// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/Vulkan/StateTracker.h" #include #include "Common/Assert.h" #include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/Constants.h" #include "VideoBackends/Vulkan/FramebufferManager.h" #include "VideoBackends/Vulkan/ObjectCache.h" #include "VideoBackends/Vulkan/StreamBuffer.h" #include "VideoBackends/Vulkan/Util.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/GeometryShaderManager.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoConfig.h" namespace Vulkan { StateTracker::StateTracker() { // Set some sensible defaults m_pipeline_state.pipeline_layout = g_object_cache->GetStandardPipelineLayout(); m_pipeline_state.rasterization_state.cull_mode = VK_CULL_MODE_NONE; m_pipeline_state.rasterization_state.per_sample_shading = VK_FALSE; m_pipeline_state.rasterization_state.depth_clamp = VK_FALSE; m_pipeline_state.depth_stencil_state.test_enable = VK_TRUE; m_pipeline_state.depth_stencil_state.write_enable = VK_TRUE; m_pipeline_state.depth_stencil_state.compare_op = VK_COMPARE_OP_LESS; m_pipeline_state.blend_state.blend_enable = VK_FALSE; m_pipeline_state.blend_state.blend_op = VK_BLEND_OP_ADD; m_pipeline_state.blend_state.src_blend = VK_BLEND_FACTOR_ONE; m_pipeline_state.blend_state.dst_blend = VK_BLEND_FACTOR_ZERO; m_pipeline_state.blend_state.alpha_blend_op = VK_BLEND_OP_ADD; m_pipeline_state.blend_state.src_alpha_blend = VK_BLEND_FACTOR_ONE; m_pipeline_state.blend_state.dst_alpha_blend = VK_BLEND_FACTOR_ZERO; m_pipeline_state.blend_state.logic_op_enable = VK_FALSE; m_pipeline_state.blend_state.logic_op = VK_LOGIC_OP_CLEAR; m_pipeline_state.blend_state.write_mask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; // Enable depth clamping if supported by driver. if (g_ActiveConfig.backend_info.bSupportsDepthClamp) m_pipeline_state.rasterization_state.depth_clamp = VK_TRUE; // BBox is disabled by default. m_pipeline_state.pipeline_layout = g_object_cache->GetStandardPipelineLayout(); m_num_active_descriptor_sets = NUM_DESCRIPTOR_SETS - 1; m_bbox_enabled = false; // Initialize all samplers to point by default for (size_t i = 0; i < NUM_PIXEL_SHADER_SAMPLERS; i++) { m_bindings.ps_samplers[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; m_bindings.ps_samplers[i].imageView = VK_NULL_HANDLE; m_bindings.ps_samplers[i].sampler = g_object_cache->GetPointSampler(); } // Create the streaming uniform buffer m_uniform_stream_buffer = StreamBuffer::Create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, INITIAL_UNIFORM_STREAM_BUFFER_SIZE, MAXIMUM_UNIFORM_STREAM_BUFFER_SIZE); if (!m_uniform_stream_buffer) PanicAlert("Failed to create uniform stream buffer"); // The validation layer complains if max(offsets) + max(ubo_ranges) >= ubo_size. // To work around this we reserve the maximum buffer size at all times, but only commit // as many bytes as we use. m_uniform_buffer_reserve_size = sizeof(PixelShaderConstants); m_uniform_buffer_reserve_size = Util::AlignValue(m_uniform_buffer_reserve_size, g_vulkan_context->GetUniformBufferAlignment()) + sizeof(VertexShaderConstants); m_uniform_buffer_reserve_size = Util::AlignValue(m_uniform_buffer_reserve_size, g_vulkan_context->GetUniformBufferAlignment()) + sizeof(GeometryShaderConstants); // Default dirty flags include all descriptors InvalidateDescriptorSets(); SetPendingRebind(); // Set default constants UploadAllConstants(); } StateTracker::~StateTracker() { } void StateTracker::SetVertexBuffer(VkBuffer buffer, VkDeviceSize offset) { if (m_vertex_buffer == buffer && m_vertex_buffer_offset == offset) return; m_vertex_buffer = buffer; m_vertex_buffer_offset = offset; m_dirty_flags |= DIRTY_FLAG_VERTEX_BUFFER; } void StateTracker::SetIndexBuffer(VkBuffer buffer, VkDeviceSize offset, VkIndexType type) { if (m_index_buffer == buffer && m_index_buffer_offset == offset && m_index_type == type) return; m_index_buffer = buffer; m_index_buffer_offset = offset; m_index_type = type; m_dirty_flags |= DIRTY_FLAG_INDEX_BUFFER; } void StateTracker::SetRenderPass(VkRenderPass load_render_pass, VkRenderPass clear_render_pass) { // Should not be changed within a render pass. _assert_(!InRenderPass()); // The clear and load render passes are compatible, so we don't need to change our pipeline. if (m_pipeline_state.render_pass != load_render_pass) { m_pipeline_state.render_pass = load_render_pass; m_dirty_flags |= DIRTY_FLAG_PIPELINE; } m_load_render_pass = load_render_pass; m_clear_render_pass = clear_render_pass; } void StateTracker::SetFramebuffer(VkFramebuffer framebuffer, const VkRect2D& render_area) { // Should not be changed within a render pass. _assert_(!InRenderPass()); m_framebuffer = framebuffer; m_framebuffer_size = render_area; } void StateTracker::SetVertexFormat(const VertexFormat* vertex_format) { if (m_pipeline_state.vertex_format == vertex_format) return; m_pipeline_state.vertex_format = vertex_format; m_dirty_flags |= DIRTY_FLAG_PIPELINE; } void StateTracker::SetPrimitiveTopology(VkPrimitiveTopology primitive_topology) { if (m_pipeline_state.primitive_topology == primitive_topology) return; m_pipeline_state.primitive_topology = primitive_topology; m_dirty_flags |= DIRTY_FLAG_PIPELINE; } void StateTracker::DisableBackFaceCulling() { if (m_pipeline_state.rasterization_state.cull_mode == VK_CULL_MODE_NONE) return; m_pipeline_state.rasterization_state.cull_mode = VK_CULL_MODE_NONE; m_dirty_flags |= DIRTY_FLAG_PIPELINE; } void StateTracker::SetRasterizationState(const RasterizationState& state) { if (m_pipeline_state.rasterization_state.bits == state.bits) return; m_pipeline_state.rasterization_state.bits = state.bits; m_dirty_flags |= DIRTY_FLAG_PIPELINE; } void StateTracker::SetDepthStencilState(const DepthStencilState& state) { if (m_pipeline_state.depth_stencil_state.bits == state.bits) return; m_pipeline_state.depth_stencil_state.bits = state.bits; m_dirty_flags |= DIRTY_FLAG_PIPELINE; } void StateTracker::SetBlendState(const BlendState& state) { if (m_pipeline_state.blend_state.bits == state.bits) return; m_pipeline_state.blend_state.bits = state.bits; m_dirty_flags |= DIRTY_FLAG_PIPELINE; } bool StateTracker::CheckForShaderChanges(u32 gx_primitive_type, DSTALPHA_MODE dstalpha_mode) { VertexShaderUid vs_uid = GetVertexShaderUid(); PixelShaderUid ps_uid = GetPixelShaderUid(dstalpha_mode); bool changed = false; if (vs_uid != m_vs_uid) { m_pipeline_state.vs = g_object_cache->GetVertexShaderForUid(vs_uid); m_vs_uid = vs_uid; changed = true; } if (g_vulkan_context->SupportsGeometryShaders()) { GeometryShaderUid gs_uid = GetGeometryShaderUid(gx_primitive_type); if (gs_uid != m_gs_uid) { if (gs_uid.GetUidData()->IsPassthrough()) m_pipeline_state.gs = VK_NULL_HANDLE; else m_pipeline_state.gs = g_object_cache->GetGeometryShaderForUid(gs_uid); m_gs_uid = gs_uid; changed = true; } } if (ps_uid != m_ps_uid) { m_pipeline_state.ps = g_object_cache->GetPixelShaderForUid(ps_uid); m_ps_uid = ps_uid; changed = true; } if (m_dstalpha_mode != dstalpha_mode) { // Switching to/from alpha pass requires a pipeline change, since the blend state // is overridden in the destination alpha pass. if (m_dstalpha_mode == DSTALPHA_ALPHA_PASS || dstalpha_mode == DSTALPHA_ALPHA_PASS) changed = true; m_dstalpha_mode = dstalpha_mode; } if (changed) m_dirty_flags |= DIRTY_FLAG_PIPELINE; return changed; } void StateTracker::UpdateVertexShaderConstants() { if (!VertexShaderManager::dirty) return; // Since the other stages uniform buffers' may be still be using the earlier data, // we can't reuse the earlier part of the buffer without re-uploading everything. if (!m_uniform_stream_buffer->ReserveMemory(m_uniform_buffer_reserve_size, g_vulkan_context->GetUniformBufferAlignment(), false, false, false)) { // Re-upload all constants to a new portion of the buffer. UploadAllConstants(); return; } // Buffer allocation changed? if (m_uniform_stream_buffer->GetBuffer() != m_bindings.uniform_buffer_bindings[UBO_DESCRIPTOR_SET_BINDING_VS].buffer) { m_bindings.uniform_buffer_bindings[UBO_DESCRIPTOR_SET_BINDING_VS].buffer = m_uniform_stream_buffer->GetBuffer(); m_dirty_flags |= DIRTY_FLAG_VS_UBO; } m_bindings.uniform_buffer_offsets[UBO_DESCRIPTOR_SET_BINDING_VS] = static_cast(m_uniform_stream_buffer->GetCurrentOffset()); m_dirty_flags |= DIRTY_FLAG_DYNAMIC_OFFSETS; memcpy(m_uniform_stream_buffer->GetCurrentHostPointer(), &VertexShaderManager::constants, sizeof(VertexShaderConstants)); ADDSTAT(stats.thisFrame.bytesUniformStreamed, sizeof(VertexShaderConstants)); m_uniform_stream_buffer->CommitMemory(sizeof(VertexShaderConstants)); VertexShaderManager::dirty = false; } void StateTracker::UpdateGeometryShaderConstants() { // Skip updating geometry shader constants if it's not in use. if (m_pipeline_state.gs == VK_NULL_HANDLE || !GeometryShaderManager::dirty) return; // Since the other stages uniform buffers' may be still be using the earlier data, // we can't reuse the earlier part of the buffer without re-uploading everything. if (!m_uniform_stream_buffer->ReserveMemory(m_uniform_buffer_reserve_size, g_vulkan_context->GetUniformBufferAlignment(), false, false, false)) { // Re-upload all constants to a new portion of the buffer. UploadAllConstants(); return; } // Buffer allocation changed? if (m_uniform_stream_buffer->GetBuffer() != m_bindings.uniform_buffer_bindings[UBO_DESCRIPTOR_SET_BINDING_GS].buffer) { m_bindings.uniform_buffer_bindings[UBO_DESCRIPTOR_SET_BINDING_GS].buffer = m_uniform_stream_buffer->GetBuffer(); m_dirty_flags |= DIRTY_FLAG_GS_UBO; } m_bindings.uniform_buffer_offsets[UBO_DESCRIPTOR_SET_BINDING_GS] = static_cast(m_uniform_stream_buffer->GetCurrentOffset()); m_dirty_flags |= DIRTY_FLAG_DYNAMIC_OFFSETS; memcpy(m_uniform_stream_buffer->GetCurrentHostPointer(), &GeometryShaderManager::constants, sizeof(GeometryShaderConstants)); ADDSTAT(stats.thisFrame.bytesUniformStreamed, sizeof(GeometryShaderConstants)); m_uniform_stream_buffer->CommitMemory(sizeof(GeometryShaderConstants)); GeometryShaderManager::dirty = false; } void StateTracker::UpdatePixelShaderConstants() { if (!PixelShaderManager::dirty) return; // Since the other stages uniform buffers' may be still be using the earlier data, // we can't reuse the earlier part of the buffer without re-uploading everything. if (!m_uniform_stream_buffer->ReserveMemory(m_uniform_buffer_reserve_size, g_vulkan_context->GetUniformBufferAlignment(), false, false, false)) { // Re-upload all constants to a new portion of the buffer. UploadAllConstants(); return; } // Buffer allocation changed? if (m_uniform_stream_buffer->GetBuffer() != m_bindings.uniform_buffer_bindings[UBO_DESCRIPTOR_SET_BINDING_PS].buffer) { m_bindings.uniform_buffer_bindings[UBO_DESCRIPTOR_SET_BINDING_PS].buffer = m_uniform_stream_buffer->GetBuffer(); m_dirty_flags |= DIRTY_FLAG_PS_UBO; } m_bindings.uniform_buffer_offsets[UBO_DESCRIPTOR_SET_BINDING_PS] = static_cast(m_uniform_stream_buffer->GetCurrentOffset()); m_dirty_flags |= DIRTY_FLAG_DYNAMIC_OFFSETS; memcpy(m_uniform_stream_buffer->GetCurrentHostPointer(), &PixelShaderManager::constants, sizeof(PixelShaderConstants)); ADDSTAT(stats.thisFrame.bytesUniformStreamed, sizeof(PixelShaderConstants)); m_uniform_stream_buffer->CommitMemory(sizeof(PixelShaderConstants)); PixelShaderManager::dirty = false; } void StateTracker::UploadAllConstants() { // We are free to re-use parts of the buffer now since we're uploading all constants. size_t pixel_constants_offset = 0; size_t vertex_constants_offset = Util::AlignValue(pixel_constants_offset + sizeof(PixelShaderConstants), g_vulkan_context->GetUniformBufferAlignment()); size_t geometry_constants_offset = Util::AlignValue(vertex_constants_offset + sizeof(VertexShaderConstants), g_vulkan_context->GetUniformBufferAlignment()); size_t total_allocation_size = geometry_constants_offset + sizeof(GeometryShaderConstants); // Allocate everything at once. if (!m_uniform_stream_buffer->ReserveMemory( total_allocation_size, g_vulkan_context->GetUniformBufferAlignment(), true, true, false)) { // If this fails, wait until the GPU has caught up. // The only places that call constant updates are safe to have state restored. WARN_LOG(VIDEO, "Executing command list while waiting for space in uniform buffer"); Util::ExecuteCurrentCommandsAndRestoreState(this, false); if (!m_uniform_stream_buffer->ReserveMemory(total_allocation_size, g_vulkan_context->GetUniformBufferAlignment(), true, true, false)) { PanicAlert("Failed to allocate space for constants in streaming buffer"); return; } } // Update bindings for (size_t i = 0; i < NUM_UBO_DESCRIPTOR_SET_BINDINGS; i++) { m_bindings.uniform_buffer_bindings[i].buffer = m_uniform_stream_buffer->GetBuffer(); m_bindings.uniform_buffer_bindings[i].offset = 0; } m_bindings.uniform_buffer_bindings[UBO_DESCRIPTOR_SET_BINDING_PS].range = sizeof(PixelShaderConstants); m_bindings.uniform_buffer_bindings[UBO_DESCRIPTOR_SET_BINDING_VS].range = sizeof(VertexShaderConstants); m_bindings.uniform_buffer_bindings[UBO_DESCRIPTOR_SET_BINDING_GS].range = sizeof(GeometryShaderConstants); // Update dynamic offsets m_bindings.uniform_buffer_offsets[UBO_DESCRIPTOR_SET_BINDING_PS] = static_cast(m_uniform_stream_buffer->GetCurrentOffset() + pixel_constants_offset); m_bindings.uniform_buffer_offsets[UBO_DESCRIPTOR_SET_BINDING_VS] = static_cast(m_uniform_stream_buffer->GetCurrentOffset() + vertex_constants_offset); m_bindings.uniform_buffer_offsets[UBO_DESCRIPTOR_SET_BINDING_GS] = static_cast( m_uniform_stream_buffer->GetCurrentOffset() + geometry_constants_offset); m_dirty_flags |= DIRTY_FLAG_ALL_DESCRIPTOR_SETS | DIRTY_FLAG_DYNAMIC_OFFSETS | DIRTY_FLAG_VS_UBO | DIRTY_FLAG_GS_UBO | DIRTY_FLAG_PS_UBO; // Copy the actual data in memcpy(m_uniform_stream_buffer->GetCurrentHostPointer() + pixel_constants_offset, &PixelShaderManager::constants, sizeof(PixelShaderConstants)); memcpy(m_uniform_stream_buffer->GetCurrentHostPointer() + vertex_constants_offset, &VertexShaderManager::constants, sizeof(VertexShaderConstants)); memcpy(m_uniform_stream_buffer->GetCurrentHostPointer() + geometry_constants_offset, &GeometryShaderManager::constants, sizeof(GeometryShaderConstants)); // Finally, flush buffer memory after copying m_uniform_stream_buffer->CommitMemory(total_allocation_size); // Clear dirty flags VertexShaderManager::dirty = false; GeometryShaderManager::dirty = false; PixelShaderManager::dirty = false; } void StateTracker::SetTexture(size_t index, VkImageView view) { if (m_bindings.ps_samplers[index].imageView == view) return; m_bindings.ps_samplers[index].imageView = view; m_bindings.ps_samplers[index].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; m_dirty_flags |= DIRTY_FLAG_PS_SAMPLERS; } void StateTracker::SetSampler(size_t index, VkSampler sampler) { if (m_bindings.ps_samplers[index].sampler == sampler) return; m_bindings.ps_samplers[index].sampler = sampler; m_dirty_flags |= DIRTY_FLAG_PS_SAMPLERS; } void StateTracker::SetBBoxEnable(bool enable) { if (m_bbox_enabled == enable) return; // Change the number of active descriptor sets, as well as the pipeline layout if (enable) { m_pipeline_state.pipeline_layout = g_object_cache->GetBBoxPipelineLayout(); m_num_active_descriptor_sets = NUM_DESCRIPTOR_SETS; // The bbox buffer never changes, so we defer descriptor updates until it is enabled. if (m_descriptor_sets[DESCRIPTOR_SET_SHADER_STORAGE_BUFFERS] == VK_NULL_HANDLE) m_dirty_flags |= DIRTY_FLAG_PS_SSBO; } else { m_pipeline_state.pipeline_layout = g_object_cache->GetStandardPipelineLayout(); m_num_active_descriptor_sets = NUM_DESCRIPTOR_SETS - 1; } m_dirty_flags |= DIRTY_FLAG_PIPELINE | DIRTY_FLAG_DESCRIPTOR_SET_BINDING; m_bbox_enabled = enable; } void StateTracker::SetBBoxBuffer(VkBuffer buffer, VkDeviceSize offset, VkDeviceSize range) { if (m_bindings.ps_ssbo.buffer == buffer && m_bindings.ps_ssbo.offset == offset && m_bindings.ps_ssbo.range == range) { return; } m_bindings.ps_ssbo.buffer = buffer; m_bindings.ps_ssbo.offset = offset; m_bindings.ps_ssbo.range = range; // Defer descriptor update until bbox is actually enabled. if (m_bbox_enabled) m_dirty_flags |= DIRTY_FLAG_PS_SSBO; } void StateTracker::UnbindTexture(VkImageView view) { for (VkDescriptorImageInfo& it : m_bindings.ps_samplers) { if (it.imageView == view) it.imageView = VK_NULL_HANDLE; } } void StateTracker::InvalidateDescriptorSets() { m_descriptor_sets.fill(VK_NULL_HANDLE); m_dirty_flags |= DIRTY_FLAG_ALL_DESCRIPTOR_SETS; // Defer SSBO descriptor update until bbox is actually enabled. if (!m_bbox_enabled) m_dirty_flags &= ~DIRTY_FLAG_PS_SSBO; } void StateTracker::SetPendingRebind() { m_dirty_flags |= DIRTY_FLAG_DYNAMIC_OFFSETS | DIRTY_FLAG_DESCRIPTOR_SET_BINDING | DIRTY_FLAG_PIPELINE_BINDING | DIRTY_FLAG_VERTEX_BUFFER | DIRTY_FLAG_INDEX_BUFFER | DIRTY_FLAG_VIEWPORT | DIRTY_FLAG_SCISSOR | DIRTY_FLAG_PIPELINE; } void StateTracker::BeginRenderPass() { if (InRenderPass()) return; m_current_render_pass = m_load_render_pass; m_framebuffer_render_area = m_framebuffer_size; VkRenderPassBeginInfo begin_info = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, m_current_render_pass, m_framebuffer, m_framebuffer_render_area, 0, nullptr}; vkCmdBeginRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer(), &begin_info, VK_SUBPASS_CONTENTS_INLINE); } void StateTracker::EndRenderPass() { if (!InRenderPass()) return; vkCmdEndRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer()); m_current_render_pass = VK_NULL_HANDLE; } void StateTracker::BeginClearRenderPass(const VkRect2D& area, const VkClearValue clear_values[2]) { _assert_(!InRenderPass()); m_current_render_pass = m_clear_render_pass; m_framebuffer_render_area = area; VkRenderPassBeginInfo begin_info = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, m_current_render_pass, m_framebuffer, m_framebuffer_render_area, 2, clear_values}; vkCmdBeginRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer(), &begin_info, VK_SUBPASS_CONTENTS_INLINE); } void StateTracker::SetViewport(const VkViewport& viewport) { if (memcmp(&m_viewport, &viewport, sizeof(viewport)) == 0) return; m_viewport = viewport; m_dirty_flags |= DIRTY_FLAG_VIEWPORT; } void StateTracker::SetScissor(const VkRect2D& scissor) { if (memcmp(&m_scissor, &scissor, sizeof(scissor)) == 0) return; m_scissor = scissor; m_dirty_flags |= DIRTY_FLAG_SCISSOR; } bool StateTracker::Bind(bool rebind_all /*= false*/) { // Check the render area if we were in a clear pass. if (m_current_render_pass == m_clear_render_pass && !IsViewportWithinRenderArea()) EndRenderPass(); // Get new pipeline object if any parts have changed if (m_dirty_flags & DIRTY_FLAG_PIPELINE && !UpdatePipeline()) { ERROR_LOG(VIDEO, "Failed to get pipeline object, skipping draw"); return false; } // Get a new descriptor set if any parts have changed if (m_dirty_flags & DIRTY_FLAG_ALL_DESCRIPTOR_SETS && !UpdateDescriptorSet()) { // We can fail to allocate descriptors if we exhaust the pool for this command buffer. WARN_LOG(VIDEO, "Failed to get a descriptor set, executing buffer"); // Try again after executing the current buffer. g_command_buffer_mgr->ExecuteCommandBuffer(false, false); InvalidateDescriptorSets(); SetPendingRebind(); if (!UpdateDescriptorSet()) { // Something strange going on. ERROR_LOG(VIDEO, "Failed to get descriptor set, skipping draw"); return false; } } // Start render pass if not already started if (!InRenderPass()) BeginRenderPass(); // Re-bind parts of the pipeline VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer(); if (m_dirty_flags & DIRTY_FLAG_VERTEX_BUFFER || rebind_all) vkCmdBindVertexBuffers(command_buffer, 0, 1, &m_vertex_buffer, &m_vertex_buffer_offset); if (m_dirty_flags & DIRTY_FLAG_INDEX_BUFFER || rebind_all) vkCmdBindIndexBuffer(command_buffer, m_index_buffer, m_index_buffer_offset, m_index_type); if (m_dirty_flags & DIRTY_FLAG_PIPELINE_BINDING || rebind_all) vkCmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline_object); if (m_dirty_flags & DIRTY_FLAG_DESCRIPTOR_SET_BINDING || rebind_all) { vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline_state.pipeline_layout, 0, m_num_active_descriptor_sets, m_descriptor_sets.data(), NUM_UBO_DESCRIPTOR_SET_BINDINGS, m_bindings.uniform_buffer_offsets.data()); } else if (m_dirty_flags & DIRTY_FLAG_DYNAMIC_OFFSETS) { vkCmdBindDescriptorSets( command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline_state.pipeline_layout, DESCRIPTOR_SET_UNIFORM_BUFFERS, 1, &m_descriptor_sets[DESCRIPTOR_SET_UNIFORM_BUFFERS], NUM_UBO_DESCRIPTOR_SET_BINDINGS, m_bindings.uniform_buffer_offsets.data()); } if (m_dirty_flags & DIRTY_FLAG_VIEWPORT || rebind_all) vkCmdSetViewport(command_buffer, 0, 1, &m_viewport); if (m_dirty_flags & DIRTY_FLAG_SCISSOR || rebind_all) vkCmdSetScissor(command_buffer, 0, 1, &m_scissor); m_dirty_flags = 0; return true; } void StateTracker::OnDraw() { m_draw_counter++; // If we didn't have any CPU access last frame, do nothing. if (m_scheduled_command_buffer_kicks.empty() || !m_allow_background_execution) return; // Check if this draw is scheduled to kick a command buffer. // The draw counters will always be sorted so a binary search is possible here. if (std::binary_search(m_scheduled_command_buffer_kicks.begin(), m_scheduled_command_buffer_kicks.end(), m_draw_counter)) { // Kick a command buffer on the background thread. EndRenderPass(); g_command_buffer_mgr->ExecuteCommandBuffer(true, false); InvalidateDescriptorSets(); SetPendingRebind(); } } void StateTracker::OnReadback() { // Check this isn't another access without any draws inbetween. if (!m_cpu_accesses_this_frame.empty() && m_cpu_accesses_this_frame.back() == m_draw_counter) return; // Store the current draw counter for scheduling in OnEndFrame. m_cpu_accesses_this_frame.emplace_back(m_draw_counter); } void StateTracker::OnEndFrame() { m_draw_counter = 0; m_scheduled_command_buffer_kicks.clear(); // If we have no CPU access at all, leave everything in the one command buffer for maximum // parallelism between CPU/GPU, at the cost of slightly higher latency. if (m_cpu_accesses_this_frame.empty()) return; // In order to reduce CPU readback latency, we want to kick a command buffer roughly halfway // between the draw counters that invoked the readback, or every 250 draws, whichever is smaller. if (g_ActiveConfig.iCommandBufferExecuteInterval > 0) { u32 last_draw_counter = 0; u32 interval = static_cast(g_ActiveConfig.iCommandBufferExecuteInterval); for (u32 draw_counter : m_cpu_accesses_this_frame) { u32 draw_count = draw_counter - last_draw_counter; if (draw_count <= interval) { u32 mid_point = draw_count / 2; m_scheduled_command_buffer_kicks.emplace_back(last_draw_counter + mid_point); } else { u32 counter = interval; while (counter < draw_count) { m_scheduled_command_buffer_kicks.emplace_back(last_draw_counter + counter); counter += interval; } } } } #if 0 { std::stringstream ss; std::for_each(m_cpu_accesses_this_frame.begin(), m_cpu_accesses_this_frame.end(), [&ss](u32 idx) { ss << idx << ","; }); WARN_LOG(VIDEO, "CPU EFB accesses in last frame: %s", ss.str().c_str()); } { std::stringstream ss; std::for_each(m_scheduled_command_buffer_kicks.begin(), m_scheduled_command_buffer_kicks.end(), [&ss](u32 idx) { ss << idx << ","; }); WARN_LOG(VIDEO, "Scheduled command buffer kicks: %s", ss.str().c_str()); } #endif m_cpu_accesses_this_frame.clear(); } void StateTracker::SetBackgroundCommandBufferExecution(bool enabled) { m_allow_background_execution = enabled; } bool StateTracker::IsWithinRenderArea(s32 x, s32 y, u32 width, u32 height) const { // Check that the viewport does not lie outside the render area. // If it does, we need to switch to a normal load/store render pass. s32 left = m_framebuffer_render_area.offset.x; s32 top = m_framebuffer_render_area.offset.y; s32 right = left + static_cast(m_framebuffer_render_area.extent.width); s32 bottom = top + static_cast(m_framebuffer_render_area.extent.height); s32 test_left = x; s32 test_top = y; s32 test_right = test_left + static_cast(width); s32 test_bottom = test_top + static_cast(height); return test_left >= left && test_right <= right && test_top >= top && test_bottom <= bottom; } bool StateTracker::IsViewportWithinRenderArea() const { return IsWithinRenderArea(static_cast(m_viewport.x), static_cast(m_viewport.y), static_cast(m_viewport.width), static_cast(m_viewport.height)); } void StateTracker::EndClearRenderPass() { if (m_current_render_pass != m_clear_render_pass) return; // End clear render pass. Bind() will call BeginRenderPass() which // will switch to the load/store render pass. EndRenderPass(); } bool StateTracker::UpdatePipeline() { // We need at least a vertex and fragment shader if (m_pipeline_state.vs == VK_NULL_HANDLE || m_pipeline_state.ps == VK_NULL_HANDLE) return false; // Grab a new pipeline object, this can fail if (m_dstalpha_mode != DSTALPHA_ALPHA_PASS) { m_pipeline_object = g_object_cache->GetPipeline(m_pipeline_state); if (m_pipeline_object == VK_NULL_HANDLE) return false; } else { // We need to make a few modifications to the pipeline object, but retain // the existing state, since we don't want to break the next draw. PipelineInfo temp_info = m_pipeline_state; // Skip depth writes for this pass. The results will be the same, so no // point in overwriting depth values with the same value. temp_info.depth_stencil_state.write_enable = VK_FALSE; // Only allow alpha writes, and disable blending. temp_info.blend_state.blend_enable = VK_FALSE; temp_info.blend_state.logic_op_enable = VK_FALSE; temp_info.blend_state.write_mask = VK_COLOR_COMPONENT_A_BIT; m_pipeline_object = g_object_cache->GetPipeline(temp_info); if (m_pipeline_object == VK_NULL_HANDLE) return false; } m_dirty_flags |= DIRTY_FLAG_PIPELINE_BINDING; return true; } bool StateTracker::UpdateDescriptorSet() { const size_t MAX_DESCRIPTOR_WRITES = NUM_UBO_DESCRIPTOR_SET_BINDINGS + // UBO NUM_PIXEL_SHADER_SAMPLERS + // Samplers 1; // SSBO std::array writes; u32 num_writes = 0; if (m_dirty_flags & (DIRTY_FLAG_VS_UBO | DIRTY_FLAG_GS_UBO | DIRTY_FLAG_PS_UBO) || m_descriptor_sets[DESCRIPTOR_SET_UNIFORM_BUFFERS] == VK_NULL_HANDLE) { VkDescriptorSetLayout layout = g_object_cache->GetDescriptorSetLayout(DESCRIPTOR_SET_UNIFORM_BUFFERS); VkDescriptorSet set = g_command_buffer_mgr->AllocateDescriptorSet(layout); if (set == VK_NULL_HANDLE) return false; for (size_t i = 0; i < NUM_UBO_DESCRIPTOR_SET_BINDINGS; i++) { writes[num_writes++] = {VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, nullptr, set, static_cast(i), 0, 1, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, nullptr, &m_bindings.uniform_buffer_bindings[i], nullptr}; } m_descriptor_sets[DESCRIPTOR_SET_UNIFORM_BUFFERS] = set; m_dirty_flags |= DIRTY_FLAG_DESCRIPTOR_SET_BINDING; } if (m_dirty_flags & DIRTY_FLAG_PS_SAMPLERS || m_descriptor_sets[DESCRIPTOR_SET_PIXEL_SHADER_SAMPLERS] == VK_NULL_HANDLE) { VkDescriptorSetLayout layout = g_object_cache->GetDescriptorSetLayout(DESCRIPTOR_SET_PIXEL_SHADER_SAMPLERS); VkDescriptorSet set = g_command_buffer_mgr->AllocateDescriptorSet(layout); if (set == VK_NULL_HANDLE) return false; for (size_t i = 0; i < NUM_PIXEL_SHADER_SAMPLERS; i++) { const VkDescriptorImageInfo& info = m_bindings.ps_samplers[i]; if (info.imageView != VK_NULL_HANDLE && info.sampler != VK_NULL_HANDLE) { writes[num_writes++] = {VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, nullptr, set, static_cast(i), 0, 1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, &info, nullptr, nullptr}; } } m_descriptor_sets[DESCRIPTOR_SET_PIXEL_SHADER_SAMPLERS] = set; m_dirty_flags |= DIRTY_FLAG_DESCRIPTOR_SET_BINDING; } if (m_bbox_enabled && (m_dirty_flags & DIRTY_FLAG_PS_SSBO || m_descriptor_sets[DESCRIPTOR_SET_SHADER_STORAGE_BUFFERS] == VK_NULL_HANDLE)) { VkDescriptorSetLayout layout = g_object_cache->GetDescriptorSetLayout(DESCRIPTOR_SET_SHADER_STORAGE_BUFFERS); VkDescriptorSet set = g_command_buffer_mgr->AllocateDescriptorSet(layout); if (set == VK_NULL_HANDLE) return false; writes[num_writes++] = {VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, nullptr, set, 0, 0, 1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, nullptr, &m_bindings.ps_ssbo, nullptr}; m_descriptor_sets[DESCRIPTOR_SET_SHADER_STORAGE_BUFFERS] = set; m_dirty_flags |= DIRTY_FLAG_DESCRIPTOR_SET_BINDING; } if (num_writes > 0) vkUpdateDescriptorSets(g_vulkan_context->GetDevice(), num_writes, writes.data(), 0, nullptr); return true; } } // namespace Vulkan