// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // NOTES (mb2): // * GP/CPU sync can be done by several way: // - MP1 use BP (breakpoint) in movie-menus and mostly PEtoken in 3D // - ZWW as Crazy Taxi: PEfinish (GXSetDrawDone) // - SMS: BP, PEToken, PEfinish // - ZTP: seems to use PEfinish only // - Animal Crossing: PEfinish at start but there's a bug... // There's tons of HiWmk/LoWmk ping pong -> Another sync fashion? // - Super Monkey Ball Adventures: PEToken. Oddity: read&check-PEToken-value-loop stays // in its JITed block (never fall in Advance() until the game-watchdog's stuff). // That's why we can't let perform the AdvanceCallBack as usual. // The PEToken is volatile now and in the fifo struct. // - Super Monkey Ball: PEFinish. This game has the lamest way to deal with fifo sync for our MT's stuff. // A hack is mandatory. DONE and should be ok for other games. // *What I guess (thx to asynchronous DualCore mode): // PPC have a frame-finish watchdog. Handled by system timming stuff like the decrementer. // (DualCore mode): I have observed, after ZTP logos, a fifo-recovery start when DECREMENTER_EXCEPTION is throwned. // The frame setting (by GP) took too much time and didn't finish properly due to this watchdog. // Faster GX plugins required, indeed :p // * BPs are needed for some game GP/CPU sync. // But it could slowdown (MP1 at least) because our GP in DC is faster than "expected" in some area. // eg: in movie-menus in MP1, BP are reached quickly. // The bad thing is that involve too much PPC work (int ack, lock GP, reset BP, new BP addr, unlock BP...) hence the slowdown. // Anyway, emulation should more accurate like this and it emulate some sort of better load balancing. // Eather way in those area a more accurate GP timing could be done by slowing down the GP or something less stupid. // Not functional and not used atm (breaks MP2). // * funny, in revs before those with this note, BP irq wasn't cleared (a bug indeed) and MP1 menus was faster. // BP irq was raised and ack just once but never cleared. However it's sufficient for MP1 to work. // This hack is used atm. Known BPs handling doesn't work well (btw, BP irq clearing might be done by CPIntEnable raising edge). // The hack seems to be responsible of the movie stutering in MP1 menus. // TODO (mb2): // * raise watermark Ov/Un irq: POINTLESS since emulated GP timings can't be accuratly set. // Only 3 choices IMHO for a correct emulated load balancing in DC mode: // - make our own GP watchdog hack that can lock CPU if GP too slow. STARTED // - hack directly something in PPC timings (dunno how) // - boost GP so we can consider it as infinitely fast compared to CPU. // * raise ReadIdle/CmdIdle flags and observe behaviour of MP1 & ZTP (at least) // * Clean useless comments and debug stuff in Read16, Write16, GatherPipeBursted when sync will be fixed for DC // * (reminder) do the same in: // PeripheralInterface.cpp, PixelEngine.cpp, OGL->BPStructs.cpp, fifo.cpp... ok just check change log >> // TODO // * Kick GPU from dispatcher, not from writes // * Thunking framework // * Cleanup of messy now unnecessary safety code in jit #include "Common.h" #include "VideoCommon.h" #include "VideoConfig.h" #include "MathUtil.h" #include "Thread.h" #include "Atomic.h" #include "OpcodeDecoding.h" #include "Fifo.h" #include "ChunkFile.h" #include "CommandProcessor.h" #include "PixelEngine.h" #include "CoreTiming.h" #include "ConfigManager.h" #include "HW/ProcessorInterface.h" #include "HW/GPFifo.h" #include "HW/Memmap.h" #include "DLCache.h" namespace CommandProcessor { int et_UpdateInterrupts; // look for 1002 verts, breakpoint there, see why next draw is flushed // TODO(ector): Warn on bbox read/write // STATE_TO_SAVE SCPFifoStruct fifo; UCPStatusReg m_CPStatusReg; UCPCtrlReg m_CPCtrlReg; UCPClearReg m_CPClearReg; int m_bboxleft; int m_bboxtop; int m_bboxright; int m_bboxbottom; u16 m_tokenReg; static u32 fake_GPWatchdogLastToken = 0; static Common::EventEx s_fifoIdleEvent; static bool bProcessFifoToLoWatermark = false; static bool bProcessFifoAllDistance = false; volatile bool isPossibleWaitingSetDrawDone = false; //This state is changed when the FIFO is processing data. volatile bool interruptSet= false; volatile bool interruptWaiting= false; volatile bool interruptTokenWaiting = false; volatile bool interruptFinishWaiting = false; volatile bool OnOverflow = false; bool IsOnThread() { return SConfig::GetInstance().m_LocalCoreStartupParameter.bCPUThread; } void UpdateInterrupts_Wrapper(u64 userdata, int cyclesLate) { UpdateInterrupts(userdata); } void DoState(PointerWrap &p) { p.Do(m_CPStatusReg); p.Do(m_CPCtrlReg); p.Do(m_CPClearReg); p.Do(m_bboxleft); p.Do(m_bboxtop); p.Do(m_bboxright); p.Do(m_bboxbottom); p.Do(m_tokenReg); p.Do(fifo); p.Do(bProcessFifoToLoWatermark); p.Do(bProcessFifoAllDistance); p.Do(isPossibleWaitingSetDrawDone); p.Do(interruptSet); p.Do(interruptWaiting); p.Do(interruptTokenWaiting); p.Do(interruptFinishWaiting); p.Do(OnOverflow); } //inline void WriteLow (u32& _reg, u16 lowbits) {_reg = (_reg & 0xFFFF0000) | lowbits;} //inline void WriteHigh(u32& _reg, u16 highbits) {_reg = (_reg & 0x0000FFFF) | ((u32)highbits << 16);} inline void WriteLow (volatile u32& _reg, u16 lowbits) {Common::AtomicStore(_reg,(_reg & 0xFFFF0000) | lowbits);} inline void WriteHigh(volatile u32& _reg, u16 highbits) {Common::AtomicStore(_reg,(_reg & 0x0000FFFF) | ((u32)highbits << 16));} inline u16 ReadLow (u32 _reg) {return (u16)(_reg & 0xFFFF);} inline u16 ReadHigh (u32 _reg) {return (u16)(_reg >> 16);} void Init() { m_CPStatusReg.Hex = 0; m_CPStatusReg.CommandIdle = 1; m_CPStatusReg.ReadIdle = 1; m_CPCtrlReg.Hex = 0; m_bboxleft = 0; m_bboxtop = 0; m_bboxright = 640; m_bboxbottom = 480; m_tokenReg = 0; fake_GPWatchdogLastToken = 0; memset(&fifo,0,sizeof(fifo)); fifo.CPCmdIdle = 1 ; fifo.CPReadIdle = 1; fifo.bFF_Breakpoint = 0; fifo.bFF_HiWatermark = 0; fifo.bFF_HiWatermarkInt = 0; fifo.bFF_LoWatermark = 0; fifo.bFF_LoWatermarkInt = 0; interruptSet = false; interruptWaiting = false; interruptFinishWaiting = false; interruptTokenWaiting = false; s_fifoIdleEvent.Init(); et_UpdateInterrupts = CoreTiming::RegisterEvent("UpdateInterrupts", UpdateInterrupts_Wrapper); } void Shutdown() { s_fifoIdleEvent.Shutdown(); } void Read16(u16& _rReturnValue, const u32 _Address) { INFO_LOG(COMMANDPROCESSOR, "(r): 0x%08x", _Address); ProcessFifoEvents(); switch (_Address & 0xFFF) { case STATUS_REGISTER: // Here always there is one fifo attached to the GPU if (IsOnThread()) { m_CPStatusReg.Breakpoint = fifo.bFF_Breakpoint; m_CPStatusReg.ReadIdle = (fifo.CPReadPointer == fifo.CPWritePointer) || (fifo.CPReadPointer == fifo.CPBreakpoint); m_CPStatusReg.CommandIdle = !fifo.CPReadWriteDistance; m_CPStatusReg.UnderflowLoWatermark = fifo.bFF_LoWatermark; m_CPStatusReg.OverflowHiWatermark = fifo.bFF_HiWatermark; } else { // Single Core MODE m_CPStatusReg.Breakpoint = fifo.bFF_Breakpoint; m_CPStatusReg.ReadIdle = !fifo.CPReadWriteDistance || !fifo.bFF_GPReadEnable; m_CPStatusReg.CommandIdle = fifo.CPCmdIdle; m_CPStatusReg.UnderflowLoWatermark = fifo.bFF_LoWatermark; } INFO_LOG(COMMANDPROCESSOR,"\t Read from STATUS_REGISTER : %04x", m_CPStatusReg.Hex); DEBUG_LOG(COMMANDPROCESSOR, "(r) status: iBP %s | fReadIdle %s | fCmdIdle %s | iOvF %s | iUndF %s" , m_CPStatusReg.Breakpoint ? "ON" : "OFF" , m_CPStatusReg.ReadIdle ? "ON" : "OFF" , m_CPStatusReg.CommandIdle ? "ON" : "OFF" , m_CPStatusReg.OverflowHiWatermark ? "ON" : "OFF" , m_CPStatusReg.UnderflowLoWatermark ? "ON" : "OFF" ); _rReturnValue = m_CPStatusReg.Hex; return; case CTRL_REGISTER: _rReturnValue = m_CPCtrlReg.Hex; return; case CLEAR_REGISTER: _rReturnValue = m_CPClearReg.Hex; PanicAlert("CommandProcessor:: CPU reads from CLEAR_REGISTER!"); ERROR_LOG(COMMANDPROCESSOR, "(r) clear: 0x%04x", _rReturnValue); return; case FIFO_TOKEN_REGISTER: _rReturnValue = m_tokenReg; return; case FIFO_BOUNDING_BOX_LEFT: _rReturnValue = m_bboxleft; return; case FIFO_BOUNDING_BOX_RIGHT: _rReturnValue = m_bboxright; return; case FIFO_BOUNDING_BOX_TOP: _rReturnValue = m_bboxtop; return; case FIFO_BOUNDING_BOX_BOTTOM: _rReturnValue = m_bboxbottom; return; case FIFO_BASE_LO: _rReturnValue = ReadLow (fifo.CPBase); return; case FIFO_BASE_HI: _rReturnValue = ReadHigh(fifo.CPBase); return; case FIFO_END_LO: _rReturnValue = ReadLow (fifo.CPEnd); return; case FIFO_END_HI: _rReturnValue = ReadHigh(fifo.CPEnd); return; case FIFO_HI_WATERMARK_LO: _rReturnValue = ReadLow (fifo.CPHiWatermark); return; case FIFO_HI_WATERMARK_HI: _rReturnValue = ReadHigh(fifo.CPHiWatermark); return; case FIFO_LO_WATERMARK_LO: _rReturnValue = ReadLow (fifo.CPLoWatermark); return; case FIFO_LO_WATERMARK_HI: _rReturnValue = ReadHigh(fifo.CPLoWatermark); return; // TODO: cases cleanup case FIFO_RW_DISTANCE_LO: _rReturnValue = ReadLow (fifo.CPReadWriteDistance); // hack: CPU will always believe fifo is empty and on idle //_rReturnValue = 0; DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_RW_DISTANCE_LO : %04x", _rReturnValue); return; case FIFO_RW_DISTANCE_HI: _rReturnValue = ReadHigh(fifo.CPReadWriteDistance); // hack: CPU will always believe fifo is empty and on idle //_rReturnValue = 0; DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_RW_DISTANCE_HI : %04x", _rReturnValue); return; case FIFO_WRITE_POINTER_LO: _rReturnValue = ReadLow (fifo.CPWritePointer); DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_WRITE_POINTER_LO : %04x", _rReturnValue); return; case FIFO_WRITE_POINTER_HI: _rReturnValue = ReadHigh(fifo.CPWritePointer); DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_WRITE_POINTER_HI : %04x", _rReturnValue); return; case FIFO_READ_POINTER_LO: _rReturnValue = ReadLow (fifo.CPReadPointer); // hack: CPU will always believe fifo is empty and on idle //_rReturnValue = ReadLow (fifo.CPWritePointer); DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_READ_POINTER_LO : %04x", _rReturnValue); return; case FIFO_READ_POINTER_HI: _rReturnValue = ReadHigh(fifo.CPReadPointer); // hack: CPU will always believe fifo is empty and on idle //_rReturnValue = ReadHigh(fifo.CPWritePointer); DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_READ_POINTER_HI : %04x", _rReturnValue); return; case FIFO_BP_LO: _rReturnValue = ReadLow (fifo.CPBreakpoint); return; case FIFO_BP_HI: _rReturnValue = ReadHigh(fifo.CPBreakpoint); return; // AyuanX: Lots of games read the followings (e.g. Mario Power Tennis) case XF_RASBUSY_L: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_RASBUSY_L: %04x", _rReturnValue); return; case XF_RASBUSY_H: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_RASBUSY_H: %04x", _rReturnValue); return; case XF_CLKS_L: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_CLKS_L: %04x", _rReturnValue); return; case XF_CLKS_H: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_CLKS_H: %04x", _rReturnValue); return; case XF_WAIT_IN_L: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_IN_L: %04x", _rReturnValue); return; case XF_WAIT_IN_H: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_IN_H: %04x", _rReturnValue); return; case XF_WAIT_OUT_L: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_OUT_L: %04x", _rReturnValue); return; case XF_WAIT_OUT_H: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_OUT_H: %04x", _rReturnValue); return; case VCACHE_METRIC_CHECK_L: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_CHECK_L: %04x", _rReturnValue); return; case VCACHE_METRIC_CHECK_H: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_CHECK_H: %04x", _rReturnValue); return; case VCACHE_METRIC_MISS_L: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_MISS_L: %04x", _rReturnValue); return; case VCACHE_METRIC_MISS_H: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_MISS_H: %04x", _rReturnValue); return; case VCACHE_METRIC_STALL_L: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_STALL_L: %04x", _rReturnValue); return; case VCACHE_METRIC_STALL_H: _rReturnValue = 0; // TODO: Figure out the true value DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_STALL_H: %04x", _rReturnValue); return; case CLKS_PER_VTX_OUT: _rReturnValue = 4; //Number of clocks per vertex.. TODO: Calculate properly DEBUG_LOG(COMMANDPROCESSOR, "Read from CLKS_PER_VTX_OUT: %04x", _rReturnValue); return; //add all the other regs here? are they ever read? default: _rReturnValue = 0; WARN_LOG(COMMANDPROCESSOR, "(r16) unknown CP reg @ %08x", _Address); return; } return; } void Write16(const u16 _Value, const u32 _Address) { INFO_LOG(COMMANDPROCESSOR, "(write16): 0x%04x @ 0x%08x",_Value,_Address); // Force complete fifo flush if we attempt to set/reset the fifo (API GXSetGPFifo or equivalent) // It's kind of an API hack but it works for lots of games... and I hope it's the same way for every games. // TODO: HLE for GX fifo's APIs? // Here is the hack: // - if (attempt to overwrite CTRL_REGISTER by 0x0000) // // then we assume CPReadWriteDistance will be overwrited very soon. // - if (fifo is not empty) // // (not 100% sure): shouln't happen unless PPC think having trouble with the sync // // and it attempt a fifo recovery (look for PI_FIFO_RESET in log). // // If we want to emulate self fifo recovery we need proper GX metrics emulation... yeah sure :p // - spin until fifo is empty // - else // - normal write16 if (((_Address&0xFFF) == CTRL_REGISTER) && (_Value == 0)) // API hack { // weird MP1 redo that right after linking fifo with GP... hmmm //_dbg_assert_msg_(COMMANDPROCESSOR, fifo.CPReadWriteDistance == 0, // "WTF! Something went wrong with GP/PPC the sync! -> CPReadWriteDistance: 0x%08X\n" // " - The fifo is not empty but we are going to lock it anyway.\n" // " - \"Normaly\", this is due to fifo-hang-so-lets-attempt-recovery.\n" // " - The bad news is dolphin don't support special recovery features like GXfifo's metric yet.\n" // " - The good news is, the time you read that message, the fifo should be empty now :p\n" // " - Anyway, fifo flush will be forced if you press OK and dolphin might continue to work...\n" // " - We aren't betting on that :)", fifo.CPReadWriteDistance); DEBUG_LOG(COMMANDPROCESSOR, "*********************** GXSetGPFifo very soon? ***********************"); // (mb2) We don't sleep here since it could be a perf issue for super monkey ball (yup only this game IIRC) // Touching that game is a no-go so I don't want to take the risk :p if (IsOnThread()) { //ProcessFifoAllDistance(); } else { CatchUpGPU(); } } switch (_Address & 0xFFF) { case STATUS_REGISTER: { // This should be Read-Only ERROR_LOG(COMMANDPROCESSOR,"\t write to STATUS_REGISTER : %04x", _Value); PanicAlert("CommandProcessor:: CPU writes to STATUS_REGISTER!"); } break; case CTRL_REGISTER: { UCPCtrlReg tmpCtrl(_Value); m_CPCtrlReg.Hex = tmpCtrl.Hex; // If the new fifo is being attached We make sure there wont be SetFinish event pending. // This protection fix eternal darkness booting, because the second SetFinish event when it is booting // seems invalid or has a bug and hang the game. // Single Core MODE if (!IsOnThread()) { Common::AtomicStore(fifo.bFF_Breakpoint, false); if (tmpCtrl.FifoUnderflowIntEnable) Common::AtomicStore(fifo.bFF_LoWatermark, false); if (tmpCtrl.FifoOverflowIntEnable) m_CPStatusReg.OverflowHiWatermark = false; UpdateInterruptsScMode(); } if (!fifo.bFF_GPReadEnable && tmpCtrl.GPReadEnable && !tmpCtrl.BPEnable) { PixelEngine::ResetSetFinish(); } fifo.bFF_BPInt = tmpCtrl.BPInt; fifo.bFF_BPEnable = tmpCtrl.BPEnable; fifo.bFF_HiWatermarkInt = tmpCtrl.FifoOverflowIntEnable; fifo.bFF_LoWatermarkInt = tmpCtrl.FifoUnderflowIntEnable; fifo.bFF_GPLinkEnable = tmpCtrl.GPLinkEnable; if(tmpCtrl.GPReadEnable && tmpCtrl.GPLinkEnable) { ProcessorInterface::Fifo_CPUWritePointer = fifo.CPWritePointer; ProcessorInterface::Fifo_CPUBase = fifo.CPBase; ProcessorInterface::Fifo_CPUEnd = fifo.CPEnd; } // If overflown happens process the fifo to LoWatemark if (bProcessFifoToLoWatermark) ProcessFifoToLoWatermark(); if(fifo.bFF_GPReadEnable && !tmpCtrl.GPReadEnable) { fifo.bFF_GPReadEnable = tmpCtrl.GPReadEnable; while(fifo.isFifoProcesingData) Common::YieldCPU(); } else { fifo.bFF_GPReadEnable = tmpCtrl.GPReadEnable; } INFO_LOG(COMMANDPROCESSOR,"\t Write to CTRL_REGISTER : %04x", _Value); DEBUG_LOG(COMMANDPROCESSOR, "\t GPREAD %s | BP %s | Int %s | OvF %s | UndF %s | LINK %s" , fifo.bFF_GPReadEnable ? "ON" : "OFF" , fifo.bFF_BPEnable ? "ON" : "OFF" , fifo.bFF_BPInt ? "ON" : "OFF" , m_CPCtrlReg.FifoOverflowIntEnable ? "ON" : "OFF" , m_CPCtrlReg.FifoUnderflowIntEnable ? "ON" : "OFF" , m_CPCtrlReg.GPLinkEnable ? "ON" : "OFF" ); } break; case CLEAR_REGISTER: { UCPClearReg tmpCtrl(_Value); if (IsOnThread()) { if (!tmpCtrl.ClearFifoUnderflow && tmpCtrl.ClearFifoOverflow) bProcessFifoToLoWatermark = true; } else { // Single Core MODE if (tmpCtrl.ClearFifoOverflow) m_CPStatusReg.OverflowHiWatermark = false; if (tmpCtrl.ClearFifoUnderflow) Common::AtomicStore(fifo.bFF_LoWatermark, false); UpdateInterruptsScMode(); } DEBUG_LOG(COMMANDPROCESSOR,"\t write to CLEAR_REGISTER : %04x", _Value); } break; case PERF_SELECT: // Seems to select which set of perf registers should be exposed. DEBUG_LOG(COMMANDPROCESSOR, "write to PERF_SELECT: %04x", _Value); break; // Fifo Registers case FIFO_TOKEN_REGISTER: m_tokenReg = _Value; DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_TOKEN_REGISTER : %04x", _Value); break; case FIFO_BASE_LO: WriteLow ((u32 &)fifo.CPBase, _Value & 0xFFE0); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_BASE_LO : %04x", _Value); break; case FIFO_BASE_HI: WriteHigh((u32 &)fifo.CPBase, _Value); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_BASE_HI : %04x", _Value); break; case FIFO_END_LO: // Sometimes this value is not aligned with 32B, e.g. New Super Mario Bros. Wii WriteLow ((u32 &)fifo.CPEnd, _Value & 0xFFE0); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_END_LO : %04x", _Value); break; case FIFO_END_HI: WriteHigh((u32 &)fifo.CPEnd, _Value); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_END_HI : %04x", _Value); break; case FIFO_WRITE_POINTER_LO: WriteLow ((u32 &)fifo.CPWritePointer, _Value & 0xFFE0); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_WRITE_POINTER_LO : %04x", _Value); break; case FIFO_WRITE_POINTER_HI: WriteHigh((u32 &)fifo.CPWritePointer, _Value); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_WRITE_POINTER_HI : %04x", _Value); break; case FIFO_READ_POINTER_LO: WriteLow ((u32 &)fifo.CPReadPointer, _Value & 0xFFE0); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_READ_POINTER_LO : %04x", _Value); break; case FIFO_READ_POINTER_HI: WriteHigh((u32 &)fifo.CPReadPointer, _Value); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_READ_POINTER_HI : %04x", _Value); break; case FIFO_HI_WATERMARK_LO: WriteLow ((u32 &)fifo.CPHiWatermark, _Value); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_HI_WATERMARK_LO : %04x", _Value); break; case FIFO_HI_WATERMARK_HI: WriteHigh((u32 &)fifo.CPHiWatermark, _Value); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_HI_WATERMARK_HI : %04x", _Value); break; case FIFO_LO_WATERMARK_LO: WriteLow ((u32 &)fifo.CPLoWatermark, _Value); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_LO_WATERMARK_LO : %04x", _Value); break; case FIFO_LO_WATERMARK_HI: WriteHigh((u32 &)fifo.CPLoWatermark, _Value); DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_LO_WATERMARK_HI : %04x", _Value); break; case FIFO_BP_LO: WriteLow ((u32 &)fifo.CPBreakpoint, _Value & 0xFFE0); DEBUG_LOG(COMMANDPROCESSOR,"write to FIFO_BP_LO : %04x", _Value); break; case FIFO_BP_HI: WriteHigh((u32 &)fifo.CPBreakpoint, _Value); DEBUG_LOG(COMMANDPROCESSOR,"write to FIFO_BP_HI : %04x", _Value); break; // Super monkey try to overwrite CPReadWriteDistance by an old saved RWD value. Which is lame for us. // hack: We have to force CPU to think fifo is alway empty and on idle. // When we fall here CPReadWriteDistance should be always null and the game should always want to overwrite it by 0. // To skip it, comment out the following write. case FIFO_RW_DISTANCE_HI: WriteHigh((u32 &)fifo.CPReadWriteDistance, _Value); DEBUG_LOG(COMMANDPROCESSOR,"try to write to FIFO_RW_DISTANCE_HI : %04x", _Value); break; case FIFO_RW_DISTANCE_LO: WriteLow((u32 &)fifo.CPReadWriteDistance, _Value & 0xFFE0); if (fifo.CPReadWriteDistance == 0) { GPFifo::ResetGatherPipe(); ResetVideoBuffer(); IncrementCheckContextId(); } DEBUG_LOG(COMMANDPROCESSOR,"try to write to FIFO_RW_DISTANCE_LO : %04x", _Value); break; default: WARN_LOG(COMMANDPROCESSOR, "(w16) unknown CP reg write %04x @ %08x", _Value, _Address); } if (!IsOnThread()) CatchUpGPU(); ProcessFifoEvents(); } void Read32(u32& _rReturnValue, const u32 _Address) { _rReturnValue = 0; _dbg_assert_msg_(COMMANDPROCESSOR, 0, "Read32 from CommandProccessor at 0x%08x", _Address); } void Write32(const u32 _Data, const u32 _Address) { _dbg_assert_msg_(COMMANDPROCESSOR, 0, "Write32 at CommandProccessor at 0x%08x", _Address); } // for GP watchdog hack void IncrementGPWDToken() { Common::AtomicIncrement(fifo.Fake_GPWDToken); } // Check every FAKE_GP_WATCHDOG_PERIOD if a PE-frame-finish occurred // if not then lock CPUThread until GP finish a frame. void WaitForFrameFinish() { //while ((fake_GPWatchdogLastToken == fifo.Fake_GPWDToken) && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance) //{ // s_fifoIdleEvent.Wait(); //} //fake_GPWatchdogLastToken = fifo.Fake_GPWDToken; } void STACKALIGN GatherPipeBursted() { ProcessFifoEvents(); // if we aren't linked, we don't care about gather pipe data if (!m_CPCtrlReg.GPLinkEnable) { if (!IsOnThread()) CatchUpGPU(); return; } if (IsOnThread()) SetOverflowStatusFromGatherPipe(); // update the fifo-pointer if (fifo.CPWritePointer >= fifo.CPEnd) fifo.CPWritePointer = fifo.CPBase; else fifo.CPWritePointer += GATHER_PIPE_SIZE; Common::AtomicAdd(fifo.CPReadWriteDistance, GATHER_PIPE_SIZE); if (!IsOnThread()) { CatchUpGPU(); if (!m_CPStatusReg.OverflowHiWatermark && fifo.CPReadWriteDistance >= fifo.CPHiWatermark) { m_CPStatusReg.OverflowHiWatermark = true; if (m_CPCtrlReg.FifoOverflowIntEnable) UpdateInterruptsScMode(); } } else { if(fifo.CPReadWriteDistance == fifo.CPEnd - fifo.CPBase - 32) { if(!OnOverflow) NOTICE_LOG(COMMANDPROCESSOR,"FIFO is almost in overflown, BreakPoint: %i", fifo.bFF_Breakpoint); OnOverflow = true; while (!CommandProcessor::interruptWaiting && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance > fifo.CPEnd - fifo.CPBase - 64) Common::YieldCPU(); } else { OnOverflow = false; } } _assert_msg_(COMMANDPROCESSOR, fifo.CPReadWriteDistance <= fifo.CPEnd - fifo.CPBase, "FIFO is overflown by GatherPipe !\nCPU thread is too fast!"); // check if we are in sync _assert_msg_(COMMANDPROCESSOR, fifo.CPWritePointer == ProcessorInterface::Fifo_CPUWritePointer, "FIFOs linked but out of sync"); _assert_msg_(COMMANDPROCESSOR, fifo.CPBase == ProcessorInterface::Fifo_CPUBase, "FIFOs linked but out of sync"); _assert_msg_(COMMANDPROCESSOR, fifo.CPEnd == ProcessorInterface::Fifo_CPUEnd, "FIFOs linked but out of sync"); } // This is only used in single core mode void CatchUpGPU() { // HyperIris: Memory::GetPointer is an expensive call, call it less, run faster u8 *ptr = Memory::GetPointer(fifo.CPReadPointer); // check if we are able to run this buffer while (fifo.bFF_GPReadEnable && (fifo.CPReadWriteDistance || (fifo.bFF_BPEnable && ((fifo.CPReadPointer <= fifo.CPBreakpoint) && (fifo.CPReadPointer + 32 > fifo.CPBreakpoint))))) { // check if we are on a breakpoint if (fifo.bFF_BPEnable && ((fifo.CPReadPointer <= fifo.CPBreakpoint) && (fifo.CPReadPointer + 32 > fifo.CPBreakpoint))) { //_assert_msg_(POWERPC,0,"BP: %08x",fifo.CPBreakpoint); Common::AtomicStore(fifo.bFF_GPReadEnable, false); Common::AtomicStore(fifo.bFF_Breakpoint, true); if (fifo.bFF_BPInt) UpdateInterruptsScMode(); break; } // read the data and send it to the VideoPlugin // We are going to do FP math on the main thread so have to save the current state SaveSSEState(); LoadDefaultSSEState(); Fifo_SendFifoData(ptr,32); OpcodeDecoder_Run(g_bSkipCurrentFrame); LoadSSEState(); // increase the ReadPtr if (fifo.CPReadPointer >= fifo.CPEnd) { ptr -= fifo.CPReadPointer - fifo.CPBase; fifo.CPReadPointer = fifo.CPBase; DEBUG_LOG(COMMANDPROCESSOR, "Fifo wraps to base"); } else { ptr += 32; fifo.CPReadPointer += 32; } fifo.CPReadWriteDistance -= 32; } if (!fifo.bFF_LoWatermark && fifo.CPReadWriteDistance < fifo.CPLoWatermark) { Common::AtomicStore(fifo.bFF_LoWatermark, true); if (m_CPCtrlReg.FifoUnderflowIntEnable) UpdateInterruptsScMode(); } } void UpdateInterruptsScMode() { bool active = (fifo.bFF_BPInt && fifo.bFF_Breakpoint) || (m_CPCtrlReg.FifoUnderflowIntEnable && fifo.bFF_LoWatermark) || (m_CPCtrlReg.FifoOverflowIntEnable && m_CPStatusReg.OverflowHiWatermark); INFO_LOG(COMMANDPROCESSOR, "Fifo Interrupt: %s", (active)? "Asserted" : "Deasserted"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, active); } void UpdateInterrupts(u64 userdata) { if (userdata) { interruptSet = true; INFO_LOG(COMMANDPROCESSOR,"Interrupt set"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, true); } else { interruptSet = false; INFO_LOG(COMMANDPROCESSOR,"Interrupt cleared"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, false); } interruptWaiting = false; } void UpdateInterruptsFromVideoPlugin(u64 userdata) { CoreTiming::ScheduleEvent_Threadsafe(0, et_UpdateInterrupts, userdata); } void SetFifoIdleFromVideoPlugin() { s_fifoIdleEvent.Set(); } // This is called by the ProcessorInterface when PI_FIFO_RESET is written to. // The general idea is abort all commands in the FIFO. // This prevents negative fifo.CPReadWriteDistance by changing fifo.CPReadWriteDistance // to 0 when PI_FIFO_RESET occurs. void AbortFrame() { //fifo.bFF_GPReadEnable = false; //while(IsFifoProcesingData()) Common::YieldCPU(); //GPFifo::ResetGatherPipe(); //ResetVideoBuffer(); //fifo.CPReadPointer = fifo.CPWritePointer; //fifo.CPReadWriteDistance = 0; //fifo.CPBreakpoint = 0; //fifo.bFF_Breakpoint = false; //fifo.CPCmdIdle = false; //PixelEngine::ResetSetToken(); //PixelEngine::ResetSetFinish(); //fifo.bFF_GPReadEnable = true; //IncrementCheckContextId(); } void SetOverflowStatusFromGatherPipe() { if (!fifo.bFF_HiWatermarkInt) return; // overflow check fifo.bFF_HiWatermark = (fifo.CPReadWriteDistance > fifo.CPHiWatermark); fifo.bFF_LoWatermark = (fifo.CPReadWriteDistance < fifo.CPLoWatermark); bool interrupt = fifo.bFF_HiWatermark && fifo.bFF_HiWatermarkInt && m_CPCtrlReg.GPLinkEnable && m_CPCtrlReg.GPReadEnable; if (interrupt != interruptSet && interrupt) CommandProcessor::UpdateInterrupts(true); } void SetStatus() { // overflow check fifo.bFF_HiWatermark = (fifo.CPReadWriteDistance > fifo.CPHiWatermark); fifo.bFF_LoWatermark = (fifo.CPReadWriteDistance < fifo.CPLoWatermark); // breakpoint if (fifo.bFF_BPEnable) { if (fifo.CPBreakpoint == fifo.CPReadPointer) { if (!fifo.bFF_Breakpoint) { INFO_LOG(COMMANDPROCESSOR, "Hit breakpoint at %i", fifo.CPReadPointer); fifo.bFF_Breakpoint = true; IncrementCheckContextId(); } } else { if (fifo.bFF_Breakpoint) INFO_LOG(COMMANDPROCESSOR, "Cleared breakpoint at %i", fifo.CPReadPointer); fifo.bFF_Breakpoint = false; } } else { if (fifo.bFF_Breakpoint) INFO_LOG(COMMANDPROCESSOR, "Cleared breakpoint at %i", fifo.CPReadPointer); fifo.bFF_Breakpoint = false; } bool bpInt = fifo.bFF_Breakpoint && fifo.bFF_BPInt; bool ovfInt = fifo.bFF_HiWatermark && fifo.bFF_HiWatermarkInt; bool undfInt = fifo.bFF_LoWatermark && fifo.bFF_LoWatermarkInt; bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable; if (interrupt != interruptSet && !interruptWaiting) { u64 userdata = interrupt?1:0; if (IsOnThread()) { interruptWaiting = true; CommandProcessor::UpdateInterruptsFromVideoPlugin(userdata); } else CommandProcessor::UpdateInterrupts(userdata); } } void ProcessFifoToLoWatermark() { if (IsOnThread()) { while (!CommandProcessor::interruptWaiting && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance > fifo.CPLoWatermark && !AtBreakpoint()) Common::YieldCPU(); } bProcessFifoToLoWatermark = false; } void ProcessFifoAllDistance() { if (IsOnThread()) { while (!CommandProcessor::interruptWaiting && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance && !AtBreakpoint()) Common::YieldCPU(); } bProcessFifoAllDistance = false; } void ProcessFifoEvents() { if (IsOnThread() && (interruptWaiting || interruptFinishWaiting || interruptTokenWaiting)) CoreTiming::ProcessFifoWaitEvents(); } } // end of namespace CommandProcessor