// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include "Common/Assert.h" #include "Common/Atomic.h" #include "Common/BlockingLoop.h" #include "Common/ChunkFile.h" #include "Common/Event.h" #include "Common/FPURoundMode.h" #include "Common/MemoryUtil.h" #include "Common/MsgHandler.h" #include "Core/ConfigManager.h" #include "Core/CoreTiming.h" #include "Core/HW/Memmap.h" #include "Core/HW/SystemTimers.h" #include "Core/Host.h" #include "Core/NetPlayProto.h" #include "VideoCommon/AsyncRequests.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/Fifo.h" #include "VideoCommon/OpcodeDecoding.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VertexManagerBase.h" namespace Fifo { static constexpr u32 FIFO_SIZE = 2 * 1024 * 1024; static constexpr int GPU_TIME_SLOT_SIZE = 1000; static Common::BlockingLoop s_gpu_mainloop; static Common::Flag s_emu_running_state; // Most of this array is unlikely to be faulted in... static u8 s_fifo_aux_data[FIFO_SIZE]; static u8* s_fifo_aux_write_ptr; static u8* s_fifo_aux_read_ptr; // This could be in SConfig, but it depends on multiple settings // and can change at runtime. static bool s_use_deterministic_gpu_thread; static CoreTiming::EventType* s_event_sync_gpu; // STATE_TO_SAVE static u8* s_video_buffer; static u8* s_video_buffer_read_ptr; static std::atomic s_video_buffer_write_ptr; static std::atomic s_video_buffer_seen_ptr; static u8* s_video_buffer_pp_read_ptr; // The read_ptr is always owned by the GPU thread. In normal mode, so is the // write_ptr, despite it being atomic. In deterministic GPU thread mode, // things get a bit more complicated: // - The seen_ptr is written by the GPU thread, and points to what it's already // processed as much of as possible - in the case of a partial command which // caused it to stop, not the same as the read ptr. It's written by the GPU, // under the lock, and updating the cond. // - The write_ptr is written by the CPU thread after it copies data from the // FIFO. Maybe someday it will be under the lock. For now, because RunGpuLoop // polls, it's just atomic. // - The pp_read_ptr is the CPU preprocessing version of the read_ptr. static std::atomic s_sync_ticks; static bool s_syncing_suspended; static Common::Event s_sync_wakeup_event; void DoState(PointerWrap& p) { p.DoArray(s_video_buffer, FIFO_SIZE); u8* write_ptr = s_video_buffer_write_ptr; p.DoPointer(write_ptr, s_video_buffer); s_video_buffer_write_ptr = write_ptr; p.DoPointer(s_video_buffer_read_ptr, s_video_buffer); if (p.mode == PointerWrap::MODE_READ && s_use_deterministic_gpu_thread) { // We're good and paused, right? s_video_buffer_seen_ptr = s_video_buffer_pp_read_ptr = s_video_buffer_read_ptr; } p.Do(s_sync_ticks); p.Do(s_syncing_suspended); } void PauseAndLock(bool doLock, bool unpauseOnUnlock) { if (doLock) { SyncGPU(SyncGPUReason::Other); EmulatorState(false); const SConfig& param = SConfig::GetInstance(); if (!param.bCPUThread || s_use_deterministic_gpu_thread) return; s_gpu_mainloop.WaitYield(std::chrono::milliseconds(100), Host_YieldToUI); } else { if (unpauseOnUnlock) EmulatorState(true); } } void Init() { // Padded so that SIMD overreads in the vertex loader are safe s_video_buffer = static_cast(Common::AllocateMemoryPages(FIFO_SIZE + 4)); ResetVideoBuffer(); if (SConfig::GetInstance().bCPUThread) s_gpu_mainloop.Prepare(); s_sync_ticks.store(0); } void Shutdown() { if (s_gpu_mainloop.IsRunning()) PanicAlert("Fifo shutting down while active"); Common::FreeMemoryPages(s_video_buffer, FIFO_SIZE + 4); s_video_buffer = nullptr; s_video_buffer_write_ptr = nullptr; s_video_buffer_pp_read_ptr = nullptr; s_video_buffer_read_ptr = nullptr; s_video_buffer_seen_ptr = nullptr; s_fifo_aux_write_ptr = nullptr; s_fifo_aux_read_ptr = nullptr; } // May be executed from any thread, even the graphics thread. // Created to allow for self shutdown. void ExitGpuLoop() { // This should break the wait loop in CPU thread CommandProcessor::fifo.bFF_GPReadEnable = false; FlushGpu(); // Terminate GPU thread loop s_emu_running_state.Set(); s_gpu_mainloop.Stop(false); } void EmulatorState(bool running) { s_emu_running_state.Set(running); if (running) s_gpu_mainloop.Wakeup(); else s_gpu_mainloop.AllowSleep(); } void SyncGPU(SyncGPUReason reason, bool may_move_read_ptr) { if (s_use_deterministic_gpu_thread) { s_gpu_mainloop.Wait(); if (!s_gpu_mainloop.IsRunning()) return; // Opportunistically reset FIFOs so we don't wrap around. if (may_move_read_ptr && s_fifo_aux_write_ptr != s_fifo_aux_read_ptr) PanicAlert("aux fifo not synced (%p, %p)", s_fifo_aux_write_ptr, s_fifo_aux_read_ptr); memmove(s_fifo_aux_data, s_fifo_aux_read_ptr, s_fifo_aux_write_ptr - s_fifo_aux_read_ptr); s_fifo_aux_write_ptr -= (s_fifo_aux_read_ptr - s_fifo_aux_data); s_fifo_aux_read_ptr = s_fifo_aux_data; if (may_move_read_ptr) { u8* write_ptr = s_video_buffer_write_ptr; // what's left over in the buffer size_t size = write_ptr - s_video_buffer_pp_read_ptr; memmove(s_video_buffer, s_video_buffer_pp_read_ptr, size); // This change always decreases the pointers. We write seen_ptr // after write_ptr here, and read it before in RunGpuLoop, so // 'write_ptr > seen_ptr' there cannot become spuriously true. s_video_buffer_write_ptr = write_ptr = s_video_buffer + size; s_video_buffer_pp_read_ptr = s_video_buffer; s_video_buffer_read_ptr = s_video_buffer; s_video_buffer_seen_ptr = write_ptr; } } } void PushFifoAuxBuffer(void* ptr, size_t size) { if (size > (size_t)(s_fifo_aux_data + FIFO_SIZE - s_fifo_aux_write_ptr)) { SyncGPU(SyncGPUReason::AuxSpace, /* may_move_read_ptr */ false); if (!s_gpu_mainloop.IsRunning()) { // GPU is shutting down return; } if (size > (size_t)(s_fifo_aux_data + FIFO_SIZE - s_fifo_aux_write_ptr)) { // That will sync us up to the last 32 bytes, so this short region // of FIFO would have to point to a 2MB display list or something. PanicAlert("absurdly large aux buffer"); return; } } memcpy(s_fifo_aux_write_ptr, ptr, size); s_fifo_aux_write_ptr += size; } void* PopFifoAuxBuffer(size_t size) { void* ret = s_fifo_aux_read_ptr; s_fifo_aux_read_ptr += size; return ret; } // Description: RunGpuLoop() sends data through this function. static void ReadDataFromFifo(u32 readPtr) { size_t len = 32; if (len > (size_t)(s_video_buffer + FIFO_SIZE - s_video_buffer_write_ptr)) { size_t existing_len = s_video_buffer_write_ptr - s_video_buffer_read_ptr; if (len > (size_t)(FIFO_SIZE - existing_len)) { PanicAlert("FIFO out of bounds (existing %zu + new %zu > %lu)", existing_len, len, (unsigned long)FIFO_SIZE); return; } memmove(s_video_buffer, s_video_buffer_read_ptr, existing_len); s_video_buffer_write_ptr = s_video_buffer + existing_len; s_video_buffer_read_ptr = s_video_buffer; } // Copy new video instructions to s_video_buffer for future use in rendering the new picture Memory::CopyFromEmu(s_video_buffer_write_ptr, readPtr, len); s_video_buffer_write_ptr += len; } // The deterministic_gpu_thread version. static void ReadDataFromFifoOnCPU(u32 readPtr) { size_t len = 32; u8* write_ptr = s_video_buffer_write_ptr; if (len > (size_t)(s_video_buffer + FIFO_SIZE - write_ptr)) { // We can't wrap around while the GPU is working on the data. // This should be very rare due to the reset in SyncGPU. SyncGPU(SyncGPUReason::Wraparound); if (!s_gpu_mainloop.IsRunning()) { // GPU is shutting down, so the next asserts may fail return; } if (s_video_buffer_pp_read_ptr != s_video_buffer_read_ptr) { PanicAlert("desynced read pointers"); return; } write_ptr = s_video_buffer_write_ptr; size_t existing_len = write_ptr - s_video_buffer_pp_read_ptr; if (len > (size_t)(FIFO_SIZE - existing_len)) { PanicAlert("FIFO out of bounds (existing %zu + new %zu > %lu)", existing_len, len, (unsigned long)FIFO_SIZE); return; } } Memory::CopyFromEmu(s_video_buffer_write_ptr, readPtr, len); s_video_buffer_pp_read_ptr = OpcodeDecoder::Run( DataReader(s_video_buffer_pp_read_ptr, write_ptr + len), nullptr, false); // This would have to be locked if the GPU thread didn't spin. s_video_buffer_write_ptr = write_ptr + len; } void ResetVideoBuffer() { s_video_buffer_read_ptr = s_video_buffer; s_video_buffer_write_ptr = s_video_buffer; s_video_buffer_seen_ptr = s_video_buffer; s_video_buffer_pp_read_ptr = s_video_buffer; s_fifo_aux_write_ptr = s_fifo_aux_data; s_fifo_aux_read_ptr = s_fifo_aux_data; } // Description: Main FIFO update loop // Purpose: Keep the Core HW updated about the CPU-GPU distance void RunGpuLoop() { AsyncRequests::GetInstance()->SetEnable(true); AsyncRequests::GetInstance()->SetPassthrough(false); s_gpu_mainloop.Run( [] { const SConfig& param = SConfig::GetInstance(); g_video_backend->PeekMessages(); // Do nothing while paused if (!s_emu_running_state.IsSet()) return; if (s_use_deterministic_gpu_thread) { AsyncRequests::GetInstance()->PullEvents(); // All the fifo/CP stuff is on the CPU. We just need to run the opcode decoder. u8* seen_ptr = s_video_buffer_seen_ptr; u8* write_ptr = s_video_buffer_write_ptr; // See comment in SyncGPU if (write_ptr > seen_ptr) { s_video_buffer_read_ptr = OpcodeDecoder::Run(DataReader(s_video_buffer_read_ptr, write_ptr), nullptr, false); s_video_buffer_seen_ptr = write_ptr; } } else { CommandProcessor::SCPFifoStruct& fifo = CommandProcessor::fifo; AsyncRequests::GetInstance()->PullEvents(); CommandProcessor::SetCPStatusFromGPU(); // check if we are able to run this buffer while (!CommandProcessor::IsInterruptWaiting() && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance && !AtBreakpoint()) { if (param.bSyncGPU && s_sync_ticks.load() < param.iSyncGpuMinDistance) break; u32 cyclesExecuted = 0; u32 readPtr = fifo.CPReadPointer; ReadDataFromFifo(readPtr); if (readPtr == fifo.CPEnd) readPtr = fifo.CPBase; else readPtr += 32; _assert_msg_(COMMANDPROCESSOR, (s32)fifo.CPReadWriteDistance - 32 >= 0, "Negative fifo.CPReadWriteDistance = %i in FIFO Loop !\nThat can produce " "instability in the game. Please report it.", fifo.CPReadWriteDistance - 32); u8* write_ptr = s_video_buffer_write_ptr; s_video_buffer_read_ptr = OpcodeDecoder::Run( DataReader(s_video_buffer_read_ptr, write_ptr), &cyclesExecuted, false); Common::AtomicStore(fifo.CPReadPointer, readPtr); Common::AtomicAdd(fifo.CPReadWriteDistance, -32); if ((write_ptr - s_video_buffer_read_ptr) == 0) Common::AtomicStore(fifo.SafeCPReadPointer, fifo.CPReadPointer); CommandProcessor::SetCPStatusFromGPU(); if (param.bSyncGPU) { cyclesExecuted = (int)(cyclesExecuted / param.fSyncGpuOverclock); int old = s_sync_ticks.fetch_sub(cyclesExecuted); if (old >= param.iSyncGpuMaxDistance && old - (int)cyclesExecuted < param.iSyncGpuMaxDistance) s_sync_wakeup_event.Set(); } // This call is pretty important in DualCore mode and must be called in the FIFO Loop. // If we don't, s_swapRequested or s_efbAccessRequested won't be set to false // leading the CPU thread to wait in Video_BeginField or Video_AccessEFB thus slowing // things down. AsyncRequests::GetInstance()->PullEvents(); } // fast skip remaining GPU time if fifo is empty if (s_sync_ticks.load() > 0) { int old = s_sync_ticks.exchange(0); if (old >= param.iSyncGpuMaxDistance) s_sync_wakeup_event.Set(); } // The fifo is empty and it's unlikely we will get any more work in the near future. // Make sure VertexManager finishes drawing any primitives it has stored in it's buffer. g_vertex_manager->Flush(); } }, 100); AsyncRequests::GetInstance()->SetEnable(false); AsyncRequests::GetInstance()->SetPassthrough(true); } void FlushGpu() { const SConfig& param = SConfig::GetInstance(); if (!param.bCPUThread || s_use_deterministic_gpu_thread) return; s_gpu_mainloop.Wait(); } void GpuMaySleep() { s_gpu_mainloop.AllowSleep(); } bool AtBreakpoint() { CommandProcessor::SCPFifoStruct& fifo = CommandProcessor::fifo; return fifo.bFF_BPEnable && (fifo.CPReadPointer == fifo.CPBreakpoint); } void RunGpu() { const SConfig& param = SConfig::GetInstance(); // wake up GPU thread if (param.bCPUThread && !s_use_deterministic_gpu_thread) { s_gpu_mainloop.Wakeup(); } // if the sync GPU callback is suspended, wake it up. if (!SConfig::GetInstance().bCPUThread || s_use_deterministic_gpu_thread || SConfig::GetInstance().bSyncGPU) { if (s_syncing_suspended) { s_syncing_suspended = false; CoreTiming::ScheduleEvent(GPU_TIME_SLOT_SIZE, s_event_sync_gpu, GPU_TIME_SLOT_SIZE); } } } static int RunGpuOnCpu(int ticks) { CommandProcessor::SCPFifoStruct& fifo = CommandProcessor::fifo; bool reset_simd_state = false; int available_ticks = int(ticks * SConfig::GetInstance().fSyncGpuOverclock) + s_sync_ticks.load(); while (fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance && !AtBreakpoint() && available_ticks >= 0) { if (s_use_deterministic_gpu_thread) { ReadDataFromFifoOnCPU(fifo.CPReadPointer); s_gpu_mainloop.Wakeup(); } else { if (!reset_simd_state) { FPURoundMode::SaveSIMDState(); FPURoundMode::LoadDefaultSIMDState(); reset_simd_state = true; } ReadDataFromFifo(fifo.CPReadPointer); u32 cycles = 0; s_video_buffer_read_ptr = OpcodeDecoder::Run( DataReader(s_video_buffer_read_ptr, s_video_buffer_write_ptr), &cycles, false); available_ticks -= cycles; } if (fifo.CPReadPointer == fifo.CPEnd) fifo.CPReadPointer = fifo.CPBase; else fifo.CPReadPointer += 32; fifo.CPReadWriteDistance -= 32; } CommandProcessor::SetCPStatusFromGPU(); if (reset_simd_state) { FPURoundMode::LoadSIMDState(); } // Discard all available ticks as there is nothing to do any more. s_sync_ticks.store(std::min(available_ticks, 0)); // If the GPU is idle, drop the handler. if (available_ticks >= 0) return -1; // Always wait at least for GPU_TIME_SLOT_SIZE cycles. return -available_ticks + GPU_TIME_SLOT_SIZE; } void UpdateWantDeterminism(bool want) { // We are paused (or not running at all yet), so // it should be safe to change this. const SConfig& param = SConfig::GetInstance(); bool gpu_thread = false; switch (param.m_GPUDeterminismMode) { case GPU_DETERMINISM_AUTO: gpu_thread = want; // Hack: For now movies are an exception to this being on (but not // to wanting determinism in general). Once vertex arrays are // fixed, there should be no reason to want this off for movies by // default, so this can be removed. if (!NetPlay::IsNetPlayRunning()) gpu_thread = false; break; case GPU_DETERMINISM_NONE: gpu_thread = false; break; case GPU_DETERMINISM_FAKE_COMPLETION: gpu_thread = true; break; } gpu_thread = gpu_thread && param.bCPUThread; if (s_use_deterministic_gpu_thread != gpu_thread) { s_use_deterministic_gpu_thread = gpu_thread; if (gpu_thread) { // These haven't been updated in non-deterministic mode. s_video_buffer_seen_ptr = s_video_buffer_pp_read_ptr = s_video_buffer_read_ptr; CopyPreprocessCPStateFromMain(); VertexLoaderManager::MarkAllDirty(); } } } bool UseDeterministicGPUThread() { return s_use_deterministic_gpu_thread; } /* This function checks the emulated CPU - GPU distance and may wake up the GPU, * or block the CPU if required. It should be called by the CPU thread regularly. * @ticks The gone emulated CPU time. * @return A good time to call WaitForGpuThread() next. */ static int WaitForGpuThread(int ticks) { const SConfig& param = SConfig::GetInstance(); int old = s_sync_ticks.fetch_add(ticks); int now = old + ticks; // GPU is idle, so stop polling. if (old >= 0 && s_gpu_mainloop.IsDone()) return -1; // Wakeup GPU if (old < param.iSyncGpuMinDistance && now >= param.iSyncGpuMinDistance) RunGpu(); // If the GPU is still sleeping, wait for a longer time if (now < param.iSyncGpuMinDistance) return GPU_TIME_SLOT_SIZE + param.iSyncGpuMinDistance - now; // Wait for GPU if (now >= param.iSyncGpuMaxDistance) s_sync_wakeup_event.Wait(); return GPU_TIME_SLOT_SIZE; } static void SyncGPUCallback(u64 ticks, s64 cyclesLate) { ticks += cyclesLate; int next = -1; if (!SConfig::GetInstance().bCPUThread || s_use_deterministic_gpu_thread) { next = RunGpuOnCpu((int)ticks); } else if (SConfig::GetInstance().bSyncGPU) { next = WaitForGpuThread((int)ticks); } s_syncing_suspended = next < 0; if (!s_syncing_suspended) CoreTiming::ScheduleEvent(next, s_event_sync_gpu, next); } // Initialize GPU - CPU thread syncing, this gives us a deterministic way to start the GPU thread. void Prepare() { s_event_sync_gpu = CoreTiming::RegisterEvent("SyncGPUCallback", SyncGPUCallback); s_syncing_suspended = true; } }