance = 0; return; } /* For the emulated Wiimote the y distance is always zero so then the distance is the simple distance between the x dots, i.e. the sensor bar width */ int xd = Dot[i2].X - Dot[i1].X; int yd = Dot[i2].Y - Dot[i1].Y; // Save the distance g_Wiimote_kbd.IR.Distance = (int)sqrt((float)(xd*xd) + (float)(yd*yd)); } //////////////////////////////// //****************************************************************************** // Classic Controller functions //****************************************************************************** std::string CCData2Values(u8 *Data) { return StringFromFormat( "Tl:%03i Tr:%03i Lx:%03i Ly:%03i Rx:%03i Ry:%03i", (((Data[2] & 0x60) >> 2) | ((Data[3] & 0xe0) >> 5)), (Data[3] & 0x1f), (Data[0] & 0x3f), (Data[1] & 0x3f), ((Data[0] & 0xc0) >> 3) | ((Data[1] & 0xc0) >> 5) | ((Data[2] & 0x80) >> 7), (Data[2] & 0x1f)); } } // WiiMoteEmu