// Copyright 2009 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoCommon/BPFunctions.h" #include #include #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "VideoCommon/AbstractFramebuffer.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/FramebufferManager.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/RenderState.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" namespace BPFunctions { // ---------------------------------------------- // State translation lookup tables // Reference: Yet Another GameCube Documentation // ---------------------------------------------- void FlushPipeline() { g_vertex_manager->Flush(); } void SetGenerationMode() { g_vertex_manager->SetRasterizationStateChanged(); } void SetScissor() { /* NOTE: the minimum value here for the scissor rect and offset is -342. * GX internally adds on an offset of 342 to both the offset and scissor * coords to ensure that the register was always unsigned. * * The code that was here before tried to "undo" this offset, but * since we always take the difference, the +342 added to both * sides cancels out. */ /* The scissor offset is always even, so to save space, the scissor offset * register is scaled down by 2. So, if somebody calls * GX_SetScissorBoxOffset(20, 20); the registers will be set to 10, 10. */ const int xoff = bpmem.scissorOffset.x * 2; const int yoff = bpmem.scissorOffset.y * 2; MathUtil::Rectangle native_rc(bpmem.scissorTL.x - xoff, bpmem.scissorTL.y - yoff, bpmem.scissorBR.x - xoff + 1, bpmem.scissorBR.y - yoff + 1); native_rc.ClampUL(0, 0, EFB_WIDTH, EFB_HEIGHT); auto target_rc = g_renderer->ConvertEFBRectangle(native_rc); auto converted_rc = g_renderer->ConvertFramebufferRectangle(target_rc, g_renderer->GetCurrentFramebuffer()); g_renderer->SetScissorRect(converted_rc); } void SetViewport() { int scissor_x_off = bpmem.scissorOffset.x * 2; int scissor_y_off = bpmem.scissorOffset.y * 2; float x = g_renderer->EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - scissor_x_off); float y = g_renderer->EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - scissor_y_off); float width = g_renderer->EFBToScaledXf(2.0f * xfmem.viewport.wd); float height = g_renderer->EFBToScaledYf(-2.0f * xfmem.viewport.ht); float min_depth = (xfmem.viewport.farZ - xfmem.viewport.zRange) / 16777216.0f; float max_depth = xfmem.viewport.farZ / 16777216.0f; if (width < 0.f) { x += width; width *= -1; } if (height < 0.f) { y += height; height *= -1; } // The maximum depth that is written to the depth buffer should never exceed this value. // This is necessary because we use a 2^24 divisor for all our depth values to prevent // floating-point round-trip errors. However the console GPU doesn't ever write a value // to the depth buffer that exceeds 2^24 - 1. constexpr float GX_MAX_DEPTH = 16777215.0f / 16777216.0f; if (!g_ActiveConfig.backend_info.bSupportsDepthClamp) { // There's no way to support oversized depth ranges in this situation. Let's just clamp the // range to the maximum value supported by the console GPU and hope for the best. min_depth = std::clamp(min_depth, 0.0f, GX_MAX_DEPTH); max_depth = std::clamp(max_depth, 0.0f, GX_MAX_DEPTH); } if (g_renderer->UseVertexDepthRange()) { // We need to ensure depth values are clamped the maximum value supported by the console GPU. // Taking into account whether the depth range is inverted or not. if (xfmem.viewport.zRange < 0.0f && g_ActiveConfig.backend_info.bSupportsReversedDepthRange) { min_depth = GX_MAX_DEPTH; max_depth = 0.0f; } else { min_depth = 0.0f; max_depth = GX_MAX_DEPTH; } } float near_depth, far_depth; if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange) { // Set the reversed depth range. near_depth = max_depth; far_depth = min_depth; } else { // We use an inverted depth range here to apply the Reverse Z trick. // This trick makes sure we match the precision provided by the 1:0 // clipping depth range on the hardware. near_depth = 1.0f - max_depth; far_depth = 1.0f - min_depth; } // Clamp to size if oversized not supported. Required for D3D. if (!g_ActiveConfig.backend_info.bSupportsOversizedViewports) { const float max_width = static_cast(g_renderer->GetCurrentFramebuffer()->GetWidth()); const float max_height = static_cast(g_renderer->GetCurrentFramebuffer()->GetHeight()); x = std::clamp(x, 0.0f, max_width - 1.0f); y = std::clamp(y, 0.0f, max_height - 1.0f); width = std::clamp(width, 1.0f, max_width - x); height = std::clamp(height, 1.0f, max_height - y); } // Lower-left flip. if (g_ActiveConfig.backend_info.bUsesLowerLeftOrigin) y = static_cast(g_renderer->GetCurrentFramebuffer()->GetHeight()) - y - height; g_renderer->SetViewport(x, y, width, height, near_depth, far_depth); } void SetDepthMode() { g_vertex_manager->SetDepthStateChanged(); } void SetBlendMode() { g_vertex_manager->SetBlendingStateChanged(); } /* Explanation of the magic behind ClearScreen: There's numerous possible formats for the pixel data in the EFB. However, in the HW accelerated backends we're always using RGBA8 for the EFB format, which causes some problems: - We're using an alpha channel although the game doesn't - If the actual EFB format is RGBA6_Z24 or R5G6B5_Z16, we are using more bits per channel than the native HW To properly emulate the above points, we're doing the following: (1) - disable alpha channel writing of any kind of rendering if the actual EFB format doesn't use an alpha channel - NOTE: Always make sure that the EFB has been cleared to an alpha value of 0xFF in this case! - Same for color channels, these need to be cleared to 0x00 though. (2) - convert the RGBA8 color to RGBA6/RGB8/RGB565 and convert it to RGBA8 again - convert the Z24 depth value to Z16 and back to Z24 */ void ClearScreen(const MathUtil::Rectangle& rc) { bool colorEnable = (bpmem.blendmode.colorupdate != 0); bool alphaEnable = (bpmem.blendmode.alphaupdate != 0); bool zEnable = (bpmem.zmode.updateenable != 0); auto pixel_format = bpmem.zcontrol.pixel_format; // (1): Disable unused color channels if (pixel_format == PixelFormat::RGB8_Z24 || pixel_format == PixelFormat::RGB565_Z16 || pixel_format == PixelFormat::Z24) { alphaEnable = false; } if (colorEnable || alphaEnable || zEnable) { u32 color = (bpmem.clearcolorAR << 16) | bpmem.clearcolorGB; u32 z = bpmem.clearZValue; // (2) drop additional accuracy if (pixel_format == PixelFormat::RGBA6_Z24) { color = RGBA8ToRGBA6ToRGBA8(color); } else if (pixel_format == PixelFormat::RGB565_Z16) { color = RGBA8ToRGB565ToRGBA8(color); z = Z24ToZ16ToZ24(z); } g_renderer->ClearScreen(rc, colorEnable, alphaEnable, zEnable, color, z); } } void OnPixelFormatChange() { // TODO : Check for Z compression format change // When using 16bit Z, the game may enable a special compression format which we need to handle // If we don't, Z values will be completely screwed up, currently only Star Wars:RS2 uses that. /* * When changing the EFB format, the pixel data won't get converted to the new format but stays * the same. * Since we are always using an RGBA8 buffer though, this causes issues in some games. * Thus, we reinterpret the old EFB data with the new format here. */ if (!g_ActiveConfig.bEFBEmulateFormatChanges) return; const auto old_format = g_renderer->GetPrevPixelFormat(); const auto new_format = bpmem.zcontrol.pixel_format; g_renderer->StorePixelFormat(new_format); DEBUG_LOG_FMT(VIDEO, "pixelfmt: pixel={}, zc={}", new_format, bpmem.zcontrol.zformat); // no need to reinterpret pixel data in these cases if (new_format == old_format || old_format == PixelFormat::INVALID_FMT) return; // Check for pixel format changes switch (old_format) { case PixelFormat::RGB8_Z24: case PixelFormat::Z24: { // Z24 and RGB8_Z24 are treated equal, so just return in this case if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24) return; if (new_format == PixelFormat::RGBA6_Z24) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGBA6); return; } else if (new_format == PixelFormat::RGB565_Z16) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGB565); return; } } break; case PixelFormat::RGBA6_Z24: { if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB8); return; } else if (new_format == PixelFormat::RGB565_Z16) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB565); return; } } break; case PixelFormat::RGB565_Z16: { if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGB8); return; } else if (new_format == PixelFormat::RGBA6_Z24) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGBA6); return; } } break; default: break; } ERROR_LOG_FMT(VIDEO, "Unhandled EFB format change: {} to {}", old_format, new_format); } void SetInterlacingMode(const BPCmd& bp) { // TODO switch (bp.address) { case BPMEM_FIELDMODE: { // SDK always sets bpmem.lineptwidth.lineaspect via BPMEM_LINEPTWIDTH // just before this cmd DEBUG_LOG_FMT(VIDEO, "BPMEM_FIELDMODE texLOD:{} lineaspect:{}", bpmem.fieldmode.texLOD, bpmem.lineptwidth.adjust_for_aspect_ratio); } break; case BPMEM_FIELDMASK: { // Determines if fields will be written to EFB (always computed) DEBUG_LOG_FMT(VIDEO, "BPMEM_FIELDMASK even:{} odd:{}", bpmem.fieldmask.even, bpmem.fieldmask.odd); } break; default: ERROR_LOG_FMT(VIDEO, "SetInterlacingMode default"); break; } } }; // namespace BPFunctions