// Copyright 2009 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include "Common/CommonFuncs.h" #include "Common/CommonTypes.h" #include "Common/MathUtil.h" #include "Common/MsgHandler.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/TextureConversionShader.h" #include "VideoCommon/VideoCommon.h" #define WRITE p += sprintf static char text[16384]; static bool IntensityConstantAdded = false; namespace TextureConversionShaderTiled { u16 GetEncodedSampleCount(EFBCopyFormat format) { switch (format) { case EFBCopyFormat::R4: return 8; case EFBCopyFormat::RA4: return 4; case EFBCopyFormat::RA8: return 2; case EFBCopyFormat::RGB565: return 2; case EFBCopyFormat::RGB5A3: return 2; case EFBCopyFormat::RGBA8: return 1; case EFBCopyFormat::A8: case EFBCopyFormat::R8_0x1: case EFBCopyFormat::R8: case EFBCopyFormat::G8: case EFBCopyFormat::B8: return 4; case EFBCopyFormat::RG8: case EFBCopyFormat::GB8: return 2; case EFBCopyFormat::XFB: return 2; default: PanicAlert("Invalid EFB Copy Format (0x%X)! (GetEncodedSampleCount)", static_cast(format)); return 1; } } static void WriteHeader(char*& p, APIType ApiType) { if (ApiType == APIType::OpenGL) { // left, top, of source rectangle within source texture // width of the destination rectangle, scale_factor (1 or 2) WRITE(p, "uniform int4 position;\n"); WRITE(p, "uniform float y_scale;\n"); WRITE(p, "uniform float gamma_rcp;\n"); WRITE(p, "uniform float2 clamp_tb;\n"); WRITE(p, "uniform int3 filter_coefficients;\n"); WRITE(p, "#define samp0 samp9\n"); WRITE(p, "SAMPLER_BINDING(9) uniform sampler2DArray samp0;\n"); WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n"); } else if (ApiType == APIType::Vulkan) { WRITE(p, "UBO_BINDING(std140, 1) uniform PSBlock {\n"); WRITE(p, " int4 position;\n"); WRITE(p, " float y_scale;\n"); WRITE(p, " float gamma_rcp;\n"); WRITE(p, " float2 clamp_tb;\n"); WRITE(p, " int3 filter_coefficients;\n"); WRITE(p, "};\n"); WRITE(p, "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n"); WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n"); } else // D3D { WRITE(p, "cbuffer PSBlock : register(b0) {\n"); WRITE(p, " int4 position;\n"); WRITE(p, " float y_scale;\n"); WRITE(p, " float gamma_rcp;\n"); WRITE(p, " float2 clamp_tb;\n"); WRITE(p, " int3 filter_coefficients;\n"); WRITE(p, "};\n"); WRITE(p, "sampler samp0 : register(s0);\n"); WRITE(p, "Texture2DArray Tex0 : register(t0);\n"); } // D3D does not have roundEven(), only round(), which is specified "to the nearest integer". // This differs from the roundEven() behavior, but to get consistency across drivers in OpenGL // we need to use roundEven(). if (ApiType == APIType::D3D) WRITE(p, "#define roundEven(x) round(x)\n"); // Alpha channel in the copy is set to 1 the EFB format does not have an alpha channel. WRITE(p, "float4 RGBA8ToRGB8(float4 src)\n"); WRITE(p, "{\n"); WRITE(p, " return float4(src.xyz, 1.0);\n"); WRITE(p, "}\n"); WRITE(p, "float4 RGBA8ToRGBA6(float4 src)\n"); WRITE(p, "{\n"); WRITE(p, " int4 val = int4(roundEven(src * 255.0)) >> 2;\n"); WRITE(p, " return float4(val) / 63.0;\n"); WRITE(p, "}\n"); WRITE(p, "float4 RGBA8ToRGB565(float4 src)\n"); WRITE(p, "{\n"); WRITE(p, " int4 val = int4(roundEven(src * 255.0));\n"); WRITE(p, " val = int4(val.r >> 3, val.g >> 2, val.b >> 3, 1);\n"); WRITE(p, " return float4(val) / float4(31.0, 63.0, 31.0, 1.0);\n"); WRITE(p, "}\n"); } static void WriteSampleFunction(char*& p, const EFBCopyParams& params, APIType ApiType) { auto WriteSampleOp = [&](int yoffset) { if (!params.depth) { switch (params.efb_format) { case PEControl::RGB8_Z24: WRITE(p, "RGBA8ToRGB8("); break; case PEControl::RGBA6_Z24: WRITE(p, "RGBA8ToRGBA6("); break; case PEControl::RGB565_Z16: WRITE(p, "RGBA8ToRGB565("); break; default: WRITE(p, "("); break; } } else { // Handle D3D depth inversion. if (ApiType == APIType::D3D || ApiType == APIType::Vulkan) WRITE(p, "1.0 - ("); else WRITE(p, "("); } if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) WRITE(p, "texture(samp0, float3("); else WRITE(p, "Tex0.Sample(samp0, float3("); WRITE(p, "uv.x + float(xoffset) * pixel_size.x, "); // Reverse the direction for OpenGL, since positive numbers are distance from the bottom row. if (yoffset != 0) { if (ApiType == APIType::OpenGL) WRITE(p, "clamp(uv.y - float(%d) * pixel_size.y, clamp_tb.x, clamp_tb.y)", yoffset); else WRITE(p, "clamp(uv.y + float(%d) * pixel_size.y, clamp_tb.x, clamp_tb.y)", yoffset); } else { WRITE(p, "uv.y"); } WRITE(p, ", 0.0)))"); }; // The copy filter applies to both color and depth copies. This has been verified on hardware. // The filter is only applied to the RGB channels, the alpha channel is left intact. WRITE(p, "float4 SampleEFB(float2 uv, float2 pixel_size, int xoffset)\n"); WRITE(p, "{\n"); WRITE(p, " float4 prev_row = "); WriteSampleOp(-1); WRITE(p, ";\n"); WRITE(p, " float4 current_row = "); WriteSampleOp(0); WRITE(p, ";\n"); WRITE(p, " float4 next_row = "); WriteSampleOp(1); WRITE(p, ";\n"); WRITE(p, " float3 col = float3(clamp((int3(prev_row.rgb * 255.0) * filter_coefficients[0] +\n" " int3(current_row.rgb * 255.0) * filter_coefficients[1] +\n" " int3(next_row.rgb * 255.0) * filter_coefficients[2]) >> 6,\n" " int3(0, 0, 0), int3(255, 255, 255))) / 255.0;\n"); WRITE(p, " return float4(col, current_row.a);\n"); WRITE(p, "}\n"); } // block dimensions : widthStride, heightStride // texture dims : width, height, x offset, y offset static void WriteSwizzler(char*& p, const EFBCopyParams& params, EFBCopyFormat format, APIType ApiType) { WriteHeader(p, ApiType); WriteSampleFunction(p, params, ApiType); if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) { WRITE(p, "void main()\n"); WRITE(p, "{\n" " int2 sampleUv;\n" " int2 uv1 = int2(gl_FragCoord.xy);\n"); } else // D3D { WRITE(p, "void main(\n"); WRITE(p, " out float4 ocol0 : SV_Target, in float4 rawpos : SV_Position)\n"); WRITE(p, "{\n" " int2 sampleUv;\n" " int2 uv1 = int2(rawpos.xy);\n"); } int blkW = TexDecoder_GetEFBCopyBlockWidthInTexels(format); int blkH = TexDecoder_GetEFBCopyBlockHeightInTexels(format); int samples = GetEncodedSampleCount(format); WRITE(p, " int x_block_position = (uv1.x >> %d) << %d;\n", IntLog2(blkH * blkW / samples), IntLog2(blkW)); WRITE(p, " int y_block_position = uv1.y << %d;\n", IntLog2(blkH)); if (samples == 1) { // With samples == 1, we write out pairs of blocks; one A8R8, one G8B8. WRITE(p, " bool first = (uv1.x & %d) == 0;\n", blkH * blkW / 2); samples = 2; } WRITE(p, " int offset_in_block = uv1.x & %d;\n", (blkH * blkW / samples) - 1); WRITE(p, " int y_offset_in_block = offset_in_block >> %d;\n", IntLog2(blkW / samples)); WRITE(p, " int x_offset_in_block = (offset_in_block & %d) << %d;\n", (blkW / samples) - 1, IntLog2(samples)); WRITE(p, " sampleUv.x = x_block_position + x_offset_in_block;\n"); WRITE(p, " sampleUv.y = y_block_position + y_offset_in_block;\n"); WRITE(p, " float2 uv0 = float2(sampleUv);\n"); // sampleUv is the sample position in (int)gx_coords WRITE(p, " uv0 += float2(0.5, 0.5);\n"); // move to center of pixel WRITE(p, " uv0 *= float(position.w);\n"); // scale by two if needed (also move to pixel borders // so that linear filtering will average adjacent // pixel) WRITE(p, " uv0 += float2(position.xy);\n"); // move to copied rect WRITE(p, " uv0 /= float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT); // normalize to [0:1] WRITE(p, " uv0 /= float2(1, y_scale);\n"); // apply the y scaling if (ApiType == APIType::OpenGL) // ogl has to flip up and down { WRITE(p, " uv0.y = 1.0-uv0.y;\n"); } WRITE(p, " float2 pixel_size = float2(position.w, position.w) / float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT); } static void WriteSampleColor(char*& p, const char* colorComp, const char* dest, int xoffset, APIType ApiType, const EFBCopyParams& params) { WRITE(p, " %s = SampleEFB(uv0, pixel_size, %d).%s;\n", dest, xoffset, colorComp); } static void WriteColorToIntensity(char*& p, const char* src, const char* dest) { if (!IntensityConstantAdded) { WRITE(p, " float4 IntensityConst = float4(0.257f,0.504f,0.098f,0.0625f);\n"); IntensityConstantAdded = true; } WRITE(p, " %s = dot(IntensityConst.rgb, %s.rgb);\n", dest, src); // don't add IntensityConst.a yet, because doing it later is faster and uses less instructions, // due to vectorization } static void WriteToBitDepth(char*& p, u8 depth, const char* src, const char* dest) { WRITE(p, " %s = floor(%s * 255.0 / exp2(8.0 - %d.0));\n", dest, src, depth); } static void WriteEncoderEnd(char*& p) { WRITE(p, "}\n"); IntensityConstantAdded = false; } static void WriteI8Encoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::R8, ApiType); WRITE(p, " float3 texSample;\n"); WriteSampleColor(p, "rgb", "texSample", 0, ApiType, params); WriteColorToIntensity(p, "texSample", "ocol0.b"); WriteSampleColor(p, "rgb", "texSample", 1, ApiType, params); WriteColorToIntensity(p, "texSample", "ocol0.g"); WriteSampleColor(p, "rgb", "texSample", 2, ApiType, params); WriteColorToIntensity(p, "texSample", "ocol0.r"); WriteSampleColor(p, "rgb", "texSample", 3, ApiType, params); WriteColorToIntensity(p, "texSample", "ocol0.a"); WRITE(p, " ocol0.rgba += IntensityConst.aaaa;\n"); // see WriteColorToIntensity WriteEncoderEnd(p); } static void WriteI4Encoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::R4, ApiType); WRITE(p, " float3 texSample;\n"); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, "rgb", "texSample", 0, ApiType, params); WriteColorToIntensity(p, "texSample", "color0.b"); WriteSampleColor(p, "rgb", "texSample", 1, ApiType, params); WriteColorToIntensity(p, "texSample", "color1.b"); WriteSampleColor(p, "rgb", "texSample", 2, ApiType, params); WriteColorToIntensity(p, "texSample", "color0.g"); WriteSampleColor(p, "rgb", "texSample", 3, ApiType, params); WriteColorToIntensity(p, "texSample", "color1.g"); WriteSampleColor(p, "rgb", "texSample", 4, ApiType, params); WriteColorToIntensity(p, "texSample", "color0.r"); WriteSampleColor(p, "rgb", "texSample", 5, ApiType, params); WriteColorToIntensity(p, "texSample", "color1.r"); WriteSampleColor(p, "rgb", "texSample", 6, ApiType, params); WriteColorToIntensity(p, "texSample", "color0.a"); WriteSampleColor(p, "rgb", "texSample", 7, ApiType, params); WriteColorToIntensity(p, "texSample", "color1.a"); WRITE(p, " color0.rgba += IntensityConst.aaaa;\n"); WRITE(p, " color1.rgba += IntensityConst.aaaa;\n"); WriteToBitDepth(p, 4, "color0", "color0"); WriteToBitDepth(p, 4, "color1", "color1"); WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n"); WriteEncoderEnd(p); } static void WriteIA8Encoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::RA8, ApiType); WRITE(p, " float4 texSample;\n"); WriteSampleColor(p, "rgba", "texSample", 0, ApiType, params); WRITE(p, " ocol0.b = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "ocol0.g"); WriteSampleColor(p, "rgba", "texSample", 1, ApiType, params); WRITE(p, " ocol0.r = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "ocol0.a"); WRITE(p, " ocol0.ga += IntensityConst.aa;\n"); WriteEncoderEnd(p); } static void WriteIA4Encoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::RA4, ApiType); WRITE(p, " float4 texSample;\n"); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, "rgba", "texSample", 0, ApiType, params); WRITE(p, " color0.b = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "color1.b"); WriteSampleColor(p, "rgba", "texSample", 1, ApiType, params); WRITE(p, " color0.g = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "color1.g"); WriteSampleColor(p, "rgba", "texSample", 2, ApiType, params); WRITE(p, " color0.r = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "color1.r"); WriteSampleColor(p, "rgba", "texSample", 3, ApiType, params); WRITE(p, " color0.a = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "color1.a"); WRITE(p, " color1.rgba += IntensityConst.aaaa;\n"); WriteToBitDepth(p, 4, "color0", "color0"); WriteToBitDepth(p, 4, "color1", "color1"); WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n"); WriteEncoderEnd(p); } static void WriteRGB565Encoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::RGB565, ApiType); WRITE(p, " float3 texSample0;\n"); WRITE(p, " float3 texSample1;\n"); WriteSampleColor(p, "rgb", "texSample0", 0, ApiType, params); WriteSampleColor(p, "rgb", "texSample1", 1, ApiType, params); WRITE(p, " float2 texRs = float2(texSample0.r, texSample1.r);\n"); WRITE(p, " float2 texGs = float2(texSample0.g, texSample1.g);\n"); WRITE(p, " float2 texBs = float2(texSample0.b, texSample1.b);\n"); WriteToBitDepth(p, 6, "texGs", "float2 gInt"); WRITE(p, " float2 gUpper = floor(gInt / 8.0);\n"); WRITE(p, " float2 gLower = gInt - gUpper * 8.0;\n"); WriteToBitDepth(p, 5, "texRs", "ocol0.br"); WRITE(p, " ocol0.br = ocol0.br * 8.0 + gUpper;\n"); WriteToBitDepth(p, 5, "texBs", "ocol0.ga"); WRITE(p, " ocol0.ga = ocol0.ga + gLower * 32.0;\n"); WRITE(p, " ocol0 = ocol0 / 255.0;\n"); WriteEncoderEnd(p); } static void WriteRGB5A3Encoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::RGB5A3, ApiType); WRITE(p, " float4 texSample;\n"); WRITE(p, " float color0;\n"); WRITE(p, " float gUpper;\n"); WRITE(p, " float gLower;\n"); WriteSampleColor(p, "rgba", "texSample", 0, ApiType, params); // 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits WRITE(p, "if(texSample.a > 0.878f) {\n"); WriteToBitDepth(p, 5, "texSample.g", "color0"); WRITE(p, " gUpper = floor(color0 / 8.0);\n"); WRITE(p, " gLower = color0 - gUpper * 8.0;\n"); WriteToBitDepth(p, 5, "texSample.r", "ocol0.b"); WRITE(p, " ocol0.b = ocol0.b * 4.0 + gUpper + 128.0;\n"); WriteToBitDepth(p, 5, "texSample.b", "ocol0.g"); WRITE(p, " ocol0.g = ocol0.g + gLower * 32.0;\n"); WRITE(p, "} else {\n"); WriteToBitDepth(p, 4, "texSample.r", "ocol0.b"); WriteToBitDepth(p, 4, "texSample.b", "ocol0.g"); WriteToBitDepth(p, 3, "texSample.a", "color0"); WRITE(p, "ocol0.b = ocol0.b + color0 * 16.0;\n"); WriteToBitDepth(p, 4, "texSample.g", "color0"); WRITE(p, "ocol0.g = ocol0.g + color0 * 16.0;\n"); WRITE(p, "}\n"); WriteSampleColor(p, "rgba", "texSample", 1, ApiType, params); WRITE(p, "if(texSample.a > 0.878f) {\n"); WriteToBitDepth(p, 5, "texSample.g", "color0"); WRITE(p, " gUpper = floor(color0 / 8.0);\n"); WRITE(p, " gLower = color0 - gUpper * 8.0;\n"); WriteToBitDepth(p, 5, "texSample.r", "ocol0.r"); WRITE(p, " ocol0.r = ocol0.r * 4.0 + gUpper + 128.0;\n"); WriteToBitDepth(p, 5, "texSample.b", "ocol0.a"); WRITE(p, " ocol0.a = ocol0.a + gLower * 32.0;\n"); WRITE(p, "} else {\n"); WriteToBitDepth(p, 4, "texSample.r", "ocol0.r"); WriteToBitDepth(p, 4, "texSample.b", "ocol0.a"); WriteToBitDepth(p, 3, "texSample.a", "color0"); WRITE(p, "ocol0.r = ocol0.r + color0 * 16.0;\n"); WriteToBitDepth(p, 4, "texSample.g", "color0"); WRITE(p, "ocol0.a = ocol0.a + color0 * 16.0;\n"); WRITE(p, "}\n"); WRITE(p, " ocol0 = ocol0 / 255.0;\n"); WriteEncoderEnd(p); } static void WriteRGBA8Encoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::RGBA8, ApiType); WRITE(p, " float4 texSample;\n"); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, "rgba", "texSample", 0, ApiType, params); WRITE(p, " color0.b = texSample.a;\n"); WRITE(p, " color0.g = texSample.r;\n"); WRITE(p, " color1.b = texSample.g;\n"); WRITE(p, " color1.g = texSample.b;\n"); WriteSampleColor(p, "rgba", "texSample", 1, ApiType, params); WRITE(p, " color0.r = texSample.a;\n"); WRITE(p, " color0.a = texSample.r;\n"); WRITE(p, " color1.r = texSample.g;\n"); WRITE(p, " color1.a = texSample.b;\n"); WRITE(p, " ocol0 = first ? color0 : color1;\n"); WriteEncoderEnd(p); } static void WriteC4Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::R4, ApiType); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, comp, "color0.b", 0, ApiType, params); WriteSampleColor(p, comp, "color1.b", 1, ApiType, params); WriteSampleColor(p, comp, "color0.g", 2, ApiType, params); WriteSampleColor(p, comp, "color1.g", 3, ApiType, params); WriteSampleColor(p, comp, "color0.r", 4, ApiType, params); WriteSampleColor(p, comp, "color1.r", 5, ApiType, params); WriteSampleColor(p, comp, "color0.a", 6, ApiType, params); WriteSampleColor(p, comp, "color1.a", 7, ApiType, params); WriteToBitDepth(p, 4, "color0", "color0"); WriteToBitDepth(p, 4, "color1", "color1"); WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n"); WriteEncoderEnd(p); } static void WriteC8Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::R8, ApiType); WriteSampleColor(p, comp, "ocol0.b", 0, ApiType, params); WriteSampleColor(p, comp, "ocol0.g", 1, ApiType, params); WriteSampleColor(p, comp, "ocol0.r", 2, ApiType, params); WriteSampleColor(p, comp, "ocol0.a", 3, ApiType, params); WriteEncoderEnd(p); } static void WriteCC4Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::RA4, ApiType); WRITE(p, " float2 texSample;\n"); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, comp, "texSample", 0, ApiType, params); WRITE(p, " color0.b = texSample.x;\n"); WRITE(p, " color1.b = texSample.y;\n"); WriteSampleColor(p, comp, "texSample", 1, ApiType, params); WRITE(p, " color0.g = texSample.x;\n"); WRITE(p, " color1.g = texSample.y;\n"); WriteSampleColor(p, comp, "texSample", 2, ApiType, params); WRITE(p, " color0.r = texSample.x;\n"); WRITE(p, " color1.r = texSample.y;\n"); WriteSampleColor(p, comp, "texSample", 3, ApiType, params); WRITE(p, " color0.a = texSample.x;\n"); WRITE(p, " color1.a = texSample.y;\n"); WriteToBitDepth(p, 4, "color0", "color0"); WriteToBitDepth(p, 4, "color1", "color1"); WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n"); WriteEncoderEnd(p); } static void WriteCC8Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::RA8, ApiType); WriteSampleColor(p, comp, "ocol0.bg", 0, ApiType, params); WriteSampleColor(p, comp, "ocol0.ra", 1, ApiType, params); WriteEncoderEnd(p); } static void WriteZ8Encoder(char*& p, const char* multiplier, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::G8, ApiType); WRITE(p, " float depth;\n"); WriteSampleColor(p, "r", "depth", 0, ApiType, params); WRITE(p, "ocol0.b = frac(depth * %s);\n", multiplier); WriteSampleColor(p, "r", "depth", 1, ApiType, params); WRITE(p, "ocol0.g = frac(depth * %s);\n", multiplier); WriteSampleColor(p, "r", "depth", 2, ApiType, params); WRITE(p, "ocol0.r = frac(depth * %s);\n", multiplier); WriteSampleColor(p, "r", "depth", 3, ApiType, params); WRITE(p, "ocol0.a = frac(depth * %s);\n", multiplier); WriteEncoderEnd(p); } static void WriteZ16Encoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::RA8, ApiType); WRITE(p, " float depth;\n"); WRITE(p, " float3 expanded;\n"); // byte order is reversed WriteSampleColor(p, "r", "depth", 0, ApiType, params); WRITE(p, " depth *= 16777216.0;\n"); WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n"); WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n"); WRITE(p, " expanded.g = floor(depth / 256.0);\n"); WRITE(p, " ocol0.b = expanded.g / 255.0;\n"); WRITE(p, " ocol0.g = expanded.r / 255.0;\n"); WriteSampleColor(p, "r", "depth", 1, ApiType, params); WRITE(p, " depth *= 16777216.0;\n"); WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n"); WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n"); WRITE(p, " expanded.g = floor(depth / 256.0);\n"); WRITE(p, " ocol0.r = expanded.g / 255.0;\n"); WRITE(p, " ocol0.a = expanded.r / 255.0;\n"); WriteEncoderEnd(p); } static void WriteZ16LEncoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::GB8, ApiType); WRITE(p, " float depth;\n"); WRITE(p, " float3 expanded;\n"); // byte order is reversed WriteSampleColor(p, "r", "depth", 0, ApiType, params); WRITE(p, " depth *= 16777216.0;\n"); WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n"); WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n"); WRITE(p, " expanded.g = floor(depth / 256.0);\n"); WRITE(p, " depth -= expanded.g * 256.0;\n"); WRITE(p, " expanded.b = depth;\n"); WRITE(p, " ocol0.b = expanded.b / 255.0;\n"); WRITE(p, " ocol0.g = expanded.g / 255.0;\n"); WriteSampleColor(p, "r", "depth", 1, ApiType, params); WRITE(p, " depth *= 16777216.0;\n"); WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n"); WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n"); WRITE(p, " expanded.g = floor(depth / 256.0);\n"); WRITE(p, " depth -= expanded.g * 256.0;\n"); WRITE(p, " expanded.b = depth;\n"); WRITE(p, " ocol0.r = expanded.b / 255.0;\n"); WRITE(p, " ocol0.a = expanded.g / 255.0;\n"); WriteEncoderEnd(p); } static void WriteZ24Encoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::RGBA8, ApiType); WRITE(p, " float depth0;\n"); WRITE(p, " float depth1;\n"); WRITE(p, " float3 expanded0;\n"); WRITE(p, " float3 expanded1;\n"); WriteSampleColor(p, "r", "depth0", 0, ApiType, params); WriteSampleColor(p, "r", "depth1", 1, ApiType, params); for (int i = 0; i < 2; i++) { WRITE(p, " depth%i *= 16777216.0;\n", i); WRITE(p, " expanded%i.r = floor(depth%i / (256.0 * 256.0));\n", i, i); WRITE(p, " depth%i -= expanded%i.r * 256.0 * 256.0;\n", i, i); WRITE(p, " expanded%i.g = floor(depth%i / 256.0);\n", i, i); WRITE(p, " depth%i -= expanded%i.g * 256.0;\n", i, i); WRITE(p, " expanded%i.b = depth%i;\n", i, i); } WRITE(p, " if (!first) {\n"); // upper 16 WRITE(p, " ocol0.b = expanded0.g / 255.0;\n"); WRITE(p, " ocol0.g = expanded0.b / 255.0;\n"); WRITE(p, " ocol0.r = expanded1.g / 255.0;\n"); WRITE(p, " ocol0.a = expanded1.b / 255.0;\n"); WRITE(p, " } else {\n"); // lower 8 WRITE(p, " ocol0.b = 1.0;\n"); WRITE(p, " ocol0.g = expanded0.r / 255.0;\n"); WRITE(p, " ocol0.r = 1.0;\n"); WRITE(p, " ocol0.a = expanded1.r / 255.0;\n"); WRITE(p, " }\n"); WriteEncoderEnd(p); } static void WriteXFBEncoder(char*& p, APIType ApiType, const EFBCopyParams& params) { WriteSwizzler(p, params, EFBCopyFormat::XFB, ApiType); WRITE(p, "float3 color0, color1;\n"); WriteSampleColor(p, "rgb", "color0", 0, ApiType, params); WriteSampleColor(p, "rgb", "color1", 1, ApiType, params); // Gamma is only applied to XFB copies. WRITE(p, " color0 = pow(color0, float3(gamma_rcp, gamma_rcp, gamma_rcp));\n"); WRITE(p, " color1 = pow(color1, float3(gamma_rcp, gamma_rcp, gamma_rcp));\n"); // Convert to YUV. WRITE(p, " const float3 y_const = float3(0.257, 0.504, 0.098);\n"); WRITE(p, " const float3 u_const = float3(-0.148, -0.291, 0.439);\n"); WRITE(p, " const float3 v_const = float3(0.439, -0.368, -0.071);\n"); WRITE(p, " float3 average = (color0 + color1) * 0.5;\n"); WRITE(p, " ocol0.b = dot(color0, y_const) + 0.0625;\n"); WRITE(p, " ocol0.g = dot(average, u_const) + 0.5;\n"); WRITE(p, " ocol0.r = dot(color1, y_const) + 0.0625;\n"); WRITE(p, " ocol0.a = dot(average, v_const) + 0.5;\n"); WriteEncoderEnd(p); } const char* GenerateEncodingShader(const EFBCopyParams& params, APIType api_type) { text[sizeof(text) - 1] = 0x7C; // canary char* p = text; switch (params.copy_format) { case EFBCopyFormat::R4: if (params.yuv) WriteI4Encoder(p, api_type, params); else WriteC4Encoder(p, "r", api_type, params); break; case EFBCopyFormat::RA4: if (params.yuv) WriteIA4Encoder(p, api_type, params); else WriteCC4Encoder(p, "ar", api_type, params); break; case EFBCopyFormat::RA8: if (params.yuv) WriteIA8Encoder(p, api_type, params); else WriteCC8Encoder(p, "ar", api_type, params); break; case EFBCopyFormat::RGB565: WriteRGB565Encoder(p, api_type, params); break; case EFBCopyFormat::RGB5A3: WriteRGB5A3Encoder(p, api_type, params); break; case EFBCopyFormat::RGBA8: if (params.depth) WriteZ24Encoder(p, api_type, params); else WriteRGBA8Encoder(p, api_type, params); break; case EFBCopyFormat::A8: WriteC8Encoder(p, "a", api_type, params); break; case EFBCopyFormat::R8_0x1: case EFBCopyFormat::R8: if (params.yuv) WriteI8Encoder(p, api_type, params); else WriteC8Encoder(p, "r", api_type, params); break; case EFBCopyFormat::G8: if (params.depth) WriteZ8Encoder(p, "256.0", api_type, params); // Z8M else WriteC8Encoder(p, "g", api_type, params); break; case EFBCopyFormat::B8: if (params.depth) WriteZ8Encoder(p, "65536.0", api_type, params); // Z8L else WriteC8Encoder(p, "b", api_type, params); break; case EFBCopyFormat::RG8: if (params.depth) WriteZ16Encoder(p, api_type, params); // Z16H else WriteCC8Encoder(p, "rg", api_type, params); break; case EFBCopyFormat::GB8: if (params.depth) WriteZ16LEncoder(p, api_type, params); // Z16L else WriteCC8Encoder(p, "gb", api_type, params); break; case EFBCopyFormat::XFB: WriteXFBEncoder(p, api_type, params); break; default: PanicAlert("Invalid EFB Copy Format (0x%X)! (GenerateEncodingShader)", static_cast(params.copy_format)); break; } if (text[sizeof(text) - 1] != 0x7C) PanicAlert("TextureConversionShader generator - buffer too small, canary has been eaten!"); return text; } // NOTE: In these uniforms, a row refers to a row of blocks, not texels. static const char decoding_shader_header[] = R"( #ifdef VULKAN layout(std140, push_constant) uniform PushConstants { uvec2 dst_size; uvec2 src_size; uint src_offset; uint src_row_stride; uint palette_offset; } push_constants; #define u_dst_size (push_constants.dst_size) #define u_src_size (push_constants.src_size) #define u_src_offset (push_constants.src_offset) #define u_src_row_stride (push_constants.src_row_stride) #define u_palette_offset (push_constants.palette_offset) TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer s_input_buffer; TEXEL_BUFFER_BINDING(1) uniform usamplerBuffer s_palette_buffer; IMAGE_BINDING(rgba8, 0) uniform writeonly image2DArray output_image; #else uniform uvec2 u_dst_size; uniform uvec2 u_src_size; uniform uint u_src_offset; uniform uint u_src_row_stride; uniform uint u_palette_offset; SAMPLER_BINDING(9) uniform usamplerBuffer s_input_buffer; SAMPLER_BINDING(10) uniform usamplerBuffer s_palette_buffer; layout(rgba8, binding = 0) uniform writeonly image2DArray output_image; #endif uint Swap16(uint v) { // Convert BE to LE. return ((v >> 8) | (v << 8)) & 0xFFFFu; } uint Convert3To8(uint v) { // Swizzle bits: 00000123 -> 12312312 return (v << 5) | (v << 2) | (v >> 1); } uint Convert4To8(uint v) { // Swizzle bits: 00001234 -> 12341234 return (v << 4) | v; } uint Convert5To8(uint v) { // Swizzle bits: 00012345 -> 12345123 return (v << 3) | (v >> 2); } uint Convert6To8(uint v) { // Swizzle bits: 00123456 -> 12345612 return (v << 2) | (v >> 4); } uint GetTiledTexelOffset(uvec2 block_size, uvec2 coords) { uvec2 block = coords / block_size; uvec2 offset = coords % block_size; uint buffer_pos = u_src_offset; buffer_pos += block.y * u_src_row_stride; buffer_pos += block.x * (block_size.x * block_size.y); buffer_pos += offset.y * block_size.x; buffer_pos += offset.x; return buffer_pos; } uvec4 GetPaletteColor(uint index) { // Fetch and swap BE to LE. uint val = Swap16(texelFetch(s_palette_buffer, int(u_palette_offset + index)).x); uvec4 color; #if defined(PALETTE_FORMAT_IA8) uint a = bitfieldExtract(val, 8, 8); uint i = bitfieldExtract(val, 0, 8); color = uvec4(i, i, i, a); #elif defined(PALETTE_FORMAT_RGB565) color.x = Convert5To8(bitfieldExtract(val, 11, 5)); color.y = Convert6To8(bitfieldExtract(val, 5, 6)); color.z = Convert5To8(bitfieldExtract(val, 0, 5)); color.a = 255u; #elif defined(PALETTE_FORMAT_RGB5A3) if ((val & 0x8000u) != 0u) { color.x = Convert5To8(bitfieldExtract(val, 10, 5)); color.y = Convert5To8(bitfieldExtract(val, 5, 5)); color.z = Convert5To8(bitfieldExtract(val, 0, 5)); color.a = 255u; } else { color.a = Convert3To8(bitfieldExtract(val, 12, 3)); color.r = Convert4To8(bitfieldExtract(val, 8, 4)); color.g = Convert4To8(bitfieldExtract(val, 4, 4)); color.b = Convert4To8(bitfieldExtract(val, 0, 4)); } #else // Not used. color = uvec4(0, 0, 0, 0); #endif return color; } vec4 GetPaletteColorNormalized(uint index) { uvec4 color = GetPaletteColor(index); return vec4(color) / 255.0; } )"; static const std::map s_decoding_shader_info{ {TextureFormat::I4, {BUFFER_FORMAT_R8_UINT, 0, 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x8 blocks, 4 bits per pixel // We need to do the tiling manually here because the texel size is smaller than // the size of the buffer elements. uint2 block = coords.xy / 8u; uint2 offset = coords.xy % 8u; uint buffer_pos = u_src_offset; buffer_pos += block.y * u_src_row_stride; buffer_pos += block.x * 32u; buffer_pos += offset.y * 4u; buffer_pos += offset.x / 2u; // Select high nibble for odd texels, low for even. uint val = texelFetch(s_input_buffer, int(buffer_pos)).x; uint i; if ((coords.x & 1u) == 0u) i = Convert4To8((val >> 4)); else i = Convert4To8((val & 0x0Fu)); uvec4 color = uvec4(i, i, i, i); vec4 norm_color = vec4(color) / 255.0; imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, {TextureFormat::IA4, {BUFFER_FORMAT_R8_UINT, 0, 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x4 blocks, 8 bits per pixel uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords); uint val = texelFetch(s_input_buffer, int(buffer_pos)).x; uint i = Convert4To8((val & 0x0Fu)); uint a = Convert4To8((val >> 4)); uvec4 color = uvec4(i, i, i, a); vec4 norm_color = vec4(color) / 255.0; imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, {TextureFormat::I8, {BUFFER_FORMAT_R8_UINT, 0, 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x4 blocks, 8 bits per pixel uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords); uint i = texelFetch(s_input_buffer, int(buffer_pos)).x; uvec4 color = uvec4(i, i, i, i); vec4 norm_color = vec4(color) / 255.0; imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, {TextureFormat::IA8, {BUFFER_FORMAT_R16_UINT, 0, 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks, 16 bits per pixel uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords); uint val = texelFetch(s_input_buffer, int(buffer_pos)).x; uint a = (val & 0xFFu); uint i = (val >> 8); uvec4 color = uvec4(i, i, i, a); vec4 norm_color = vec4(color) / 255.0; imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, {TextureFormat::RGB565, {BUFFER_FORMAT_R16_UINT, 0, 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords); uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x); uvec4 color; color.x = Convert5To8(bitfieldExtract(val, 11, 5)); color.y = Convert6To8(bitfieldExtract(val, 5, 6)); color.z = Convert5To8(bitfieldExtract(val, 0, 5)); color.a = 255u; vec4 norm_color = vec4(color) / 255.0; imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, {TextureFormat::RGB5A3, {BUFFER_FORMAT_R16_UINT, 0, 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords); uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x); uvec4 color; if ((val & 0x8000u) != 0u) { color.x = Convert5To8(bitfieldExtract(val, 10, 5)); color.y = Convert5To8(bitfieldExtract(val, 5, 5)); color.z = Convert5To8(bitfieldExtract(val, 0, 5)); color.a = 255u; } else { color.a = Convert3To8(bitfieldExtract(val, 12, 3)); color.r = Convert4To8(bitfieldExtract(val, 8, 4)); color.g = Convert4To8(bitfieldExtract(val, 4, 4)); color.b = Convert4To8(bitfieldExtract(val, 0, 4)); } vec4 norm_color = vec4(color) / 255.0; imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, {TextureFormat::RGBA8, {BUFFER_FORMAT_R16_UINT, 0, 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks // We can't use the normal calculation function, as these are packed as the AR channels // for the entire block, then the GB channels afterwards. uint2 block = coords.xy / 4u; uint2 offset = coords.xy % 4u; uint buffer_pos = u_src_offset; // Our buffer has 16-bit elements, so the offsets here are half what they would be in bytes. buffer_pos += block.y * u_src_row_stride; buffer_pos += block.x * 32u; buffer_pos += offset.y * 4u; buffer_pos += offset.x; // The two GB channels follow after the block's AR channels. uint val1 = texelFetch(s_input_buffer, int(buffer_pos + 0u)).x; uint val2 = texelFetch(s_input_buffer, int(buffer_pos + 16u)).x; uvec4 color; color.a = (val1 & 0xFFu); color.r = (val1 >> 8); color.g = (val2 & 0xFFu); color.b = (val2 >> 8); vec4 norm_color = vec4(color) / 255.0; imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, {TextureFormat::CMPR, {BUFFER_FORMAT_R32G32_UINT, 0, 64, 1, true, R"( // In the compute version of this decoder, we flatten the blocks to a one-dimension array. // Each group is subdivided into 16, and the first thread in each group fetches the DXT data. // All threads then calculate the possible colors for the block and write to the output image. #define GROUP_SIZE 64u #define BLOCK_SIZE_X 4u #define BLOCK_SIZE_Y 4u #define BLOCK_SIZE (BLOCK_SIZE_X * BLOCK_SIZE_Y) #define BLOCKS_PER_GROUP (GROUP_SIZE / BLOCK_SIZE) layout(local_size_x = GROUP_SIZE, local_size_y = 1) in; shared uvec2 shared_temp[BLOCKS_PER_GROUP]; uint DXTBlend(uint v1, uint v2) { // 3/8 blend, which is close to 1/3 return ((v1 * 3u + v2 * 5u) >> 3); } void main() { uint local_thread_id = gl_LocalInvocationID.x; uint block_in_group = local_thread_id / BLOCK_SIZE; uint thread_in_block = local_thread_id % BLOCK_SIZE; uint block_index = gl_WorkGroupID.x * BLOCKS_PER_GROUP + block_in_group; // Annoyingly, we can't precalculate this as a uniform because the DXT block size differs // from the block size of the overall texture (4 vs 8). We can however use a multiply and // subtraction to avoid the modulo for calculating the block's X coordinate. uint blocks_wide = u_src_size.x / BLOCK_SIZE_X; uvec2 block_coords; block_coords.y = block_index / blocks_wide; block_coords.x = block_index - (block_coords.y * blocks_wide); // Only the first thread for each block reads from the texel buffer. if (thread_in_block == 0u) { // Calculate tiled block coordinates. uvec2 tile_block_coords = block_coords / 2u; uvec2 subtile_block_coords = block_coords % 2u; uint buffer_pos = u_src_offset; buffer_pos += tile_block_coords.y * u_src_row_stride; buffer_pos += tile_block_coords.x * 4u; buffer_pos += subtile_block_coords.y * 2u; buffer_pos += subtile_block_coords.x; // Read the entire DXT block to shared memory. uvec2 raw_data = texelFetch(s_input_buffer, int(buffer_pos)).xy; shared_temp[block_in_group] = raw_data; } // Ensure store is completed before the remaining threads in the block continue. memoryBarrierShared(); barrier(); // Unpack colors and swap BE to LE. uvec2 raw_data = shared_temp[block_in_group]; uint swapped = ((raw_data.x & 0xFF00FF00u) >> 8) | ((raw_data.x & 0x00FF00FFu) << 8); uint c1 = swapped & 0xFFFFu; uint c2 = swapped >> 16; // Expand 5/6 bit channels to 8-bits per channel. uint blue1 = Convert5To8(bitfieldExtract(c1, 0, 5)); uint blue2 = Convert5To8(bitfieldExtract(c2, 0, 5)); uint green1 = Convert6To8(bitfieldExtract(c1, 5, 6)); uint green2 = Convert6To8(bitfieldExtract(c2, 5, 6)); uint red1 = Convert5To8(bitfieldExtract(c1, 11, 5)); uint red2 = Convert5To8(bitfieldExtract(c2, 11, 5)); // Determine the four colors the block can use. // It's quicker to just precalculate all four colors rather than branching on the index. // NOTE: These must be masked with 0xFF. This is done at the normalization stage below. uvec4 color0, color1, color2, color3; color0 = uvec4(red1, green1, blue1, 255u); color1 = uvec4(red2, green2, blue2, 255u); if (c1 > c2) { color2 = uvec4(DXTBlend(red2, red1), DXTBlend(green2, green1), DXTBlend(blue2, blue1), 255u); color3 = uvec4(DXTBlend(red1, red2), DXTBlend(green1, green2), DXTBlend(blue1, blue2), 255u); } else { color2 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 255u); color3 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 0u); } // Calculate the texel coordinates that we will write to. // The divides/modulo here should be turned into a shift/binary AND. uint local_y = thread_in_block / BLOCK_SIZE_X; uint local_x = thread_in_block % BLOCK_SIZE_X; uint global_x = block_coords.x * BLOCK_SIZE_X + local_x; uint global_y = block_coords.y * BLOCK_SIZE_Y + local_y; // Use the coordinates within the block to shift the 32-bit value containing // all 16 indices to a single 2-bit index. uint index = bitfieldExtract(raw_data.y, int((local_y * 8u) + (6u - local_x * 2u)), 2); // Select the un-normalized color from the precalculated color array. // Using a switch statement here removes the need for dynamic indexing of an array. uvec4 color; switch (index) { case 0u: color = color0; break; case 1u: color = color1; break; case 2u: color = color2; break; case 3u: color = color3; break; default: color = color0; break; } // Normalize and write to the output image. vec4 norm_color = vec4(color & 0xFFu) / 255.0; imageStore(output_image, ivec3(ivec2(uvec2(global_x, global_y)), 0), norm_color); } )"}}, {TextureFormat::C4, {BUFFER_FORMAT_R8_UINT, static_cast(TexDecoder_GetPaletteSize(TextureFormat::C4)), 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x8 blocks, 4 bits per pixel // We need to do the tiling manually here because the texel size is smaller than // the size of the buffer elements. uint2 block = coords.xy / 8u; uint2 offset = coords.xy % 8u; uint buffer_pos = u_src_offset; buffer_pos += block.y * u_src_row_stride; buffer_pos += block.x * 32u; buffer_pos += offset.y * 4u; buffer_pos += offset.x / 2u; // Select high nibble for odd texels, low for even. uint val = texelFetch(s_input_buffer, int(buffer_pos)).x; uint index = ((coords.x & 1u) == 0u) ? (val >> 4) : (val & 0x0Fu); vec4 norm_color = GetPaletteColorNormalized(index); imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, {TextureFormat::C8, {BUFFER_FORMAT_R8_UINT, static_cast(TexDecoder_GetPaletteSize(TextureFormat::C8)), 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x4 blocks, 8 bits per pixel uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords); uint index = texelFetch(s_input_buffer, int(buffer_pos)).x; vec4 norm_color = GetPaletteColorNormalized(index); imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, {TextureFormat::C14X2, {BUFFER_FORMAT_R16_UINT, static_cast(TexDecoder_GetPaletteSize(TextureFormat::C14X2)), 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks, 16 bits per pixel uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords); uint index = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x) & 0x3FFFu; vec4 norm_color = GetPaletteColorNormalized(index); imageStore(output_image, ivec3(ivec2(coords), 0), norm_color); } )"}}, // We do the inverse BT.601 conversion for YCbCr to RGB // http://www.equasys.de/colorconversion.html#YCbCr-RGBColorFormatConversion {TextureFormat::XFB, {BUFFER_FORMAT_RGBA8_UINT, 0, 8, 8, false, R"( layout(local_size_x = 8, local_size_y = 8) in; void main() { uvec2 uv = gl_GlobalInvocationID.xy; int buffer_pos = int(u_src_offset + (uv.y * u_src_row_stride) + (uv.x / 2u)); vec4 yuyv = vec4(texelFetch(s_input_buffer, buffer_pos)); float y = mix(yuyv.r, yuyv.b, (uv.x & 1u) == 1u); float yComp = 1.164 * (y - 16.0); float uComp = yuyv.g - 128.0; float vComp = yuyv.a - 128.0; vec4 rgb = vec4(yComp + (1.596 * vComp), yComp - (0.813 * vComp) - (0.391 * uComp), yComp + (2.018 * uComp), 255.0); vec4 rgba_norm = rgb / 255.0; imageStore(output_image, ivec3(ivec2(uv), 0), rgba_norm); } )"}}}; static const std::array s_buffer_bytes_per_texel = {{ 1, // BUFFER_FORMAT_R8_UINT 2, // BUFFER_FORMAT_R16_UINT 8, // BUFFER_FORMAT_R32G32_UINT 4, // BUFFER_FORMAT_RGBA8_UINT }}; const DecodingShaderInfo* GetDecodingShaderInfo(TextureFormat format) { auto iter = s_decoding_shader_info.find(format); return iter != s_decoding_shader_info.end() ? &iter->second : nullptr; } u32 GetBytesPerBufferElement(BufferFormat buffer_format) { return s_buffer_bytes_per_texel[buffer_format]; } std::pair GetDispatchCount(const DecodingShaderInfo* info, u32 width, u32 height) { // Flatten to a single dimension? if (info->group_flatten) return {(width * height + (info->group_size_x - 1)) / info->group_size_x, 1}; return {(width + (info->group_size_x - 1)) / info->group_size_x, (height + (info->group_size_y - 1)) / info->group_size_y}; } std::string GenerateDecodingShader(TextureFormat format, TLUTFormat palette_format, APIType api_type) { const DecodingShaderInfo* info = GetDecodingShaderInfo(format); if (!info) return ""; std::stringstream ss; switch (palette_format) { case TLUTFormat::IA8: ss << "#define PALETTE_FORMAT_IA8 1\n"; break; case TLUTFormat::RGB565: ss << "#define PALETTE_FORMAT_RGB565 1\n"; break; case TLUTFormat::RGB5A3: ss << "#define PALETTE_FORMAT_RGB5A3 1\n"; break; } ss << decoding_shader_header; ss << info->shader_body; return ss.str(); } } // namespace