// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The gpu draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #pragma once #include #include "Common/MathUtil.h" #include "Common/Thread.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/FPSCounter.h" #include "VideoCommon/FramebufferManagerBase.h" #include "VideoCommon/NativeVertexFormat.h" #include "VideoCommon/VideoCommon.h" // TODO: Move these out of here. extern int frameCount; extern int OSDChoice; extern bool bLastFrameDumped; // Renderer really isn't a very good name for this class - it's more like "Misc". // The long term goal is to get rid of this class and replace it with others that make // more sense. class Renderer { public: Renderer(); virtual ~Renderer(); enum PixelPerfQuery { PP_ZCOMP_INPUT_ZCOMPLOC, PP_ZCOMP_OUTPUT_ZCOMPLOC, PP_ZCOMP_INPUT, PP_ZCOMP_OUTPUT, PP_BLEND_INPUT, PP_EFB_COPY_CLOCKS }; virtual void SetColorMask() = 0; virtual void SetBlendMode(bool forceUpdate) = 0; virtual void SetScissorRect(const EFBRectangle& rc) = 0; virtual void SetGenerationMode() = 0; virtual void SetDepthMode() = 0; virtual void SetLogicOpMode() = 0; virtual void SetDitherMode() = 0; virtual void SetLineWidth() = 0; virtual void SetSamplerState(int stage,int texindex) = 0; virtual void SetInterlacingMode() = 0; virtual void SetViewport() = 0; virtual void ApplyState(bool bUseDstAlpha) = 0; virtual void RestoreState() = 0; // Ideal internal resolution - determined by display resolution (automatic scaling) and/or a multiple of the native EFB resolution static int GetTargetWidth() { return s_target_width; } static int GetTargetHeight() { return s_target_height; } // Display resolution static int GetBackbufferWidth() { return s_backbuffer_width; } static int GetBackbufferHeight() { return s_backbuffer_height; } static void SetWindowSize(int width, int height); // EFB coordinate conversion functions // Use this to convert a whole native EFB rect to backbuffer coordinates virtual TargetRectangle ConvertEFBRectangle(const EFBRectangle& rc) = 0; static const TargetRectangle& GetTargetRectangle() { return target_rc; } static void UpdateDrawRectangle(int backbuffer_width, int backbuffer_height); // Use this to upscale native EFB coordinates to IDEAL internal resolution static int EFBToScaledX(int x); static int EFBToScaledY(int y); // Floating point versions of the above - only use them if really necessary static float EFBToScaledXf(float x) { return x * ((float)GetTargetWidth() / (float)EFB_WIDTH); } static float EFBToScaledYf(float y) { return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT); } // Random utilities static void SetScreenshot(const std::string& filename); static void DrawDebugText(); virtual void RenderText(const std::string& text, int left, int top, u32 color) = 0; virtual void ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) = 0; virtual void ReinterpretPixelData(unsigned int convtype) = 0; static void RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbWidth, u32 fbHeight, float Gamma = 1.0f); virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) = 0; // What's the real difference between these? Too similar names. virtual void ResetAPIState() = 0; virtual void RestoreAPIState() = 0; // Finish up the current frame, print some stats static void Swap(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& rc,float Gamma = 1.0f); virtual void SwapImpl(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& rc,float Gamma = 1.0f) = 0; virtual bool SaveScreenshot(const std::string &filename, const TargetRectangle &rc) = 0; static PEControl::PixelFormat GetPrevPixelFormat() { return prev_efb_format; } static void StorePixelFormat(PEControl::PixelFormat new_format) { prev_efb_format = new_format; } protected: static void CalculateTargetScale(int x, int y, int &scaledX, int &scaledY); static bool CalculateTargetSize(unsigned int framebuffer_width, unsigned int framebuffer_height); static void CheckFifoRecording(); static void RecordVideoMemory(); static volatile bool s_bScreenshot; static std::mutex s_criticalScreenshot; static std::string s_sScreenshotName; #if defined _WIN32 || defined HAVE_LIBAV bool bAVIDumping; #else File::IOFile pFrameDump; #endif std::vector frame_data; bool bLastFrameDumped; // The framebuffer size static int s_target_width; static int s_target_height; // TODO: Add functionality to reinit all the render targets when the window is resized. static int s_backbuffer_width; static int s_backbuffer_height; static TargetRectangle target_rc; // can probably eliminate this static var static int s_LastEFBScale; static bool s_skipSwap; static bool XFBWrited; FPSCounter m_fps_counter; private: static PEControl::PixelFormat prev_efb_format; static unsigned int efb_scale_numeratorX; static unsigned int efb_scale_numeratorY; static unsigned int efb_scale_denominatorX; static unsigned int efb_scale_denominatorY; }; extern Renderer *g_renderer;