// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include "Common/Assert.h" #include "Common/Atomic.h" #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Core/ConfigManager.h" #include "Core/CoreTiming.h" #include "Core/HW/GPFifo.h" #include "Core/HW/MMIO.h" #include "Core/HW/ProcessorInterface.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/Fifo.h" namespace CommandProcessor { static int et_UpdateInterrupts; // TODO(ector): Warn on bbox read/write // STATE_TO_SAVE SCPFifoStruct fifo; static UCPStatusReg m_CPStatusReg; static UCPCtrlReg m_CPCtrlReg; static UCPClearReg m_CPClearReg; static u16 m_bboxleft; static u16 m_bboxtop; static u16 m_bboxright; static u16 m_bboxbottom; static u16 m_tokenReg; static std::atomic s_interrupt_set; static std::atomic s_interrupt_waiting; static std::atomic s_interrupt_token_waiting; static std::atomic s_interrupt_finish_waiting; static bool IsOnThread() { return SConfig::GetInstance().bCPUThread; } static void UpdateInterrupts_Wrapper(u64 userdata, s64 cyclesLate) { UpdateInterrupts(userdata); } void DoState(PointerWrap& p) { p.DoPOD(m_CPStatusReg); p.DoPOD(m_CPCtrlReg); p.DoPOD(m_CPClearReg); p.Do(m_bboxleft); p.Do(m_bboxtop); p.Do(m_bboxright); p.Do(m_bboxbottom); p.Do(m_tokenReg); p.Do(fifo); p.Do(s_interrupt_set); p.Do(s_interrupt_waiting); p.Do(s_interrupt_token_waiting); p.Do(s_interrupt_finish_waiting); } static inline void WriteLow(volatile u32& _reg, u16 lowbits) { Common::AtomicStore(_reg, (_reg & 0xFFFF0000) | lowbits); } static inline void WriteHigh(volatile u32& _reg, u16 highbits) { Common::AtomicStore(_reg, (_reg & 0x0000FFFF) | ((u32)highbits << 16)); } static inline u16 ReadLow(u32 _reg) { return (u16)(_reg & 0xFFFF); } static inline u16 ReadHigh(u32 _reg) { return (u16)(_reg >> 16); } void Init() { m_CPStatusReg.Hex = 0; m_CPStatusReg.CommandIdle = 1; m_CPStatusReg.ReadIdle = 1; m_CPCtrlReg.Hex = 0; m_CPClearReg.Hex = 0; m_bboxleft = 0; m_bboxtop = 0; m_bboxright = 640; m_bboxbottom = 480; m_tokenReg = 0; memset(&fifo, 0, sizeof(fifo)); fifo.bFF_Breakpoint = 0; fifo.bFF_HiWatermark = 0; fifo.bFF_HiWatermarkInt = 0; fifo.bFF_LoWatermark = 0; fifo.bFF_LoWatermarkInt = 0; s_interrupt_set.store(false); s_interrupt_waiting.store(false); s_interrupt_finish_waiting.store(false); s_interrupt_token_waiting.store(false); et_UpdateInterrupts = CoreTiming::RegisterEvent("CPInterrupt", UpdateInterrupts_Wrapper); } void RegisterMMIO(MMIO::Mapping* mmio, u32 base) { struct { u32 addr; u16* ptr; bool readonly; bool writes_align_to_32_bytes; } directly_mapped_vars[] = { {FIFO_TOKEN_REGISTER, &m_tokenReg}, // Bounding box registers are read only. {FIFO_BOUNDING_BOX_LEFT, &m_bboxleft, true}, {FIFO_BOUNDING_BOX_RIGHT, &m_bboxright, true}, {FIFO_BOUNDING_BOX_TOP, &m_bboxtop, true}, {FIFO_BOUNDING_BOX_BOTTOM, &m_bboxbottom, true}, // Some FIFO addresses need to be aligned on 32 bytes on write - only // the high part can be written directly without a mask. {FIFO_BASE_LO, MMIO::Utils::LowPart(&fifo.CPBase), false, true}, {FIFO_BASE_HI, MMIO::Utils::HighPart(&fifo.CPBase)}, {FIFO_END_LO, MMIO::Utils::LowPart(&fifo.CPEnd), false, true}, {FIFO_END_HI, MMIO::Utils::HighPart(&fifo.CPEnd)}, {FIFO_HI_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPHiWatermark)}, {FIFO_HI_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPHiWatermark)}, {FIFO_LO_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPLoWatermark)}, {FIFO_LO_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPLoWatermark)}, // FIFO_RW_DISTANCE has some complex read code different for // single/dual core. {FIFO_WRITE_POINTER_LO, MMIO::Utils::LowPart(&fifo.CPWritePointer), false, true}, {FIFO_WRITE_POINTER_HI, MMIO::Utils::HighPart(&fifo.CPWritePointer)}, // FIFO_READ_POINTER has different code for single/dual core. }; for (auto& mapped_var : directly_mapped_vars) { u16 wmask = mapped_var.writes_align_to_32_bytes ? 0xFFE0 : 0xFFFF; mmio->Register(base | mapped_var.addr, MMIO::DirectRead(mapped_var.ptr), mapped_var.readonly ? MMIO::InvalidWrite() : MMIO::DirectWrite(mapped_var.ptr, wmask)); } mmio->Register( base | FIFO_BP_LO, MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.CPBreakpoint)), MMIO::ComplexWrite([](u32, u16 val) { WriteLow(fifo.CPBreakpoint, val & 0xffe0); })); mmio->Register(base | FIFO_BP_HI, MMIO::DirectRead(MMIO::Utils::HighPart(&fifo.CPBreakpoint)), MMIO::ComplexWrite([](u32, u16 val) { WriteHigh(fifo.CPBreakpoint, val); })); // Timing and metrics MMIOs are stubbed with fixed values. struct { u32 addr; u16 value; } metrics_mmios[] = { {XF_RASBUSY_L, 0}, {XF_RASBUSY_H, 0}, {XF_CLKS_L, 0}, {XF_CLKS_H, 0}, {XF_WAIT_IN_L, 0}, {XF_WAIT_IN_H, 0}, {XF_WAIT_OUT_L, 0}, {XF_WAIT_OUT_H, 0}, {VCACHE_METRIC_CHECK_L, 0}, {VCACHE_METRIC_CHECK_H, 0}, {VCACHE_METRIC_MISS_L, 0}, {VCACHE_METRIC_MISS_H, 0}, {VCACHE_METRIC_STALL_L, 0}, {VCACHE_METRIC_STALL_H, 0}, {CLKS_PER_VTX_OUT, 4}, }; for (auto& metrics_mmio : metrics_mmios) { mmio->Register(base | metrics_mmio.addr, MMIO::Constant(metrics_mmio.value), MMIO::InvalidWrite()); } mmio->Register(base | STATUS_REGISTER, MMIO::ComplexRead([](u32) { SetCpStatusRegister(); return m_CPStatusReg.Hex; }), MMIO::InvalidWrite()); mmio->Register(base | CTRL_REGISTER, MMIO::DirectRead(&m_CPCtrlReg.Hex), MMIO::ComplexWrite([](u32, u16 val) { UCPCtrlReg tmp(val); m_CPCtrlReg.Hex = tmp.Hex; SetCpControlRegister(); Fifo::RunGpu(); })); mmio->Register(base | CLEAR_REGISTER, MMIO::DirectRead(&m_CPClearReg.Hex), MMIO::ComplexWrite([](u32, u16 val) { UCPClearReg tmp(val); m_CPClearReg.Hex = tmp.Hex; SetCpClearRegister(); Fifo::RunGpu(); })); mmio->Register(base | PERF_SELECT, MMIO::InvalidRead(), MMIO::Nop()); // Some MMIOs have different handlers for single core vs. dual core mode. mmio->Register(base | FIFO_RW_DISTANCE_LO, IsOnThread() ? MMIO::ComplexRead([](u32) { if (fifo.CPWritePointer >= fifo.SafeCPReadPointer) return ReadLow(fifo.CPWritePointer - fifo.SafeCPReadPointer); else return ReadLow(fifo.CPEnd - fifo.SafeCPReadPointer + fifo.CPWritePointer - fifo.CPBase + 32); }) : MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance)), MMIO::DirectWrite(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance), 0xFFE0)); mmio->Register(base | FIFO_RW_DISTANCE_HI, IsOnThread() ? MMIO::ComplexRead([](u32) { if (fifo.CPWritePointer >= fifo.SafeCPReadPointer) return ReadHigh(fifo.CPWritePointer - fifo.SafeCPReadPointer); else return ReadHigh(fifo.CPEnd - fifo.SafeCPReadPointer + fifo.CPWritePointer - fifo.CPBase + 32); }) : MMIO::DirectRead(MMIO::Utils::HighPart(&fifo.CPReadWriteDistance)), MMIO::ComplexWrite([](u32, u16 val) { WriteHigh(fifo.CPReadWriteDistance, val); Fifo::SyncGPU(Fifo::SYNC_GPU_OTHER); if (fifo.CPReadWriteDistance == 0) { GPFifo::ResetGatherPipe(); Fifo::ResetVideoBuffer(); } else { Fifo::ResetVideoBuffer(); } Fifo::RunGpu(); })); mmio->Register(base | FIFO_READ_POINTER_LO, IsOnThread() ? MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.SafeCPReadPointer)) : MMIO::DirectRead(MMIO::Utils::LowPart(&fifo.CPReadPointer)), MMIO::DirectWrite(MMIO::Utils::LowPart(&fifo.CPReadPointer), 0xFFE0)); mmio->Register(base | FIFO_READ_POINTER_HI, IsOnThread() ? MMIO::DirectRead(MMIO::Utils::HighPart(&fifo.SafeCPReadPointer)) : MMIO::DirectRead(MMIO::Utils::HighPart(&fifo.CPReadPointer)), IsOnThread() ? MMIO::ComplexWrite([](u32, u16 val) { WriteHigh(fifo.CPReadPointer, val); fifo.SafeCPReadPointer = fifo.CPReadPointer; }) : MMIO::DirectWrite(MMIO::Utils::HighPart(&fifo.CPReadPointer))); } void GatherPipeBursted() { if (IsOnThread()) SetCPStatusFromCPU(); // if we aren't linked, we don't care about gather pipe data if (!m_CPCtrlReg.GPLinkEnable) { if (IsOnThread() && !Fifo::UseDeterministicGPUThread()) { // In multibuffer mode is not allowed write in the same FIFO attached to the GPU. // Fix Pokemon XD in DC mode. if ((ProcessorInterface::Fifo_CPUEnd == fifo.CPEnd) && (ProcessorInterface::Fifo_CPUBase == fifo.CPBase) && fifo.CPReadWriteDistance > 0) { Fifo::FlushGpu(); } } Fifo::RunGpu(); return; } // update the fifo pointer if (fifo.CPWritePointer == fifo.CPEnd) fifo.CPWritePointer = fifo.CPBase; else fifo.CPWritePointer += GATHER_PIPE_SIZE; if (m_CPCtrlReg.GPReadEnable && m_CPCtrlReg.GPLinkEnable) { ProcessorInterface::Fifo_CPUWritePointer = fifo.CPWritePointer; ProcessorInterface::Fifo_CPUBase = fifo.CPBase; ProcessorInterface::Fifo_CPUEnd = fifo.CPEnd; } // If the game is running close to overflowing, make the exception checking more frequent. if (fifo.bFF_HiWatermark) CoreTiming::ForceExceptionCheck(0); Common::AtomicAdd(fifo.CPReadWriteDistance, GATHER_PIPE_SIZE); Fifo::RunGpu(); _assert_msg_(COMMANDPROCESSOR, fifo.CPReadWriteDistance <= fifo.CPEnd - fifo.CPBase, "FIFO is overflowed by GatherPipe !\nCPU thread is too fast!"); // check if we are in sync _assert_msg_(COMMANDPROCESSOR, fifo.CPWritePointer == ProcessorInterface::Fifo_CPUWritePointer, "FIFOs linked but out of sync"); _assert_msg_(COMMANDPROCESSOR, fifo.CPBase == ProcessorInterface::Fifo_CPUBase, "FIFOs linked but out of sync"); _assert_msg_(COMMANDPROCESSOR, fifo.CPEnd == ProcessorInterface::Fifo_CPUEnd, "FIFOs linked but out of sync"); } void UpdateInterrupts(u64 userdata) { if (userdata) { s_interrupt_set.store(true); INFO_LOG(COMMANDPROCESSOR, "Interrupt set"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, true); } else { s_interrupt_set.store(false); INFO_LOG(COMMANDPROCESSOR, "Interrupt cleared"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, false); } CoreTiming::ForceExceptionCheck(0); s_interrupt_waiting.store(false); Fifo::RunGpu(); } void UpdateInterruptsFromVideoBackend(u64 userdata) { if (!Fifo::UseDeterministicGPUThread()) CoreTiming::ScheduleEvent_Threadsafe(0, et_UpdateInterrupts, userdata); } bool IsInterruptWaiting() { return s_interrupt_waiting.load(); } void SetInterruptTokenWaiting(bool waiting) { s_interrupt_token_waiting.store(waiting); } void SetInterruptFinishWaiting(bool waiting) { s_interrupt_finish_waiting.store(waiting); } void SetCPStatusFromGPU() { // breakpoint if (fifo.bFF_BPEnable) { if (fifo.CPBreakpoint == fifo.CPReadPointer) { if (!fifo.bFF_Breakpoint) { INFO_LOG(COMMANDPROCESSOR, "Hit breakpoint at %i", fifo.CPReadPointer); fifo.bFF_Breakpoint = true; } } else { if (fifo.bFF_Breakpoint) INFO_LOG(COMMANDPROCESSOR, "Cleared breakpoint at %i", fifo.CPReadPointer); fifo.bFF_Breakpoint = false; } } else { if (fifo.bFF_Breakpoint) INFO_LOG(COMMANDPROCESSOR, "Cleared breakpoint at %i", fifo.CPReadPointer); fifo.bFF_Breakpoint = false; } // overflow & underflow check fifo.bFF_HiWatermark = (fifo.CPReadWriteDistance > fifo.CPHiWatermark); fifo.bFF_LoWatermark = (fifo.CPReadWriteDistance < fifo.CPLoWatermark); bool bpInt = fifo.bFF_Breakpoint && fifo.bFF_BPInt; bool ovfInt = fifo.bFF_HiWatermark && fifo.bFF_HiWatermarkInt; bool undfInt = fifo.bFF_LoWatermark && fifo.bFF_LoWatermarkInt; bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable; if (interrupt != s_interrupt_set.load() && !s_interrupt_waiting.load()) { u64 userdata = interrupt ? 1 : 0; if (IsOnThread()) { if (!interrupt || bpInt || undfInt || ovfInt) { // Schedule the interrupt asynchronously s_interrupt_waiting.store(true); CommandProcessor::UpdateInterruptsFromVideoBackend(userdata); } } else { CommandProcessor::UpdateInterrupts(userdata); } } } void SetCPStatusFromCPU() { // overflow & underflow check fifo.bFF_HiWatermark = (fifo.CPReadWriteDistance > fifo.CPHiWatermark); fifo.bFF_LoWatermark = (fifo.CPReadWriteDistance < fifo.CPLoWatermark); bool bpInt = fifo.bFF_Breakpoint && fifo.bFF_BPInt; bool ovfInt = fifo.bFF_HiWatermark && fifo.bFF_HiWatermarkInt; bool undfInt = fifo.bFF_LoWatermark && fifo.bFF_LoWatermarkInt; bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable; if (interrupt != s_interrupt_set.load() && !s_interrupt_waiting.load()) { u64 userdata = interrupt ? 1 : 0; if (IsOnThread()) { if (!interrupt || bpInt || undfInt || ovfInt) { s_interrupt_set.store(interrupt); INFO_LOG(COMMANDPROCESSOR, "Interrupt set"); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, interrupt); } } else { CommandProcessor::UpdateInterrupts(userdata); } } } void SetCpStatusRegister() { // Here always there is one fifo attached to the GPU m_CPStatusReg.Breakpoint = fifo.bFF_Breakpoint; m_CPStatusReg.ReadIdle = !fifo.CPReadWriteDistance || (fifo.CPReadPointer == fifo.CPWritePointer); m_CPStatusReg.CommandIdle = !fifo.CPReadWriteDistance || Fifo::AtBreakpoint() || !fifo.bFF_GPReadEnable; m_CPStatusReg.UnderflowLoWatermark = fifo.bFF_LoWatermark; m_CPStatusReg.OverflowHiWatermark = fifo.bFF_HiWatermark; INFO_LOG(COMMANDPROCESSOR, "\t Read from STATUS_REGISTER : %04x", m_CPStatusReg.Hex); DEBUG_LOG( COMMANDPROCESSOR, "(r) status: iBP %s | fReadIdle %s | fCmdIdle %s | iOvF %s | iUndF %s", m_CPStatusReg.Breakpoint ? "ON" : "OFF", m_CPStatusReg.ReadIdle ? "ON" : "OFF", m_CPStatusReg.CommandIdle ? "ON" : "OFF", m_CPStatusReg.OverflowHiWatermark ? "ON" : "OFF", m_CPStatusReg.UnderflowLoWatermark ? "ON" : "OFF"); } void SetCpControlRegister() { fifo.bFF_BPInt = m_CPCtrlReg.BPInt; fifo.bFF_BPEnable = m_CPCtrlReg.BPEnable; fifo.bFF_HiWatermarkInt = m_CPCtrlReg.FifoOverflowIntEnable; fifo.bFF_LoWatermarkInt = m_CPCtrlReg.FifoUnderflowIntEnable; fifo.bFF_GPLinkEnable = m_CPCtrlReg.GPLinkEnable; if (fifo.bFF_GPReadEnable && !m_CPCtrlReg.GPReadEnable) { fifo.bFF_GPReadEnable = m_CPCtrlReg.GPReadEnable; Fifo::FlushGpu(); } else { fifo.bFF_GPReadEnable = m_CPCtrlReg.GPReadEnable; } DEBUG_LOG(COMMANDPROCESSOR, "\t GPREAD %s | BP %s | Int %s | OvF %s | UndF %s | LINK %s", fifo.bFF_GPReadEnable ? "ON" : "OFF", fifo.bFF_BPEnable ? "ON" : "OFF", fifo.bFF_BPInt ? "ON" : "OFF", m_CPCtrlReg.FifoOverflowIntEnable ? "ON" : "OFF", m_CPCtrlReg.FifoUnderflowIntEnable ? "ON" : "OFF", m_CPCtrlReg.GPLinkEnable ? "ON" : "OFF"); } // NOTE: We intentionally don't emulate this function at the moment. // We don't emulate proper GP timing anyway at the moment, so it would just slow down emulation. void SetCpClearRegister() { } } // end of namespace CommandProcessor