// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "AudioCommon/Mixer.h" #include #include #include #include "AudioCommon/Enums.h" #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/Swap.h" #include "Core/Config/MainSettings.h" #include "Core/ConfigManager.h" static u32 DPL2QualityToFrameBlockSize(AudioCommon::DPL2Quality quality) { switch (quality) { case AudioCommon::DPL2Quality::Lowest: return 512; case AudioCommon::DPL2Quality::Low: return 1024; case AudioCommon::DPL2Quality::Highest: return 4096; default: return 2048; } } Mixer::Mixer(unsigned int BackendSampleRate) : m_sampleRate(BackendSampleRate), m_stretcher(BackendSampleRate), m_surround_decoder(BackendSampleRate, DPL2QualityToFrameBlockSize(Config::Get(Config::MAIN_DPL2_QUALITY))) { m_config_changed_callback_id = Config::AddConfigChangedCallback([this] { RefreshConfig(); }); RefreshConfig(); INFO_LOG_FMT(AUDIO_INTERFACE, "Mixer is initialized"); } Mixer::~Mixer() { Config::RemoveConfigChangedCallback(m_config_changed_callback_id); } void Mixer::DoState(PointerWrap& p) { m_dma_mixer.DoState(p); m_streaming_mixer.DoState(p); m_wiimote_speaker_mixer.DoState(p); for (auto& mixer : m_gba_mixers) mixer.DoState(p); } // Executed from sound stream thread unsigned int Mixer::MixerFifo::Mix(short* samples, unsigned int numSamples, bool consider_framelimit, float emulationspeed, int timing_variance) { unsigned int currentSample = 0; // Cache access in non-volatile variable // This is the only function changing the read value, so it's safe to // cache it locally although it's written here. // The writing pointer will be modified outside, but it will only increase, // so we will just ignore new written data while interpolating. // Without this cache, the compiler wouldn't be allowed to optimize the // interpolation loop. u32 indexR = m_indexR.load(); u32 indexW = m_indexW.load(); // render numleft sample pairs to samples[] // advance indexR with sample position // remember fractional offset float aid_sample_rate = FIXED_SAMPLE_RATE_DIVIDEND / static_cast(m_input_sample_rate_divisor); if (consider_framelimit && emulationspeed > 0.0f) { float numLeft = static_cast(((indexW - indexR) & INDEX_MASK) / 2); u32 low_watermark = (FIXED_SAMPLE_RATE_DIVIDEND * timing_variance) / (static_cast(m_input_sample_rate_divisor) * 1000); low_watermark = std::min(low_watermark, MAX_SAMPLES / 2); m_numLeftI = (numLeft + m_numLeftI * (CONTROL_AVG - 1)) / CONTROL_AVG; float offset = (m_numLeftI - low_watermark) * CONTROL_FACTOR; if (offset > MAX_FREQ_SHIFT) offset = MAX_FREQ_SHIFT; if (offset < -MAX_FREQ_SHIFT) offset = -MAX_FREQ_SHIFT; aid_sample_rate = (aid_sample_rate + offset) * emulationspeed; } const u32 ratio = (u32)(65536.0f * aid_sample_rate / (float)m_mixer->m_sampleRate); s32 lvolume = m_LVolume.load(); s32 rvolume = m_RVolume.load(); const auto read_buffer = [this](auto index) { return m_little_endian ? m_buffer[index] : Common::swap16(m_buffer[index]); }; // TODO: consider a higher-quality resampling algorithm. for (; currentSample < numSamples * 2 && ((indexW - indexR) & INDEX_MASK) > 2; currentSample += 2) { u32 indexR2 = indexR + 2; // next sample s16 l1 = read_buffer(indexR & INDEX_MASK); // current s16 l2 = read_buffer(indexR2 & INDEX_MASK); // next int sampleL = ((l1 << 16) + (l2 - l1) * (u16)m_frac) >> 16; sampleL = (sampleL * lvolume) >> 8; sampleL += samples[currentSample + 1]; samples[currentSample + 1] = std::clamp(sampleL, -32767, 32767); s16 r1 = read_buffer((indexR + 1) & INDEX_MASK); // current s16 r2 = read_buffer((indexR2 + 1) & INDEX_MASK); // next int sampleR = ((r1 << 16) + (r2 - r1) * (u16)m_frac) >> 16; sampleR = (sampleR * rvolume) >> 8; sampleR += samples[currentSample]; samples[currentSample] = std::clamp(sampleR, -32767, 32767); m_frac += ratio; indexR += 2 * (u16)(m_frac >> 16); m_frac &= 0xffff; } // Actual number of samples written to the buffer without padding. unsigned int actual_sample_count = currentSample / 2; // Padding short s[2]; s[0] = read_buffer((indexR - 1) & INDEX_MASK); s[1] = read_buffer((indexR - 2) & INDEX_MASK); s[0] = (s[0] * rvolume) >> 8; s[1] = (s[1] * lvolume) >> 8; for (; currentSample < numSamples * 2; currentSample += 2) { int sampleR = std::clamp(s[0] + samples[currentSample + 0], -32767, 32767); int sampleL = std::clamp(s[1] + samples[currentSample + 1], -32767, 32767); samples[currentSample + 0] = sampleR; samples[currentSample + 1] = sampleL; } // Flush cached variable m_indexR.store(indexR); return actual_sample_count; } unsigned int Mixer::Mix(short* samples, unsigned int num_samples) { if (!samples) return 0; memset(samples, 0, num_samples * 2 * sizeof(short)); const float emulation_speed = m_config_emulation_speed; const int timing_variance = m_config_timing_variance; if (m_config_audio_stretch) { unsigned int available_samples = std::min(m_dma_mixer.AvailableSamples(), m_streaming_mixer.AvailableSamples()); m_scratch_buffer.fill(0); m_dma_mixer.Mix(m_scratch_buffer.data(), available_samples, false, emulation_speed, timing_variance); m_streaming_mixer.Mix(m_scratch_buffer.data(), available_samples, false, emulation_speed, timing_variance); m_wiimote_speaker_mixer.Mix(m_scratch_buffer.data(), available_samples, false, emulation_speed, timing_variance); for (auto& mixer : m_gba_mixers) { mixer.Mix(m_scratch_buffer.data(), available_samples, false, emulation_speed, timing_variance); } if (!m_is_stretching) { m_stretcher.Clear(); m_is_stretching = true; } m_stretcher.ProcessSamples(m_scratch_buffer.data(), available_samples, num_samples); m_stretcher.GetStretchedSamples(samples, num_samples); } else { m_dma_mixer.Mix(samples, num_samples, true, emulation_speed, timing_variance); m_streaming_mixer.Mix(samples, num_samples, true, emulation_speed, timing_variance); m_wiimote_speaker_mixer.Mix(samples, num_samples, true, emulation_speed, timing_variance); for (auto& mixer : m_gba_mixers) mixer.Mix(samples, num_samples, true, emulation_speed, timing_variance); m_is_stretching = false; } return num_samples; } unsigned int Mixer::MixSurround(float* samples, unsigned int num_samples) { if (!num_samples) return 0; memset(samples, 0, num_samples * SURROUND_CHANNELS * sizeof(float)); size_t needed_frames = m_surround_decoder.QueryFramesNeededForSurroundOutput(num_samples); // Mix() may also use m_scratch_buffer internally, but is safe because it alternates reads // and writes. size_t available_frames = Mix(m_scratch_buffer.data(), static_cast(needed_frames)); if (available_frames != needed_frames) { ERROR_LOG_FMT(AUDIO, "Error decoding surround frames."); return 0; } m_surround_decoder.PutFrames(m_scratch_buffer.data(), needed_frames); m_surround_decoder.ReceiveFrames(samples, num_samples); return num_samples; } void Mixer::MixerFifo::PushSamples(const short* samples, unsigned int num_samples) { // Cache access in non-volatile variable // indexR isn't allowed to cache in the audio throttling loop as it // needs to get updates to not deadlock. u32 indexW = m_indexW.load(); // Check if we have enough free space // indexW == m_indexR results in empty buffer, so indexR must always be smaller than indexW if (num_samples * 2 + ((indexW - m_indexR.load()) & INDEX_MASK) >= MAX_SAMPLES * 2) return; // AyuanX: Actual re-sampling work has been moved to sound thread // to alleviate the workload on main thread // and we simply store raw data here to make fast mem copy int over_bytes = num_samples * 4 - (MAX_SAMPLES * 2 - (indexW & INDEX_MASK)) * sizeof(short); if (over_bytes > 0) { memcpy(&m_buffer[indexW & INDEX_MASK], samples, num_samples * 4 - over_bytes); memcpy(&m_buffer[0], samples + (num_samples * 4 - over_bytes) / sizeof(short), over_bytes); } else { memcpy(&m_buffer[indexW & INDEX_MASK], samples, num_samples * 4); } m_indexW.fetch_add(num_samples * 2); } void Mixer::PushSamples(const short* samples, unsigned int num_samples) { m_dma_mixer.PushSamples(samples, num_samples); if (m_log_dsp_audio) { int sample_rate_divisor = m_dma_mixer.GetInputSampleRateDivisor(); auto volume = m_dma_mixer.GetVolume(); m_wave_writer_dsp.AddStereoSamplesBE(samples, num_samples, sample_rate_divisor, volume.first, volume.second); } } void Mixer::PushStreamingSamples(const short* samples, unsigned int num_samples) { m_streaming_mixer.PushSamples(samples, num_samples); if (m_log_dtk_audio) { int sample_rate_divisor = m_streaming_mixer.GetInputSampleRateDivisor(); auto volume = m_streaming_mixer.GetVolume(); m_wave_writer_dtk.AddStereoSamplesBE(samples, num_samples, sample_rate_divisor, volume.first, volume.second); } } void Mixer::PushWiimoteSpeakerSamples(const short* samples, unsigned int num_samples, unsigned int sample_rate_divisor) { // Max 20 bytes/speaker report, may be 4-bit ADPCM so multiply by 2 static constexpr u32 MAX_SPEAKER_SAMPLES = 20 * 2; std::array samples_stereo; if (num_samples <= MAX_SPEAKER_SAMPLES) { m_wiimote_speaker_mixer.SetInputSampleRateDivisor(sample_rate_divisor); for (unsigned int i = 0; i < num_samples; ++i) { samples_stereo[i * 2] = samples[i]; samples_stereo[i * 2 + 1] = samples[i]; } m_wiimote_speaker_mixer.PushSamples(samples_stereo.data(), num_samples); } } void Mixer::PushGBASamples(int device_number, const short* samples, unsigned int num_samples) { m_gba_mixers[device_number].PushSamples(samples, num_samples); } void Mixer::SetDMAInputSampleRateDivisor(unsigned int rate_divisor) { m_dma_mixer.SetInputSampleRateDivisor(rate_divisor); } void Mixer::SetStreamInputSampleRateDivisor(unsigned int rate_divisor) { m_streaming_mixer.SetInputSampleRateDivisor(rate_divisor); } void Mixer::SetGBAInputSampleRateDivisors(int device_number, unsigned int rate_divisor) { m_gba_mixers[device_number].SetInputSampleRateDivisor(rate_divisor); } void Mixer::SetStreamingVolume(unsigned int lvolume, unsigned int rvolume) { m_streaming_mixer.SetVolume(lvolume, rvolume); } void Mixer::SetWiimoteSpeakerVolume(unsigned int lvolume, unsigned int rvolume) { m_wiimote_speaker_mixer.SetVolume(lvolume, rvolume); } void Mixer::SetGBAVolume(int device_number, unsigned int lvolume, unsigned int rvolume) { m_gba_mixers[device_number].SetVolume(lvolume, rvolume); } void Mixer::StartLogDTKAudio(const std::string& filename) { if (!m_log_dtk_audio) { bool success = m_wave_writer_dtk.Start(filename, m_streaming_mixer.GetInputSampleRateDivisor()); if (success) { m_log_dtk_audio = true; m_wave_writer_dtk.SetSkipSilence(false); NOTICE_LOG_FMT(AUDIO, "Starting DTK Audio logging"); } else { m_wave_writer_dtk.Stop(); NOTICE_LOG_FMT(AUDIO, "Unable to start DTK Audio logging"); } } else { WARN_LOG_FMT(AUDIO, "DTK Audio logging has already been started"); } } void Mixer::StopLogDTKAudio() { if (m_log_dtk_audio) { m_log_dtk_audio = false; m_wave_writer_dtk.Stop(); NOTICE_LOG_FMT(AUDIO, "Stopping DTK Audio logging"); } else { WARN_LOG_FMT(AUDIO, "DTK Audio logging has already been stopped"); } } void Mixer::StartLogDSPAudio(const std::string& filename) { if (!m_log_dsp_audio) { bool success = m_wave_writer_dsp.Start(filename, m_dma_mixer.GetInputSampleRateDivisor()); if (success) { m_log_dsp_audio = true; m_wave_writer_dsp.SetSkipSilence(false); NOTICE_LOG_FMT(AUDIO, "Starting DSP Audio logging"); } else { m_wave_writer_dsp.Stop(); NOTICE_LOG_FMT(AUDIO, "Unable to start DSP Audio logging"); } } else { WARN_LOG_FMT(AUDIO, "DSP Audio logging has already been started"); } } void Mixer::StopLogDSPAudio() { if (m_log_dsp_audio) { m_log_dsp_audio = false; m_wave_writer_dsp.Stop(); NOTICE_LOG_FMT(AUDIO, "Stopping DSP Audio logging"); } else { WARN_LOG_FMT(AUDIO, "DSP Audio logging has already been stopped"); } } void Mixer::RefreshConfig() { m_config_emulation_speed = Config::Get(Config::MAIN_EMULATION_SPEED); m_config_timing_variance = Config::Get(Config::MAIN_TIMING_VARIANCE); m_config_audio_stretch = Config::Get(Config::MAIN_AUDIO_STRETCH); } void Mixer::MixerFifo::DoState(PointerWrap& p) { p.Do(m_input_sample_rate_divisor); p.Do(m_LVolume); p.Do(m_RVolume); } void Mixer::MixerFifo::SetInputSampleRateDivisor(unsigned int rate_divisor) { m_input_sample_rate_divisor = rate_divisor; } unsigned int Mixer::MixerFifo::GetInputSampleRateDivisor() const { return m_input_sample_rate_divisor; } void Mixer::MixerFifo::SetVolume(unsigned int lvolume, unsigned int rvolume) { m_LVolume.store(lvolume + (lvolume >> 7)); m_RVolume.store(rvolume + (rvolume >> 7)); } std::pair Mixer::MixerFifo::GetVolume() const { return std::make_pair(m_LVolume.load(), m_RVolume.load()); } unsigned int Mixer::MixerFifo::AvailableSamples() const { unsigned int samples_in_fifo = ((m_indexW.load() - m_indexR.load()) & INDEX_MASK) / 2; if (samples_in_fifo <= 1) return 0; // Mixer::MixerFifo::Mix always keeps one sample in the buffer. return (samples_in_fifo - 1) * static_cast(m_mixer->m_sampleRate) * m_input_sample_rate_divisor / FIXED_SAMPLE_RATE_DIVIDEND; }