// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include #include #include "Timer.h" #include "Debugger.h" #include "DLCache.h" #include "EmuWindow.h" #include "Fifo.h" #include "OnScreenDisplay.h" #include "PixelEngine.h" #include "Statistics.h" #include "VertexShaderManager.h" #include "VideoConfig.h" #include "D3DBase.h" #include "D3DUtil.h" #include "FramebufferManager.h" #include "GfxState.h" #include "PixelShaderCache.h" #include "Render.h" #include "TextureCache.h" #include "VertexShaderCache.h" #include "Core.h" #include "Movie.h" #include "Television.h" #include "Host.h" #include "BPFunctions.h" #include "AVIDump.h" namespace DX11 { static int s_fps = 0; static u32 s_LastAA = 0; static u32 s_blendMode; static Television s_television; ID3D11Buffer* access_efb_cbuf = NULL; ID3D11BlendState* clearblendstates[4] = {NULL}; ID3D11DepthStencilState* cleardepthstates[3] = {NULL}; ID3D11BlendState* resetblendstate = NULL; ID3D11DepthStencilState* resetdepthstate = NULL; ID3D11RasterizerState* resetraststate = NULL; static ID3D11Texture2D* s_screenshot_texture = NULL; // GX pipeline state struct { D3D11_SAMPLER_DESC sampdc[8]; D3D11_BLEND_DESC blenddc; D3D11_DEPTH_STENCIL_DESC depthdc; D3D11_RASTERIZER_DESC rastdc; } gx_state; // State translation lookup tables static const D3D11_BLEND d3dSrcFactors[8] = { D3D11_BLEND_ZERO, D3D11_BLEND_ONE, D3D11_BLEND_DEST_COLOR, D3D11_BLEND_INV_DEST_COLOR, D3D11_BLEND_SRC_ALPHA, D3D11_BLEND_INV_SRC_ALPHA, // NOTE: Use SRC1_ALPHA if dst alpha is enabled! D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA }; static const D3D11_BLEND d3dDestFactors[8] = { D3D11_BLEND_ZERO, D3D11_BLEND_ONE, D3D11_BLEND_SRC_COLOR, D3D11_BLEND_INV_SRC_COLOR, D3D11_BLEND_SRC_ALPHA, D3D11_BLEND_INV_SRC_ALPHA, // NOTE: Use SRC1_ALPHA if dst alpha is enabled! D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA }; // 0 0x00 // 1 Source & destination // 2 Source & ~destination // 3 Source // 4 ~Source & destination // 5 Destination // 6 Source ^ destination = Source & ~destination | ~Source & destination // 7 Source | destination // 8 ~(Source | destination) // 9 ~(Source ^ destination) = ~Source & ~destination | Source & destination // 10 ~Destination // 11 Source | ~destination // 12 ~Source // 13 ~Source | destination // 14 ~(Source & destination) // 15 0xff static const D3D11_BLEND_OP d3dLogicOps[16] = { D3D11_BLEND_OP_ADD,//0 D3D11_BLEND_OP_ADD,//1 D3D11_BLEND_OP_SUBTRACT,//2 D3D11_BLEND_OP_ADD,//3 D3D11_BLEND_OP_REV_SUBTRACT,//4 D3D11_BLEND_OP_ADD,//5 D3D11_BLEND_OP_MAX,//6 D3D11_BLEND_OP_ADD,//7 D3D11_BLEND_OP_MAX,//8 D3D11_BLEND_OP_MAX,//9 D3D11_BLEND_OP_ADD,//10 D3D11_BLEND_OP_ADD,//11 D3D11_BLEND_OP_ADD,//12 D3D11_BLEND_OP_ADD,//13 D3D11_BLEND_OP_ADD,//14 D3D11_BLEND_OP_ADD//15 }; static const D3D11_BLEND d3dLogicOpSrcFactors[16] = { D3D11_BLEND_ZERO,//0 D3D11_BLEND_DEST_COLOR,//1 D3D11_BLEND_ONE,//2 D3D11_BLEND_ONE,//3 D3D11_BLEND_DEST_COLOR,//4 D3D11_BLEND_ZERO,//5 D3D11_BLEND_INV_DEST_COLOR,//6 D3D11_BLEND_INV_DEST_COLOR,//7 D3D11_BLEND_INV_SRC_COLOR,//8 D3D11_BLEND_INV_SRC_COLOR,//9 D3D11_BLEND_INV_DEST_COLOR,//10 D3D11_BLEND_ONE,//11 D3D11_BLEND_INV_SRC_COLOR,//12 D3D11_BLEND_INV_SRC_COLOR,//13 D3D11_BLEND_INV_DEST_COLOR,//14 D3D11_BLEND_ONE//15 }; static const D3D11_BLEND d3dLogicOpDestFactors[16] = { D3D11_BLEND_ZERO,//0 D3D11_BLEND_ZERO,//1 D3D11_BLEND_INV_SRC_COLOR,//2 D3D11_BLEND_ZERO,//3 D3D11_BLEND_ONE,//4 D3D11_BLEND_ONE,//5 D3D11_BLEND_INV_SRC_COLOR,//6 D3D11_BLEND_ONE,//7 D3D11_BLEND_INV_DEST_COLOR,//8 D3D11_BLEND_SRC_COLOR,//9 D3D11_BLEND_INV_DEST_COLOR,//10 D3D11_BLEND_INV_DEST_COLOR,//11 D3D11_BLEND_INV_SRC_COLOR,//12 D3D11_BLEND_ONE,//13 D3D11_BLEND_INV_SRC_COLOR,//14 D3D11_BLEND_ONE//15 }; static const D3D11_CULL_MODE d3dCullModes[4] = { D3D11_CULL_NONE, D3D11_CULL_BACK, D3D11_CULL_FRONT, D3D11_CULL_BACK }; static const D3D11_COMPARISON_FUNC d3dCmpFuncs[8] = { D3D11_COMPARISON_NEVER, D3D11_COMPARISON_LESS, D3D11_COMPARISON_EQUAL, D3D11_COMPARISON_LESS_EQUAL, D3D11_COMPARISON_GREATER, D3D11_COMPARISON_NOT_EQUAL, D3D11_COMPARISON_GREATER_EQUAL, D3D11_COMPARISON_ALWAYS }; #define TEXF_NONE 0 #define TEXF_POINT 1 #define TEXF_LINEAR 2 static const unsigned int d3dMipFilters[4] = { TEXF_NONE, TEXF_POINT, TEXF_LINEAR, TEXF_NONE, //reserved }; static const D3D11_TEXTURE_ADDRESS_MODE d3dClamps[4] = { D3D11_TEXTURE_ADDRESS_CLAMP, D3D11_TEXTURE_ADDRESS_WRAP, D3D11_TEXTURE_ADDRESS_MIRROR, D3D11_TEXTURE_ADDRESS_WRAP //reserved }; void SetupDeviceObjects() { s_television.Init(); g_framebuffer_manager = new FramebufferManager; HRESULT hr; float colmat[20]= {0.0f}; colmat[0] = colmat[5] = colmat[10] = 1.0f; D3D11_BUFFER_DESC cbdesc = CD3D11_BUFFER_DESC(20*sizeof(float), D3D11_BIND_CONSTANT_BUFFER, D3D11_USAGE_DEFAULT); D3D11_SUBRESOURCE_DATA data; data.pSysMem = colmat; hr = D3D::device->CreateBuffer(&cbdesc, &data, &access_efb_cbuf); CHECK(hr==S_OK, "Create constant buffer for Renderer::AccessEFB"); D3D::SetDebugObjectName((ID3D11DeviceChild*)access_efb_cbuf, "constant buffer for Renderer::AccessEFB"); D3D11_DEPTH_STENCIL_DESC ddesc; ddesc.DepthEnable = FALSE; ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO; ddesc.DepthFunc = D3D11_COMPARISON_ALWAYS; ddesc.StencilEnable = FALSE; ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK; ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK; hr = D3D::device->CreateDepthStencilState(&ddesc, &cleardepthstates[0]); CHECK(hr==S_OK, "Create depth state for Renderer::ClearScreen"); ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; ddesc.DepthEnable = TRUE; hr = D3D::device->CreateDepthStencilState(&ddesc, &cleardepthstates[1]); CHECK(hr==S_OK, "Create depth state for Renderer::ClearScreen"); ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO; hr = D3D::device->CreateDepthStencilState(&ddesc, &cleardepthstates[2]); CHECK(hr==S_OK, "Create depth state for Renderer::ClearScreen"); D3D::SetDebugObjectName((ID3D11DeviceChild*)cleardepthstates[0], "depth state for Renderer::ClearScreen (depth buffer disabled)"); D3D::SetDebugObjectName((ID3D11DeviceChild*)cleardepthstates[1], "depth state for Renderer::ClearScreen (depth buffer enabled, writing enabled)"); D3D::SetDebugObjectName((ID3D11DeviceChild*)cleardepthstates[2], "depth state for Renderer::ClearScreen (depth buffer enabled, writing disabled)"); D3D11_BLEND_DESC blenddesc; blenddesc.AlphaToCoverageEnable = FALSE; blenddesc.IndependentBlendEnable = FALSE; blenddesc.RenderTarget[0].BlendEnable = FALSE; blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL; blenddesc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE; blenddesc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO; blenddesc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD; blenddesc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE; blenddesc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO; blenddesc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD; hr = D3D::device->CreateBlendState(&blenddesc, &resetblendstate); CHECK(hr==S_OK, "Create blend state for Renderer::ResetAPIState"); D3D::SetDebugObjectName((ID3D11DeviceChild*)resetblendstate, "blend state for Renderer::ResetAPIState"); clearblendstates[0] = resetblendstate; resetblendstate->AddRef(); blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_RED|D3D11_COLOR_WRITE_ENABLE_GREEN|D3D11_COLOR_WRITE_ENABLE_BLUE; hr = D3D::device->CreateBlendState(&blenddesc, &clearblendstates[1]); CHECK(hr==S_OK, "Create blend state for Renderer::ClearScreen"); blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALPHA; hr = D3D::device->CreateBlendState(&blenddesc, &clearblendstates[2]); CHECK(hr==S_OK, "Create blend state for Renderer::ClearScreen"); blenddesc.RenderTarget[0].RenderTargetWriteMask = 0; hr = D3D::device->CreateBlendState(&blenddesc, &clearblendstates[3]); CHECK(hr==S_OK, "Create blend state for Renderer::ClearScreen"); ddesc.DepthEnable = FALSE; ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO; ddesc.DepthFunc = D3D11_COMPARISON_LESS; ddesc.StencilEnable = FALSE; ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK; ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK; hr = D3D::device->CreateDepthStencilState(&ddesc, &resetdepthstate); CHECK(hr==S_OK, "Create depth state for Renderer::ResetAPIState"); D3D::SetDebugObjectName((ID3D11DeviceChild*)resetdepthstate, "depth stencil state for Renderer::ResetAPIState"); D3D11_RASTERIZER_DESC rastdesc = CD3D11_RASTERIZER_DESC(D3D11_FILL_SOLID, D3D11_CULL_NONE, false, 0, 0.f, 0.f, false, false, false, false); hr = D3D::device->CreateRasterizerState(&rastdesc, &resetraststate); CHECK(hr==S_OK, "Create rasterizer state for Renderer::ResetAPIState"); D3D::SetDebugObjectName((ID3D11DeviceChild*)resetraststate, "rasterizer state for Renderer::ResetAPIState"); D3D11_TEXTURE2D_DESC scrtex_desc = CD3D11_TEXTURE2D_DESC(DXGI_FORMAT_R8G8B8A8_UNORM, D3D::GetBackBufferWidth(), D3D::GetBackBufferHeight(), 1, 1, 0, D3D11_USAGE_STAGING, D3D11_CPU_ACCESS_READ|D3D11_CPU_ACCESS_WRITE); hr = D3D::device->CreateTexture2D(&scrtex_desc, NULL, &s_screenshot_texture); CHECK(hr==S_OK, "Create screenshot staging texture"); D3D::SetDebugObjectName((ID3D11DeviceChild*)s_screenshot_texture, "staging screenshot texture"); } // Kill off all device objects void TeardownDeviceObjects() { delete g_framebuffer_manager; SAFE_RELEASE(access_efb_cbuf); SAFE_RELEASE(clearblendstates[0]); SAFE_RELEASE(clearblendstates[1]); SAFE_RELEASE(clearblendstates[2]); SAFE_RELEASE(clearblendstates[3]); SAFE_RELEASE(cleardepthstates[0]); SAFE_RELEASE(cleardepthstates[1]); SAFE_RELEASE(cleardepthstates[2]); SAFE_RELEASE(resetblendstate); SAFE_RELEASE(resetdepthstate); SAFE_RELEASE(resetraststate); SAFE_RELEASE(s_screenshot_texture); s_television.Shutdown(); } Renderer::Renderer() { int x, y, w_temp, h_temp; s_blendMode = 0; Host_GetRenderWindowSize(x, y, w_temp, h_temp); D3D::Create(EmuWindow::GetWnd()); s_backbuffer_width = D3D::GetBackBufferWidth(); s_backbuffer_height = D3D::GetBackBufferHeight(); s_XFB_width = MAX_XFB_WIDTH; s_XFB_height = MAX_XFB_HEIGHT; TargetRectangle dst_rect; ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect); CalculateXYScale(dst_rect); s_LastAA = g_ActiveConfig.iMultisampleMode; s_LastEFBScale = g_ActiveConfig.iEFBScale; CalculateTargetSize(); SetupDeviceObjects(); // Setup GX pipeline state memset(&gx_state.blenddc, 0, sizeof(gx_state.blenddc)); gx_state.blenddc.AlphaToCoverageEnable = FALSE; gx_state.blenddc.IndependentBlendEnable = FALSE; gx_state.blenddc.RenderTarget[0].BlendEnable = FALSE; gx_state.blenddc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL; gx_state.blenddc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE; gx_state.blenddc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO; gx_state.blenddc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD; gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE; gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO; gx_state.blenddc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD; memset(&gx_state.depthdc, 0, sizeof(gx_state.depthdc)); gx_state.depthdc.DepthEnable = TRUE; gx_state.depthdc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; gx_state.depthdc.DepthFunc = D3D11_COMPARISON_LESS; gx_state.depthdc.StencilEnable = FALSE; gx_state.depthdc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK; gx_state.depthdc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK; // TODO: Do we need to enable multisampling here? gx_state.rastdc = CD3D11_RASTERIZER_DESC(D3D11_FILL_SOLID, D3D11_CULL_NONE, false, 0, 0.f, 0, false, true, false, false); for (unsigned int k = 0;k < 8;k++) { float border[4] = {0.f, 0.f, 0.f, 0.f}; gx_state.sampdc[k] = CD3D11_SAMPLER_DESC(D3D11_FILTER_MIN_MAG_MIP_LINEAR, D3D11_TEXTURE_ADDRESS_CLAMP, D3D11_TEXTURE_ADDRESS_CLAMP, D3D11_TEXTURE_ADDRESS_CLAMP, 0.f, 1 << g_ActiveConfig.iMaxAnisotropy, D3D11_COMPARISON_ALWAYS, border, -D3D11_FLOAT32_MAX, D3D11_FLOAT32_MAX); if(g_ActiveConfig.iMaxAnisotropy != 0) gx_state.sampdc[k].Filter = D3D11_FILTER_ANISOTROPIC; } // Clear EFB textures float ClearColor[4] = { 0.f, 0.f, 0.f, 1.f }; D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(), ClearColor); D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(), D3D11_CLEAR_DEPTH, 1.f, 0); D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)s_target_width, (float)s_target_height); D3D::context->RSSetViewports(1, &vp); D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV()); D3D::BeginFrame(); } Renderer::~Renderer() { TeardownDeviceObjects(); D3D::EndFrame(); D3D::Present(); D3D::Close(); } void Renderer::RenderText(const char *text, int left, int top, u32 color) { D3D::font.DrawTextScaled((float)left, (float)top, 20.f, 0.0f, color, text); } TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc) { TargetRectangle result; result.left = EFBToScaledX(rc.left); result.top = EFBToScaledY(rc.top); result.right = EFBToScaledX(rc.right); result.bottom = EFBToScaledY(rc.bottom); return result; } // With D3D, we have to resize the backbuffer if the window changed // size. bool Renderer::CheckForResize() { while (EmuWindow::IsSizing()) Sleep(10); if (EmuWindow::GetParentWnd()) { // Re-stretch window to parent window size again, if it has a parent window. RECT rcParentWindow; GetWindowRect(EmuWindow::GetParentWnd(), &rcParentWindow); int width = rcParentWindow.right - rcParentWindow.left; int height = rcParentWindow.bottom - rcParentWindow.top; if (width != Renderer::GetBackbufferWidth() || height != Renderer::GetBackbufferHeight()) MoveWindow(EmuWindow::GetWnd(), 0, 0, width, height, FALSE); } RECT rcWindow; GetClientRect(EmuWindow::GetWnd(), &rcWindow); int client_width = rcWindow.right - rcWindow.left; int client_height = rcWindow.bottom - rcWindow.top; // Sanity check if ((client_width != Renderer::GetBackbufferWidth() || client_height != Renderer::GetBackbufferHeight()) && client_width >= 4 && client_height >= 4) { return true; } return false; } void Renderer::SetScissorRect(const TargetRectangle& rc) { D3D::context->RSSetScissorRects(1, rc.AsRECT()); } void Renderer::SetColorMask() { // Only enable alpha channel if it's supported by the current EFB format UINT8 color_mask = 0; if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24)) color_mask = D3D11_COLOR_WRITE_ENABLE_ALPHA; if (bpmem.blendmode.colorupdate) color_mask |= D3D11_COLOR_WRITE_ENABLE_RED | D3D11_COLOR_WRITE_ENABLE_GREEN | D3D11_COLOR_WRITE_ENABLE_BLUE; gx_state.blenddc.RenderTarget[0].RenderTargetWriteMask = color_mask; } // This function allows the CPU to directly access the EFB. // There are EFB peeks (which will read the color or depth of a pixel) // and EFB pokes (which will change the color or depth of a pixel). // // The behavior of EFB peeks can only be modified by: // - GX_PokeAlphaRead // The behavior of EFB pokes can be modified by: // - GX_PokeAlphaMode (TODO) // - GX_PokeAlphaUpdate (TODO) // - GX_PokeBlendMode (TODO) // - GX_PokeColorUpdate (TODO) // - GX_PokeDither (TODO) // - GX_PokeDstAlpha (TODO) // - GX_PokeZMode (TODO) u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) { // TODO: This function currently is broken if anti-aliasing is enabled D3D11_MAPPED_SUBRESOURCE map; ID3D11Texture2D* read_tex; if (!g_ActiveConfig.bEFBAccessEnable) return 0; if (type == POKE_Z) { static bool alert_only_once = true; if (!alert_only_once) return 0; PanicAlert("EFB: Poke Z not implemented (tried to poke z value %#x at (%d,%d))", poke_data, x, y); alert_only_once = false; return 0; } // Convert EFB dimensions to the ones of our render target EFBRectangle efbPixelRc; efbPixelRc.left = x; efbPixelRc.top = y; efbPixelRc.right = x + 1; efbPixelRc.bottom = y + 1; TargetRectangle targetPixelRc = Renderer::ConvertEFBRectangle(efbPixelRc); // Take the mean of the resulting dimensions; TODO: Don't use the center pixel, compute the average color instead D3D11_RECT RectToLock; if(type == PEEK_COLOR || type == PEEK_Z) { RectToLock.left = (targetPixelRc.left + targetPixelRc.right) / 2; RectToLock.top = (targetPixelRc.top + targetPixelRc.bottom) / 2; RectToLock.right = RectToLock.left + 1; RectToLock.bottom = RectToLock.top + 1; } else { RectToLock.left = targetPixelRc.left; RectToLock.right = targetPixelRc.right; RectToLock.top = targetPixelRc.top; RectToLock.bottom = targetPixelRc.bottom; } if (type == PEEK_Z) { ResetAPIState(); // Reset any game specific settings // depth buffers can only be completely CopySubresourceRegion'ed, so we're using drawShadedTexQuad instead D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, 1.f, 1.f); D3D::context->RSSetViewports(1, &vp); D3D::context->PSSetConstantBuffers(0, 1, &access_efb_cbuf); D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBDepthReadTexture()->GetRTV(), NULL); D3D::SetPointCopySampler(); D3D::drawShadedTexQuad(FramebufferManager::GetEFBDepthTexture()->GetSRV(), &RectToLock, Renderer::GetTargetWidth(), Renderer::GetTargetHeight(), PixelShaderCache::GetDepthMatrixProgram(true), VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout()); D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV()); // copy to system memory D3D11_BOX box = CD3D11_BOX(0, 0, 0, 1, 1, 1); read_tex = FramebufferManager::GetEFBDepthStagingBuffer(); D3D::context->CopySubresourceRegion(read_tex, 0, 0, 0, 0, FramebufferManager::GetEFBDepthReadTexture()->GetTex(), 0, &box); RestoreAPIState(); // restore game state // read the data from system memory D3D::context->Map(read_tex, 0, D3D11_MAP_READ, 0, &map); float val = *(float*)map.pData; u32 ret = 0; if(bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16) { // if Z is in 16 bit format you must return a 16 bit integer ret = ((u32)(val * 0xffff)); } else { ret = ((u32)(val * 0xffffff)); } D3D::context->Unmap(read_tex, 0); // TODO: in RE0 this value is often off by one in Video_DX9 (where this code is derived from), which causes lighting to disappear return ret; } else if (type == PEEK_COLOR) { // we can directly copy to system memory here read_tex = FramebufferManager::GetEFBColorStagingBuffer(); D3D11_BOX box = CD3D11_BOX(RectToLock.left, RectToLock.top, 0, RectToLock.right, RectToLock.bottom, 1); D3D::context->CopySubresourceRegion(read_tex, 0, 0, 0, 0, FramebufferManager::GetEFBColorTexture()->GetTex(), 0, &box); // read the data from system memory D3D::context->Map(read_tex, 0, D3D11_MAP_READ, 0, &map); u32 ret = 0; if(map.pData) ret = *(u32*)map.pData; D3D::context->Unmap(read_tex, 0); // check what to do with the alpha channel (GX_PokeAlphaRead) PixelEngine::UPEAlphaReadReg alpha_read_mode; PixelEngine::Read16((u16&)alpha_read_mode, PE_ALPHAREAD); if (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24) { ret = RGBA8ToRGBA6ToRGBA8(ret); } else if (bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16) { ret = RGBA8ToRGB565ToRGBA8(ret); } if(bpmem.zcontrol.pixel_format != PIXELFMT_RGBA6_Z24) { ret |= 0xFF000000; } if(alpha_read_mode.ReadMode == 2) return ret; // GX_READ_NONE else if(alpha_read_mode.ReadMode == 1) return (ret | 0xFF000000); // GX_READ_FF else /*if(alpha_read_mode.ReadMode == 0)*/ return (ret & 0x00FFFFFF); // GX_READ_00 } else //if(type == POKE_COLOR) { u32 rgbaColor = (poke_data & 0xFF00FF00) | ((poke_data >> 16) & 0xFF) | ((poke_data << 16) & 0xFF0000); // TODO: The first five PE registers may change behavior of EFB pokes, this isn't implemented, yet. ResetAPIState(); D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), NULL); D3D::drawColorQuad(rgbaColor, (float)RectToLock.left * 2.f / (float)Renderer::GetTargetWidth() - 1.f, - (float)RectToLock.top * 2.f / (float)Renderer::GetTargetHeight() + 1.f, (float)RectToLock.right * 2.f / (float)Renderer::GetTargetWidth() - 1.f, - (float)RectToLock.bottom * 2.f / (float)Renderer::GetTargetHeight() + 1.f); RestoreAPIState(); return 0; } } // Viewport correction: // Say you want a viewport at (ix, iy) with size (iw, ih), // but your viewport must be clamped at (ax, ay) with size (aw, ah). // Just multiply the projection matrix with the following to get the same // effect: // [ (iw/aw) 0 0 ((iw - 2*(ax-ix)) / aw - 1) ] // [ 0 (ih/ah) 0 ((-ih + 2*(ay-iy)) / ah + 1) ] // [ 0 0 1 0 ] // [ 0 0 0 1 ] static void ViewportCorrectionMatrix(Matrix44& result, float ix, float iy, float iw, float ih, // Intended viewport (x, y, width, height) float ax, float ay, float aw, float ah) // Actual viewport (x, y, width, height) { Matrix44::LoadIdentity(result); if (aw == 0.f || ah == 0.f) return; result.data[4*0+0] = iw / aw; result.data[4*0+3] = (iw - 2.f * (ax - ix)) / aw - 1.f; result.data[4*1+1] = ih / ah; result.data[4*1+3] = (-ih + 2.f * (ay - iy)) / ah + 1.f; } // Called from VertexShaderManager void Renderer::UpdateViewport(Matrix44& vpCorrection) { // reversed gxsetviewport(xorig, yorig, width, height, nearz, farz) // [0] = width/2 // [1] = height/2 // [2] = 16777215 * (farz - nearz) // [3] = xorig + width/2 + 342 // [4] = yorig + height/2 + 342 // [5] = 16777215 * farz int scissorXOff = bpmem.scissorOffset.x * 2; int scissorYOff = bpmem.scissorOffset.y * 2; // TODO: ceil, floor or just cast to int? // TODO: Directly use the floats instead of rounding them? int intendedX = Renderer::EFBToScaledX((int)ceil(xfregs.viewport.xOrig - xfregs.viewport.wd - scissorXOff)); int intendedY = Renderer::EFBToScaledY((int)ceil(xfregs.viewport.yOrig + xfregs.viewport.ht - scissorYOff)); int intendedWd = Renderer::EFBToScaledX((int)ceil(2.0f * xfregs.viewport.wd)); int intendedHt = Renderer::EFBToScaledY((int)ceil(-2.0f * xfregs.viewport.ht)); if (intendedWd < 0) { intendedX += intendedWd; intendedWd = -intendedWd; } if (intendedHt < 0) { intendedY += intendedHt; intendedHt = -intendedHt; } // In D3D, the viewport rectangle must fit within the render target. int X = intendedX; if (X < 0) X = 0; int Y = intendedY; if (Y < 0) Y = 0; int Wd = intendedWd; if (X + Wd > GetTargetWidth()) Wd = GetTargetWidth() - X; int Ht = intendedHt; if (Y + Ht > GetTargetHeight()) Ht = GetTargetHeight() - Y; // If GX viewport is off the render target, we must clamp our viewport // within the bounds. Use the correction matrix to compensate. ViewportCorrectionMatrix(vpCorrection, (float)intendedX, (float)intendedY, (float)intendedWd, (float)intendedHt, (float)X, (float)Y, (float)Wd, (float)Ht); // Some games set invalids values for z min and z max so fix them to the max an min alowed and let the shaders do this work D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)X, (float)Y, (float)Wd, (float)Ht, 0.f, // (xfregs.viewport.farZ - xfregs.viewport.zRange) / 16777216.0f; 1.f); // xfregs.viewport.farZ / 16777216.0f; D3D::context->RSSetViewports(1, &vp); } void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) { ResetAPIState(); if (colorEnable && alphaEnable) D3D::stateman->PushBlendState(clearblendstates[0]); else if (colorEnable) D3D::stateman->PushBlendState(clearblendstates[1]); else if (alphaEnable) D3D::stateman->PushBlendState(clearblendstates[2]); else D3D::stateman->PushBlendState(clearblendstates[3]); // TODO: Should we enable Z testing here? /*if (!bpmem.zmode.testenable) D3D::stateman->PushDepthState(cleardepthstates[0]); else */if (zEnable) D3D::stateman->PushDepthState(cleardepthstates[1]); else /*if (!zEnable)*/ D3D::stateman->PushDepthState(cleardepthstates[2]); // Update the view port for clearing the picture TargetRectangle targetRc = Renderer::ConvertEFBRectangle(rc); D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)targetRc.left, (float)targetRc.top, (float)targetRc.GetWidth(), (float)targetRc.GetHeight(), 0.f, 1.f); D3D::context->RSSetViewports(1, &vp); // Color is passed in bgra mode so we need to convert it to rgba u32 rgbaColor = (color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000); D3D::drawClearQuad(rgbaColor, (z & 0xFFFFFF) / float(0xFFFFFF), PixelShaderCache::GetClearProgram(), VertexShaderCache::GetClearVertexShader(), VertexShaderCache::GetClearInputLayout()); D3D::stateman->PopDepthState(); D3D::stateman->PopBlendState(); RestoreAPIState(); } void Renderer::ReinterpretPixelData(unsigned int convtype) { // TODO: MSAA support.. D3D11_RECT source = CD3D11_RECT(0, 0, g_renderer->GetTargetWidth(), g_renderer->GetTargetHeight()); ID3D11PixelShader* pixel_shader; if (convtype == 0) pixel_shader = PixelShaderCache::ReinterpRGB8ToRGBA6(true); else if (convtype == 2) pixel_shader = PixelShaderCache::ReinterpRGBA6ToRGB8(true); else { ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d", convtype); return; } // convert data and set the target texture as our new EFB g_renderer->ResetAPIState(); D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)g_renderer->GetTargetWidth(), (float)g_renderer->GetTargetHeight()); D3D::context->RSSetViewports(1, &vp); D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTempTexture()->GetRTV(), NULL); D3D::SetPointCopySampler(); D3D::drawShadedTexQuad(FramebufferManager::GetEFBColorTexture()->GetSRV(), &source, g_renderer->GetTargetWidth(), g_renderer->GetTargetHeight(), pixel_shader, VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout()); g_renderer->RestoreAPIState(); FramebufferManager::SwapReinterpretTexture(); D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV()); } void SetSrcBlend(D3D11_BLEND val) { // Colors should blend against SRC_ALPHA if (val == D3D11_BLEND_SRC1_ALPHA) val = D3D11_BLEND_SRC_ALPHA; else if (val == D3D11_BLEND_INV_SRC1_ALPHA) val = D3D11_BLEND_INV_SRC_ALPHA; if (val == D3D11_BLEND_SRC_COLOR) gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_SRC_ALPHA; else if (val == D3D11_BLEND_INV_SRC_COLOR) gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; else if (val == D3D11_BLEND_DEST_COLOR) gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_DEST_ALPHA; else if (val == D3D11_BLEND_INV_DEST_COLOR) gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA; else gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = val; gx_state.blenddc.RenderTarget[0].SrcBlend = val; } void SetDestBlend(D3D11_BLEND val) { // Colors should blend against SRC_ALPHA if (val == D3D11_BLEND_SRC1_ALPHA) val = D3D11_BLEND_SRC_ALPHA; else if (val == D3D11_BLEND_INV_SRC1_ALPHA) val = D3D11_BLEND_INV_SRC_ALPHA; if (val == D3D11_BLEND_SRC_COLOR) gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_SRC_ALPHA; else if (val == D3D11_BLEND_INV_SRC_COLOR) gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA; else if (val == D3D11_BLEND_DEST_COLOR) gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_DEST_ALPHA; else if (val == D3D11_BLEND_INV_DEST_COLOR) gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA; else gx_state.blenddc.RenderTarget[0].DestBlendAlpha = val; gx_state.blenddc.RenderTarget[0].DestBlend = val; } void SetBlendOp(D3D11_BLEND_OP val) { gx_state.blenddc.RenderTarget[0].BlendOp = val; gx_state.blenddc.RenderTarget[0].BlendOpAlpha = val; } void Renderer::SetBlendMode(bool forceUpdate) { if (bpmem.blendmode.logicopenable && !forceUpdate) return; if (bpmem.blendmode.subtract) // enable blending src 1 dst 1 { gx_state.blenddc.RenderTarget[0].BlendEnable = true; SetBlendOp(D3D11_BLEND_OP_REV_SUBTRACT); SetSrcBlend(d3dSrcFactors[1]); SetDestBlend(d3dDestFactors[1]); } else { gx_state.blenddc.RenderTarget[0].BlendEnable = bpmem.blendmode.blendenable && (!( bpmem.blendmode.srcfactor == 1 && bpmem.blendmode.dstfactor == 0)); if (bpmem.blendmode.blendenable && (!( bpmem.blendmode.srcfactor == 1 && bpmem.blendmode.dstfactor == 0))) { SetBlendOp(D3D11_BLEND_OP_ADD); SetSrcBlend(d3dSrcFactors[bpmem.blendmode.srcfactor]); SetDestBlend(d3dDestFactors[bpmem.blendmode.dstfactor]); } } } bool Renderer::SaveScreenshot(const std::string &filename, const TargetRectangle &rc) { // copy back buffer to system memory D3D::context->CopyResource(s_screenshot_texture, (ID3D11Resource*)D3D::GetBackBuffer()->GetTex()); // D3DX11SaveTextureToFileA doesn't allow us to ignore the alpha channel, so we need to strip it out ourselves D3D11_MAPPED_SUBRESOURCE map; D3D::context->Map(s_screenshot_texture, 0, D3D11_MAP_READ_WRITE, 0, &map); for (unsigned int y = 0; y < D3D::GetBackBufferHeight(); ++y) { u8* ptr = (u8*)map.pData + y * map.RowPitch + 3; for (unsigned int x = 0; x < D3D::GetBackBufferWidth(); ++x) { *ptr = 0xFF; ptr += 4; } } D3D::context->Unmap(s_screenshot_texture, 0); // ready to be saved HRESULT hr = PD3DX11SaveTextureToFileA(D3D::context, s_screenshot_texture, D3DX11_IFF_PNG, filename.c_str()); return SUCCEEDED(hr); } void formatBufferDump(const char *in, char *out, int w, int h, int p) { for (int y = 0; y < h; ++y) { const u8 *line = (u8*)(in + (h - y - 1) * p); for (int x = 0; x < w; ++x) { out[0] = line[2]; out[1] = line[1]; out[2] = line[0]; out += 3; line += 4; } } } // This function has the final picture. We adjust the aspect ratio here. void Renderer::Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight,const EFBRectangle& rc,float Gamma) { if (g_bSkipCurrentFrame || (!XFBWrited && (!g_ActiveConfig.bUseXFB || !g_ActiveConfig.bUseRealXFB)) || !fbWidth || !fbHeight) { if (g_ActiveConfig.bDumpFrames && frame_data) AVIDump::AddFrame(frame_data); Core::Callback_VideoCopiedToXFB(false); return; } // this function is called after the XFB field is changed, not after // EFB is copied to XFB. In this way, flickering is reduced in games // and seems to also give more FPS in ZTP u32 xfbCount = 0; const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount); if ((!xfbSourceList || xfbCount == 0) && g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB) { if (g_ActiveConfig.bDumpFrames && frame_data) AVIDump::AddFrame(frame_data); Core::Callback_VideoCopiedToXFB(false); return; } ResetAPIState(); // Prepare to copy the XFBs to our backbuffer TargetRectangle dst_rect; ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect); D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)s_backbuffer_width, (float)s_backbuffer_height); D3D::context->RSSetViewports(1, &vp); float ClearColor[4] = { 0.f, 0.f, 0.f, 1.f }; D3D::context->ClearRenderTargetView(D3D::GetBackBuffer()->GetRTV(), ClearColor); int X = dst_rect.left; int Y = dst_rect.top; int Width = dst_rect.right - dst_rect.left; int Height = dst_rect.bottom - dst_rect.top; if (X < 0) X = 0; if (Y < 0) Y = 0; if (X > s_backbuffer_width) X = s_backbuffer_width; if (Y > s_backbuffer_height) Y = s_backbuffer_height; if (Width < 0) Width = 0; if (Height < 0) Height = 0; if (Width > (s_backbuffer_width - X)) Width = s_backbuffer_width - X; if (Height > (s_backbuffer_height - Y)) Height = s_backbuffer_height - Y; vp = CD3D11_VIEWPORT((float)X, (float)Y, (float)Width, (float)Height); D3D::context->RSSetViewports(1, &vp); D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), NULL); // activate linear filtering for the buffer copies D3D::SetLinearCopySampler(); if (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB) { // TODO: Television should be used to render Virtual XFB mode as well. s_television.Submit(xfbAddr, fbWidth, fbHeight); s_television.Render(); } else if(g_ActiveConfig.bUseXFB) { const XFBSourceBase* xfbSource; // draw each xfb source for (u32 i = 0; i < xfbCount; ++i) { xfbSource = xfbSourceList[i]; MathUtil::Rectangle sourceRc; sourceRc.left = 0; sourceRc.top = 0; sourceRc.right = (float)xfbSource->texWidth; sourceRc.bottom = (float)xfbSource->texHeight; MathUtil::Rectangle drawRc; if (g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB) { // use virtual xfb with offset int xfbHeight = xfbSource->srcHeight; int xfbWidth = xfbSource->srcWidth; int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbWidth * 2); drawRc.top = 1.0f - (2.0f * (hOffset) / (float)fbHeight); drawRc.bottom = 1.0f - (2.0f * (hOffset + xfbHeight) / (float)fbHeight); drawRc.left = -(xfbWidth / (float)fbWidth); drawRc.right = (xfbWidth / (float)fbWidth); // The following code disables auto stretch. Kept for reference. // scale draw area for a 1 to 1 pixel mapping with the draw target //float vScale = (float)fbHeight / (float)s_backbuffer_height; //float hScale = (float)fbWidth / (float)s_backbuffer_width; //drawRc.top *= vScale; //drawRc.bottom *= vScale; //drawRc.left *= hScale; //drawRc.right *= hScale; } else { drawRc.top = 1; drawRc.bottom = -1; drawRc.left = -1; drawRc.right = 1; } xfbSource->Draw(sourceRc, drawRc, 0, 0); } } else { TargetRectangle targetRc = Renderer::ConvertEFBRectangle(rc); // TODO: Improve sampling algorithm for the pixel shader so that we can use the multisampled EFB texture as source D3DTexture2D* read_texture = FramebufferManager::GetResolvedEFBColorTexture(); D3D::drawShadedTexQuad(read_texture->GetSRV(), targetRc.AsRECT(), Renderer::GetTargetWidth(), Renderer::GetTargetHeight(), PixelShaderCache::GetColorCopyProgram(false),VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), Gamma); } // done with drawing the game stuff, good moment to save a screenshot if (s_bScreenshot) { SaveScreenshot(s_sScreenshotName, dst_rect); s_bScreenshot = false; } // Dump frames static int w = 0, h = 0; if (g_ActiveConfig.bDumpFrames) { static int s_recordWidth; static int s_recordHeight; D3D::context->CopyResource(s_screenshot_texture, (ID3D11Resource*)D3D::GetBackBuffer()->GetTex()); if (!bLastFrameDumped) { s_recordWidth = dst_rect.GetWidth(); s_recordHeight = dst_rect.GetHeight(); bAVIDumping = AVIDump::Start(EmuWindow::GetParentWnd(), s_recordWidth, s_recordHeight); if (!bAVIDumping) { PanicAlert("Error dumping frames to AVI."); } else { char msg [255]; sprintf_s(msg,255, "Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), s_recordWidth, s_recordHeight); OSD::AddMessage(msg, 2000); } } if (bAVIDumping) { D3D11_MAPPED_SUBRESOURCE map; D3D::context->Map(s_screenshot_texture, 0, D3D11_MAP_READ, 0, &map); if (!frame_data || w != s_recordWidth || h != s_recordHeight) { delete[] frame_data; frame_data = new char[3 * s_recordWidth * s_recordHeight]; w = s_recordWidth; h = s_recordHeight; } char* source_ptr = (char*)map.pData + dst_rect.left*4 + dst_rect.top*map.RowPitch; formatBufferDump(source_ptr, frame_data, s_recordWidth, s_recordHeight, map.RowPitch); AVIDump::AddFrame(frame_data); D3D::context->Unmap(s_screenshot_texture, 0); } bLastFrameDumped = true; } else { if (bLastFrameDumped && bAVIDumping) { SAFE_DELETE_ARRAY(frame_data); w = h = 0; AVIDump::Stop(); bAVIDumping = false; OSD::AddMessage("Stop dumping frames to AVI", 2000); } bLastFrameDumped = false; } // Finish up the current frame, print some stats if (g_ActiveConfig.bShowFPS) { char fps[20]; StringCchPrintfA(fps, 20, "FPS: %d\n", s_fps); D3D::font.DrawTextScaled(0, 0, 20, 0.0f, 0xFF00FFFF, fps); } if (g_ActiveConfig.bShowInputDisplay) { char inputDisplay[1000]; StringCchPrintfA(inputDisplay, 1000, Movie::GetInputDisplay().c_str()); D3D::font.DrawTextScaled(0, 30, 20, 0.0f, 0xFF00FFFF, inputDisplay); } Renderer::DrawDebugText(); if (g_ActiveConfig.bOverlayStats) { char buf[32768]; Statistics::ToString(buf); D3D::font.DrawTextScaled(0, 30, 20, 0.0f, 0xFF00FFFF, buf); } else if (g_ActiveConfig.bOverlayProjStats) { char buf[32768]; Statistics::ToStringProj(buf); D3D::font.DrawTextScaled(0, 30, 20, 0.0f, 0xFF00FFFF, buf); } OSD::DrawMessages(); D3D::EndFrame(); frameCount++; GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true); DLCache::ProgressiveCleanup(); TextureCache::Cleanup(); // Reload textures if this settings changes if (g_Config.bUseNativeMips != g_ActiveConfig.bUseNativeMips) TextureCache::Invalidate(false); // Enable configuration changes UpdateActiveConfig(); SetWindowSize(fbWidth, fbHeight); const bool windowResized = CheckForResize(); bool xfbchanged = false; if (s_XFB_width != fbWidth || s_XFB_height != fbHeight) { xfbchanged = true; s_XFB_width = fbWidth; s_XFB_height = fbHeight; if (s_XFB_width < 1) s_XFB_width = MAX_XFB_WIDTH; if (s_XFB_width > MAX_XFB_WIDTH) s_XFB_width = MAX_XFB_WIDTH; if (s_XFB_height < 1) s_XFB_height = MAX_XFB_HEIGHT; if (s_XFB_height > MAX_XFB_HEIGHT) s_XFB_height = MAX_XFB_HEIGHT; } // update FPS counter static int fpscount = 0; static unsigned long lasttime = 0; if (Common::Timer::GetTimeMs() - lasttime >= 1000) { lasttime = Common::Timer::GetTimeMs(); s_fps = fpscount; fpscount = 0; } if (XFBWrited) ++fpscount; // Begin new frame // Set default viewport and scissor, for the clear to work correctly // New frame stats.ResetFrame(); // Flip/present backbuffer to frontbuffer here D3D::Present(); // resize the back buffers NOW to avoid flickering if (xfbchanged || windowResized || s_LastEFBScale != g_ActiveConfig.iEFBScale || s_LastAA != g_ActiveConfig.iMultisampleMode) { s_LastAA = g_ActiveConfig.iMultisampleMode; PixelShaderCache::InvalidateMSAAShaders(); // TODO: Aren't we still holding a reference to the back buffer right now? D3D::Reset(); s_backbuffer_width = D3D::GetBackBufferWidth(); s_backbuffer_height = D3D::GetBackBufferHeight(); ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect); CalculateXYScale(dst_rect); s_LastEFBScale = g_ActiveConfig.iEFBScale; CalculateTargetSize(); D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), NULL); delete g_framebuffer_manager; g_framebuffer_manager = new FramebufferManager; float clear_col[4] = { 0.f, 0.f, 0.f, 1.f }; D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(), clear_col); D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(), D3D11_CLEAR_DEPTH, 1.f, 0); } // begin next frame Renderer::RestoreAPIState(); D3D::BeginFrame(); D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV()); VertexShaderManager::SetViewportChanged(); Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB)); XFBWrited = false; } // ALWAYS call RestoreAPIState for each ResetAPIState call you're doing void Renderer::ResetAPIState() { D3D::stateman->PushBlendState(resetblendstate); D3D::stateman->PushDepthState(resetdepthstate); D3D::stateman->PushRasterizerState(resetraststate); } void Renderer::RestoreAPIState() { // Gets us back into a more game-like state. D3D::stateman->PopBlendState(); D3D::stateman->PopDepthState(); D3D::stateman->PopRasterizerState(); VertexShaderManager::SetViewportChanged(); BPFunctions::SetScissor(); } void Renderer::ApplyState(bool bUseDstAlpha) { HRESULT hr; if (bUseDstAlpha) { // Colors should blend against SRC1_ALPHA if (gx_state.blenddc.RenderTarget[0].SrcBlend == D3D11_BLEND_SRC_ALPHA) gx_state.blenddc.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC1_ALPHA; else if (gx_state.blenddc.RenderTarget[0].SrcBlend == D3D11_BLEND_INV_SRC_ALPHA) gx_state.blenddc.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_SRC1_ALPHA; // Colors should blend against SRC1_ALPHA if (gx_state.blenddc.RenderTarget[0].DestBlend == D3D11_BLEND_SRC_ALPHA) gx_state.blenddc.RenderTarget[0].DestBlend = D3D11_BLEND_SRC1_ALPHA; else if (gx_state.blenddc.RenderTarget[0].DestBlend == D3D11_BLEND_INV_SRC_ALPHA) gx_state.blenddc.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC1_ALPHA; gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE; gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO; gx_state.blenddc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD; } ID3D11BlendState* blstate; hr = D3D::device->CreateBlendState(&gx_state.blenddc, &blstate); if (FAILED(hr)) PanicAlert("Failed to create blend state at %s %d\n", __FILE__, __LINE__); D3D::stateman->PushBlendState(blstate); D3D::SetDebugObjectName((ID3D11DeviceChild*)blstate, "blend state used to emulate the GX pipeline"); SAFE_RELEASE(blstate); ID3D11DepthStencilState* depth_state; hr = D3D::device->CreateDepthStencilState(&gx_state.depthdc, &depth_state); if (SUCCEEDED(hr)) D3D::SetDebugObjectName((ID3D11DeviceChild*)depth_state, "depth-stencil state used to emulate the GX pipeline"); else PanicAlert("Failed to create depth state at %s %d\n", __FILE__, __LINE__); D3D::stateman->PushDepthState(depth_state); SAFE_RELEASE(depth_state); gx_state.rastdc.FillMode = (g_ActiveConfig.bWireFrame) ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID; ID3D11RasterizerState* raststate; hr = D3D::device->CreateRasterizerState(&gx_state.rastdc, &raststate); if (FAILED(hr)) PanicAlert("Failed to create rasterizer state at %s %d\n", __FILE__, __LINE__); D3D::SetDebugObjectName((ID3D11DeviceChild*)raststate, "rasterizer state used to emulate the GX pipeline"); D3D::stateman->PushRasterizerState(raststate); SAFE_RELEASE(raststate); ID3D11SamplerState* samplerstate[8]; for (unsigned int stage = 0; stage < 8; stage++) { // TODO: unnecessary state changes, we should store a list of shader resources //if (shader_resources[stage]) { if(g_ActiveConfig.iMaxAnisotropy > 0) gx_state.sampdc[stage].Filter = D3D11_FILTER_ANISOTROPIC; hr = D3D::device->CreateSamplerState(&gx_state.sampdc[stage], &samplerstate[stage]); if (FAILED(hr)) PanicAlert("Fail %s %d, stage=%d\n", __FILE__, __LINE__, stage); else D3D::SetDebugObjectName((ID3D11DeviceChild*)samplerstate[stage], "sampler state used to emulate the GX pipeline"); } // else samplerstate[stage] = NULL; } D3D::context->PSSetSamplers(0, 8, samplerstate); for (unsigned int stage = 0; stage < 8; stage++) SAFE_RELEASE(samplerstate[stage]); D3D::stateman->Apply(); if (bUseDstAlpha) { // restore actual state SetBlendMode(false); SetLogicOpMode(); } D3D::context->PSSetConstantBuffers(0, 1, &PixelShaderCache::GetConstantBuffer()); D3D::context->VSSetConstantBuffers(0, 1, &VertexShaderCache::GetConstantBuffer()); D3D::context->PSSetShader(PixelShaderCache::GetActiveShader(), NULL, 0); D3D::context->VSSetShader(VertexShaderCache::GetActiveShader(), NULL, 0); } void Renderer::RestoreState() { ID3D11ShaderResourceView* shader_resources[8] = { NULL }; D3D::context->PSSetShaderResources(0, 8, shader_resources); D3D::stateman->PopBlendState(); D3D::stateman->PopDepthState(); D3D::stateman->PopRasterizerState(); } void Renderer::ApplyCullDisable() { D3D11_RASTERIZER_DESC rastDesc = gx_state.rastdc; rastDesc.CullMode = D3D11_CULL_NONE; ID3D11RasterizerState* raststate; HRESULT hr = D3D::device->CreateRasterizerState(&rastDesc, &raststate); if (FAILED(hr)) PanicAlert("Failed to create culling-disabled rasterizer state at %s %d\n", __FILE__, __LINE__); D3D::SetDebugObjectName((ID3D11DeviceChild*)raststate, "rasterizer state (culling disabled) used to emulate the GX pipeline"); D3D::stateman->PushRasterizerState(raststate); SAFE_RELEASE(raststate); D3D::stateman->Apply(); } void Renderer::RestoreCull() { D3D::stateman->PopRasterizerState(); } void Renderer::SetGenerationMode() { // rastdc.FrontCounterClockwise must be false for this to work gx_state.rastdc.CullMode = d3dCullModes[bpmem.genMode.cullmode]; } void Renderer::SetDepthMode() { if (bpmem.zmode.testenable) { gx_state.depthdc.DepthEnable = TRUE; gx_state.depthdc.DepthWriteMask = bpmem.zmode.updateenable ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO; gx_state.depthdc.DepthFunc = d3dCmpFuncs[bpmem.zmode.func]; } else { // if the test is disabled write is disabled too gx_state.depthdc.DepthEnable = FALSE; gx_state.depthdc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO; } } void Renderer::SetLogicOpMode() { if (bpmem.blendmode.logicopenable && bpmem.blendmode.logicmode != 3) { s_blendMode = 0; gx_state.blenddc.RenderTarget[0].BlendEnable = true; SetBlendOp(d3dLogicOps[bpmem.blendmode.logicmode]); SetSrcBlend(d3dLogicOpSrcFactors[bpmem.blendmode.logicmode]); SetDestBlend(d3dLogicOpDestFactors[bpmem.blendmode.logicmode]); } else { SetBlendMode(true); } } void Renderer::SetDitherMode() { // TODO: Set dither mode to bpmem.blendmode.dither } void Renderer::SetLineWidth() { // TODO } void Renderer::SetSamplerState(int stage, int texindex) { const FourTexUnits &tex = bpmem.tex[texindex]; const TexMode0 &tm0 = tex.texMode0[stage]; const TexMode1 &tm1 = tex.texMode1[stage]; unsigned int mip; mip = (tm0.min_filter == 8) ? TEXF_NONE:d3dMipFilters[tm0.min_filter & 3]; if ((tm0.min_filter & 3) && (tm0.min_filter != 8) && ((tm1.max_lod >> 4) == 0)) mip = TEXF_NONE; if (texindex) stage += 4; // TODO: Clarify whether these values are correct // NOTE: since there's no "no filter" in DX11 we're using point filters in these cases if (g_ActiveConfig.bForceFiltering) { gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR; } else if (tm0.min_filter & 4) // linear min filter { if (tm0.mag_filter) // linear mag filter { if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT; else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT; else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR; } else // point mag filter { if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT; else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT; else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR; } } else // point min filter { if (tm0.mag_filter) // linear mag filter { if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT; else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT; else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR; } else // point mag filter { if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_POINT; else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_POINT; else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR; } } gx_state.sampdc[stage].AddressU = d3dClamps[tm0.wrap_s]; gx_state.sampdc[stage].AddressV = d3dClamps[tm0.wrap_t]; // When mipfilter is set to "none", just disable mipmapping altogether gx_state.sampdc[stage].MaxLOD = (mip == TEXF_NONE) ? 0.0f : (float)tm1.max_lod/16.f; gx_state.sampdc[stage].MinLOD = (float)tm1.min_lod/16.f; gx_state.sampdc[stage].MipLODBias = (float)tm0.lod_bias/32.0f; } void Renderer::SetInterlacingMode() { // TODO } } // namespace DX11