// Copyright (C) 2003-2000 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include #include #include #include "TextureConversionShader.h" #include "TextureDecoder.h" #include "PixelShaderManager.h" #include "PixelShaderGen.h" #include "BPMemory.h" #include "RenderBase.h" #include "VideoConfig.h" #define WRITE p+=sprintf static char text[16384]; static bool IntensityConstantAdded = false; static int s_incrementSampleXCount = 0; namespace TextureConversionShader { u16 GetEncodedSampleCount(u32 format) { switch (format) { case GX_TF_I4: return 8; case GX_TF_I8: return 4; case GX_TF_IA4: return 4; case GX_TF_IA8: return 2; case GX_TF_RGB565: return 2; case GX_TF_RGB5A3: return 2; case GX_TF_RGBA8: return 1; case GX_CTF_R4: return 8; case GX_CTF_RA4: return 4; case GX_CTF_RA8: return 2; case GX_CTF_A8: return 4; case GX_CTF_R8: return 4; case GX_CTF_G8: return 4; case GX_CTF_B8: return 4; case GX_CTF_RG8: return 2; case GX_CTF_GB8: return 2; case GX_TF_Z8: return 4; case GX_TF_Z16: return 2; case GX_TF_Z24X8: return 1; case GX_CTF_Z4: return 8; case GX_CTF_Z8M: return 4; case GX_CTF_Z8L: return 4; case GX_CTF_Z16L: return 2; default: return 1; } } const char* WriteRegister(API_TYPE ApiType, const char *prefix, const u32 num) { if(ApiType == API_GLSL) return ""; // Once we switch to GLSL 1.3 we can do something here static char result[64]; sprintf(result, " : register(%s%d)", prefix, num); return result; } const char *WriteLocation(API_TYPE ApiType) { if(ApiType == API_GLSL && g_ActiveConfig.backend_info.bSupportsGLSLUBO) return ""; static char result[64]; sprintf(result, "uniform "); return result; } // block dimensions : widthStride, heightStride // texture dims : width, height, x offset, y offset void WriteSwizzler(char*& p, u32 format, API_TYPE ApiType) { // [0] left, top, right, bottom of source rectangle within source texture // [1] width and height of destination texture in pixels // Two were merged for GLSL if(ApiType == API_GLSL && g_ActiveConfig.backend_info.bSupportsGLSLUBO) WRITE(p, "layout(std140%s) uniform PSBlock {\n", g_ActiveConfig.backend_info.bSupportsGLSLBinding ? ", binding = 1" : ""); WRITE(p, "%sfloat4 "I_COLORS"[2] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_COLORS)); if(ApiType == API_GLSL && g_ActiveConfig.backend_info.bSupportsGLSLUBO) WRITE(p, "};\n"); float blkW = (float)TexDecoder_GetBlockWidthInTexels(format); float blkH = (float)TexDecoder_GetBlockHeightInTexels(format); float samples = (float)GetEncodedSampleCount(format); if (ApiType == API_OPENGL) { WRITE(p,"uniform samplerRECT samp0 : register(s0);\n"); } else if (ApiType == API_GLSL) { if (g_ActiveConfig.backend_info.bSupportsGLSLBinding) WRITE(p, "layout(binding = 0) "); WRITE(p, "uniform sampler2DRect samp0;\n"); } else if (ApiType & API_D3D9) { WRITE(p,"uniform sampler samp0 : register(s0);\n"); } else { WRITE(p,"sampler samp0 : register(s0);\n"); WRITE(p, "Texture2D Tex0 : register(t0);\n"); } if(ApiType == API_GLSL) { WRITE(p, " float4 ocol0;\n"); WRITE(p, " float2 uv0 = gl_TexCoord[0].xy;\n"); WRITE(p, "void main()\n"); } else { WRITE(p,"void main(\n"); if(ApiType != API_D3D11) { WRITE(p," out float4 ocol0 : COLOR0,\n"); } else { WRITE(p," out float4 ocol0 : SV_Target,\n"); } WRITE(p," in float2 uv0 : TEXCOORD0)\n"); } WRITE(p, "{\n" " float2 sampleUv;\n" " float2 uv1 = floor(uv0);\n"); WRITE(p, " uv1.x = uv1.x * %f;\n", samples); WRITE(p, " float xl = floor(uv1.x / %f);\n", blkW); WRITE(p, " float xib = uv1.x - (xl * %f);\n", blkW); WRITE(p, " float yl = floor(uv1.y / %f);\n", blkH); WRITE(p, " float yb = yl * %f;\n", blkH); WRITE(p, " float yoff = uv1.y - yb;\n"); WRITE(p, " float xp = uv1.x + (yoff * "I_COLORS"[1].x);\n"); WRITE(p, " float xel = floor(xp / %f);\n", blkW); WRITE(p, " float xb = floor(xel / %f);\n", blkH); WRITE(p, " float xoff = xel - (xb * %f);\n", blkH); WRITE(p, " sampleUv.x = xib + (xb * %f);\n", blkW); WRITE(p, " sampleUv.y = yb + xoff;\n"); WRITE(p, " sampleUv = sampleUv * "I_COLORS"[0].xy;\n"); if(ApiType == API_OPENGL || ApiType == API_GLSL) WRITE(p," sampleUv.y = "I_COLORS"[1].y - sampleUv.y;\n"); WRITE(p, " sampleUv = sampleUv + "I_COLORS"[1].zw;\n"); if(ApiType != API_OPENGL && ApiType != API_GLSL) { WRITE(p, " sampleUv = sampleUv + float2(0.0f,1.0f);\n");// still to determine the reason for this WRITE(p, " sampleUv = sampleUv / "I_COLORS"[0].zw;\n"); } } // block dimensions : widthStride, heightStride // texture dims : width, height, x offset, y offset void Write32BitSwizzler(char*& p, u32 format, API_TYPE ApiType) { // [0] left, top, right, bottom of source rectangle within source texture // [1] width and height of destination texture in pixels // Two were merged for GLSL if(ApiType == API_GLSL && g_ActiveConfig.backend_info.bSupportsGLSLUBO) WRITE(p, "layout(std140%s) uniform PSBlock {\n", g_ActiveConfig.backend_info.bSupportsGLSLBinding ? ", binding = 1" : ""); WRITE(p, "%sfloat4 "I_COLORS"[2] %s;\n", WriteLocation(ApiType), WriteRegister(ApiType, "c", C_COLORS)); if(ApiType == API_GLSL && g_ActiveConfig.backend_info.bSupportsGLSLUBO) WRITE(p, "};\n"); float blkW = (float)TexDecoder_GetBlockWidthInTexels(format); float blkH = (float)TexDecoder_GetBlockHeightInTexels(format); // 32 bit textures (RGBA8 and Z24) are store in 2 cache line increments if(ApiType == API_OPENGL) { WRITE(p,"uniform samplerRECT samp0 : register(s0);\n"); } else if (ApiType == API_GLSL) { if (g_ActiveConfig.backend_info.bSupportsGLSLBinding) WRITE(p, "layout(binding = 0) "); WRITE(p, "uniform sampler2DRect samp0;\n"); } else if (ApiType & API_D3D9) { WRITE(p,"uniform sampler samp0 : register(s0);\n"); } else { WRITE(p,"sampler samp0 : register(s0);\n"); WRITE(p, "Texture2D Tex0 : register(t0);\n"); } if(ApiType == API_GLSL) { WRITE(p, " float4 ocol0;\n"); WRITE(p, " float2 uv0 = gl_TexCoord[0].xy;\n"); WRITE(p, "void main()\n"); } else { WRITE(p,"void main(\n"); if(ApiType != API_D3D11) { WRITE(p," out float4 ocol0 : COLOR0,\n"); } else { WRITE(p," out float4 ocol0 : SV_Target,\n"); } WRITE(p," in float2 uv0 : TEXCOORD0)\n"); } WRITE(p, "{\n" " float2 sampleUv;\n" " float2 uv1 = floor(uv0);\n"); WRITE(p, " float yl = floor(uv1.y / %f);\n", blkH); WRITE(p, " float yb = yl * %f;\n", blkH); WRITE(p, " float yoff = uv1.y - yb;\n"); WRITE(p, " float xp = uv1.x + (yoff * "I_COLORS"[1].x);\n"); WRITE(p, " float xel = floor(xp / 2);\n"); WRITE(p, " float xb = floor(xel / %f);\n", blkH); WRITE(p, " float xoff = xel - (xb * %f);\n", blkH); WRITE(p, " float x2 = uv1.x * 2;\n"); WRITE(p, " float xl = floor(x2 / %f);\n", blkW); WRITE(p, " float xib = x2 - (xl * %f);\n", blkW); WRITE(p, " float halfxb = floor(xb / 2);\n"); WRITE(p, " sampleUv.x = xib + (halfxb * %f);\n", blkW); WRITE(p, " sampleUv.y = yb + xoff;\n"); WRITE(p, " sampleUv = sampleUv * "I_COLORS"[0].xy;\n"); if(ApiType == API_OPENGL || ApiType == API_GLSL) WRITE(p," sampleUv.y = "I_COLORS"[1].y - sampleUv.y;\n"); WRITE(p, " sampleUv = sampleUv + "I_COLORS"[1].zw;\n"); if(ApiType != API_OPENGL && ApiType != API_GLSL) { WRITE(p, " sampleUv = sampleUv + float2(0.0f,1.0f);\n");// still to determine the reason for this WRITE(p, " sampleUv = sampleUv / "I_COLORS"[0].zw;\n"); } } void WriteSampleColor(char*& p, const char* colorComp, const char* dest, API_TYPE ApiType) { const char* texSampleOpName; if (ApiType & API_D3D9) texSampleOpName = "tex2D"; else if (ApiType == API_D3D11) texSampleOpName = "tex0.Sample"; else if (ApiType == API_GLSL) texSampleOpName = "texture2DRect"; else texSampleOpName = "texRECT"; // the increment of sampleUv.x is delayed, so we perform it here. see WriteIncrementSampleX. const char* texSampleIncrementUnit; if(ApiType != API_OPENGL || ApiType != API_GLSL) texSampleIncrementUnit = I_COLORS"[0].x / "I_COLORS"[0].z"; else texSampleIncrementUnit = I_COLORS"[0].x"; WRITE(p, " %s = %s(samp0, sampleUv + float2(%d * (%s), 0)).%s;\n", dest, texSampleOpName, s_incrementSampleXCount, texSampleIncrementUnit, colorComp); } void WriteColorToIntensity(char*& p, const char* src, const char* dest) { if(!IntensityConstantAdded) { WRITE(p, " float4 IntensityConst = float4(0.257f,0.504f,0.098f,0.0625f);\n"); IntensityConstantAdded = true; } WRITE(p, " %s = dot(IntensityConst.rgb, %s.rgb);\n", dest, src); // don't add IntensityConst.a yet, because doing it later is faster and uses less instructions, due to vectorization } void WriteIncrementSampleX(char*& p,API_TYPE ApiType) { // the shader compiler apparently isn't smart or aggressive enough to recognize that: // foo1 = lookup(x) // x = x + increment; // foo2 = lookup(x) // x = x + increment; // foo3 = lookup(x) // can be replaced with this: // foo1 = lookup(x + 0.0 * increment) // foo2 = lookup(x + 1.0 * increment) // foo3 = lookup(x + 2.0 * increment) // which looks like the same operations but uses considerably fewer ALU instruction slots. // thus, instead of using the former method, we only increment a counter internally here, // and we wait until WriteSampleColor to write out the constant multiplier // to achieve the increment as in the latter case. s_incrementSampleXCount++; } void WriteToBitDepth(char*& p, u8 depth, const char* src, const char* dest) { float result = 255 / pow(2.0f, (8 - depth)); WRITE(p, " %s = floor(%s * %ff);\n", dest, src, result); } void WriteEncoderEnd(char* p, API_TYPE ApiType) { if(ApiType == API_GLSL) WRITE(p, "gl_FragData[0] = ocol0;\n"); WRITE(p, "}\n"); IntensityConstantAdded = false; s_incrementSampleXCount = 0; } void WriteI8Encoder(char* p, API_TYPE ApiType) { WriteSwizzler(p, GX_TF_I8,ApiType); WRITE(p, " float3 texSample;\n"); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "ocol0.b"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "ocol0.g"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "ocol0.r"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "ocol0.a"); WRITE(p, " ocol0.rgba += IntensityConst.aaaa;\n"); // see WriteColorToIntensity WriteEncoderEnd(p, ApiType); } void WriteI4Encoder(char* p, API_TYPE ApiType) { WriteSwizzler(p, GX_TF_I4,ApiType); WRITE(p, " float3 texSample;\n"); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "color0.b"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "color1.b"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "color0.g"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "color1.g"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "color0.r"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "color1.r"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "color0.a"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "texSample",ApiType); WriteColorToIntensity(p, "texSample", "color1.a"); WRITE(p, " color0.rgba += IntensityConst.aaaa;\n"); WRITE(p, " color1.rgba += IntensityConst.aaaa;\n"); WriteToBitDepth(p, 4, "color0", "color0"); WriteToBitDepth(p, 4, "color1", "color1"); WRITE(p, " ocol0 = (color0 * 16.0f + color1) / 255.0f;\n"); WriteEncoderEnd(p, ApiType); } void WriteIA8Encoder(char* p,API_TYPE ApiType) { WriteSwizzler(p, GX_TF_IA8,ApiType); WRITE(p, " float4 texSample;\n"); WriteSampleColor(p, "rgba", "texSample",ApiType); WRITE(p, " ocol0.b = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "ocol0.g"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgba", "texSample",ApiType); WRITE(p, " ocol0.r = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "ocol0.a"); WRITE(p, " ocol0.ga += IntensityConst.aa;\n"); WriteEncoderEnd(p, ApiType); } void WriteIA4Encoder(char* p,API_TYPE ApiType) { WriteSwizzler(p, GX_TF_IA4,ApiType); WRITE(p, " float4 texSample;\n"); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, "rgba", "texSample",ApiType); WRITE(p, " color0.b = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "color1.b"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgba", "texSample",ApiType); WRITE(p, " color0.g = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "color1.g"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgba", "texSample",ApiType); WRITE(p, " color0.r = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "color1.r"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgba", "texSample",ApiType); WRITE(p, " color0.a = texSample.a;\n"); WriteColorToIntensity(p, "texSample", "color1.a"); WRITE(p, " color1.rgba += IntensityConst.aaaa;\n"); WriteToBitDepth(p, 4, "color0", "color0"); WriteToBitDepth(p, 4, "color1", "color1"); WRITE(p, " ocol0 = (color0 * 16.0f + color1) / 255.0f;\n"); WriteEncoderEnd(p, ApiType); } void WriteRGB565Encoder(char* p,API_TYPE ApiType) { WriteSwizzler(p, GX_TF_RGB565,ApiType); WriteSampleColor(p, "rgb", "float3 texSample0",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgb", "float3 texSample1",ApiType); WRITE(p, " float2 texRs = float2(texSample0.r, texSample1.r);\n"); WRITE(p, " float2 texGs = float2(texSample0.g, texSample1.g);\n"); WRITE(p, " float2 texBs = float2(texSample0.b, texSample1.b);\n"); WriteToBitDepth(p, 6, "texGs", "float2 gInt"); WRITE(p, " float2 gUpper = floor(gInt / 8.0f);\n"); WRITE(p, " float2 gLower = gInt - gUpper * 8.0f;\n"); WriteToBitDepth(p, 5, "texRs", "ocol0.br"); WRITE(p, " ocol0.br = ocol0.br * 8.0f + gUpper;\n"); WriteToBitDepth(p, 5, "texBs", "ocol0.ga"); WRITE(p, " ocol0.ga = ocol0.ga + gLower * 32.0f;\n"); WRITE(p, " ocol0 = ocol0 / 255.0f;\n"); WriteEncoderEnd(p, ApiType); } void WriteRGB5A3Encoder(char* p,API_TYPE ApiType) { WriteSwizzler(p, GX_TF_RGB5A3,ApiType); WRITE(p, " float4 texSample;\n"); WRITE(p, " float color0;\n"); WRITE(p, " float gUpper;\n"); WRITE(p, " float gLower;\n"); WriteSampleColor(p, "rgba", "texSample",ApiType); // 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits WRITE(p, "if(texSample.a > 0.878f) {\n"); WriteToBitDepth(p, 5, "texSample.g", "color0"); WRITE(p, " gUpper = floor(color0 / 8.0f);\n"); WRITE(p, " gLower = color0 - gUpper * 8.0f;\n"); WriteToBitDepth(p, 5, "texSample.r", "ocol0.b"); WRITE(p, " ocol0.b = ocol0.b * 4.0f + gUpper + 128.0f;\n"); WriteToBitDepth(p, 5, "texSample.b", "ocol0.g"); WRITE(p, " ocol0.g = ocol0.g + gLower * 32.0f;\n"); WRITE(p, "} else {\n"); WriteToBitDepth(p, 4, "texSample.r", "ocol0.b"); WriteToBitDepth(p, 4, "texSample.b", "ocol0.g"); WriteToBitDepth(p, 3, "texSample.a", "color0"); WRITE(p, "ocol0.b = ocol0.b + color0 * 16.0f;\n"); WriteToBitDepth(p, 4, "texSample.g", "color0"); WRITE(p, "ocol0.g = ocol0.g + color0 * 16.0f;\n"); WRITE(p, "}\n"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgba", "texSample",ApiType); WRITE(p, "if(texSample.a > 0.878f) {\n"); WriteToBitDepth(p, 5, "texSample.g", "color0"); WRITE(p, " gUpper = floor(color0 / 8.0f);\n"); WRITE(p, " gLower = color0 - gUpper * 8.0f;\n"); WriteToBitDepth(p, 5, "texSample.r", "ocol0.r"); WRITE(p, " ocol0.r = ocol0.r * 4.0f + gUpper + 128.0f;\n"); WriteToBitDepth(p, 5, "texSample.b", "ocol0.a"); WRITE(p, " ocol0.a = ocol0.a + gLower * 32.0f;\n"); WRITE(p, "} else {\n"); WriteToBitDepth(p, 4, "texSample.r", "ocol0.r"); WriteToBitDepth(p, 4, "texSample.b", "ocol0.a"); WriteToBitDepth(p, 3, "texSample.a", "color0"); WRITE(p, "ocol0.r = ocol0.r + color0 * 16.0f;\n"); WriteToBitDepth(p, 4, "texSample.g", "color0"); WRITE(p, "ocol0.a = ocol0.a + color0 * 16.0f;\n"); WRITE(p, "}\n"); WRITE(p, " ocol0 = ocol0 / 255.0f;\n"); WriteEncoderEnd(p, ApiType); } void WriteRGBA4443Encoder(char* p,API_TYPE ApiType) { WriteSwizzler(p, GX_TF_RGB5A3,ApiType); WRITE(p, " float4 texSample;\n"); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, "rgba", "texSample",ApiType); WriteToBitDepth(p, 3, "texSample.a", "color0.b"); WriteToBitDepth(p, 4, "texSample.r", "color1.b"); WriteToBitDepth(p, 4, "texSample.g", "color0.g"); WriteToBitDepth(p, 4, "texSample.b", "color1.g"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgba", "texSample",ApiType); WriteToBitDepth(p, 3, "texSample.a", "color0.r"); WriteToBitDepth(p, 4, "texSample.r", "color1.r"); WriteToBitDepth(p, 4, "texSample.g", "color0.a"); WriteToBitDepth(p, 4, "texSample.b", "color1.a"); WRITE(p, " ocol0 = (color0 * 16.0f + color1) / 255.0f;\n"); WriteEncoderEnd(p, ApiType); } void WriteRGBA8Encoder(char* p,API_TYPE ApiType) { Write32BitSwizzler(p, GX_TF_RGBA8,ApiType); WRITE(p, " float cl1 = xb - (halfxb * 2);\n"); WRITE(p, " float cl0 = 1.0f - cl1;\n"); WRITE(p, " float4 texSample;\n"); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, "rgba", "texSample",ApiType); WRITE(p, " color0.b = texSample.a;\n"); WRITE(p, " color0.g = texSample.r;\n"); WRITE(p, " color1.b = texSample.g;\n"); WRITE(p, " color1.g = texSample.b;\n"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "rgba", "texSample",ApiType); WRITE(p, " color0.r = texSample.a;\n"); WRITE(p, " color0.a = texSample.r;\n"); WRITE(p, " color1.r = texSample.g;\n"); WRITE(p, " color1.a = texSample.b;\n"); WRITE(p, " ocol0 = (cl0 * color0) + (cl1 * color1);\n"); WriteEncoderEnd(p, ApiType); } void WriteC4Encoder(char* p, const char* comp,API_TYPE ApiType) { WriteSwizzler(p, GX_CTF_R4,ApiType); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, comp, "color0.b",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "color1.b",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "color0.g",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "color1.g",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "color0.r",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "color1.r",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "color0.a",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "color1.a",ApiType); WriteToBitDepth(p, 4, "color0", "color0"); WriteToBitDepth(p, 4, "color1", "color1"); WRITE(p, " ocol0 = (color0 * 16.0f + color1) / 255.0f;\n"); WriteEncoderEnd(p, ApiType); } void WriteC8Encoder(char* p, const char* comp,API_TYPE ApiType) { WriteSwizzler(p, GX_CTF_R8,ApiType); WriteSampleColor(p, comp, "ocol0.b",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "ocol0.g",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "ocol0.r",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "ocol0.a",ApiType); WriteEncoderEnd(p, ApiType); } void WriteCC4Encoder(char* p, const char* comp,API_TYPE ApiType) { WriteSwizzler(p, GX_CTF_RA4,ApiType); WRITE(p, " float2 texSample;\n"); WRITE(p, " float4 color0;\n"); WRITE(p, " float4 color1;\n"); WriteSampleColor(p, comp, "texSample",ApiType); WRITE(p, " color0.b = texSample.x;\n"); WRITE(p, " color1.b = texSample.y;\n"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "texSample",ApiType); WRITE(p, " color0.g = texSample.x;\n"); WRITE(p, " color1.g = texSample.y;\n"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "texSample",ApiType); WRITE(p, " color0.r = texSample.x;\n"); WRITE(p, " color1.r = texSample.y;\n"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "texSample",ApiType); WRITE(p, " color0.a = texSample.x;\n"); WRITE(p, " color1.a = texSample.y;\n"); WriteToBitDepth(p, 4, "color0", "color0"); WriteToBitDepth(p, 4, "color1", "color1"); WRITE(p, " ocol0 = (color0 * 16.0f + color1) / 255.0f;\n"); WriteEncoderEnd(p, ApiType); } void WriteCC8Encoder(char* p, const char* comp, API_TYPE ApiType) { WriteSwizzler(p, GX_CTF_RA8,ApiType); WriteSampleColor(p, comp, "ocol0.bg",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, comp, "ocol0.ra",ApiType); WriteEncoderEnd(p, ApiType); } void WriteZ8Encoder(char* p, const char* multiplier,API_TYPE ApiType) { WriteSwizzler(p, GX_CTF_Z8M,ApiType); WRITE(p, " float depth;\n"); WriteSampleColor(p, "b", "depth",ApiType); WRITE(p, "ocol0.b = frac(depth * %s);\n", multiplier); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "b", "depth",ApiType); WRITE(p, "ocol0.g = frac(depth * %s);\n", multiplier); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "b", "depth",ApiType); WRITE(p, "ocol0.r = frac(depth * %s);\n", multiplier); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "b", "depth",ApiType); WRITE(p, "ocol0.a = frac(depth * %s);\n", multiplier); WriteEncoderEnd(p, ApiType); } void WriteZ16Encoder(char* p,API_TYPE ApiType) { WriteSwizzler(p, GX_TF_Z16,ApiType); WRITE(p, " float depth;\n"); WRITE(p, " float3 expanded;\n"); // byte order is reversed WriteSampleColor(p, "b", "depth",ApiType); WRITE(p, " depth *= 16777215.0f;\n"); WRITE(p, " expanded.r = floor(depth / (256 * 256));\n"); WRITE(p, " depth -= expanded.r * 256 * 256;\n"); WRITE(p, " expanded.g = floor(depth / 256);\n"); WRITE(p, " ocol0.b = expanded.g / 255;\n"); WRITE(p, " ocol0.g = expanded.r / 255;\n"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "b", "depth",ApiType); WRITE(p, " depth *= 16777215.0f;\n"); WRITE(p, " expanded.r = floor(depth / (256 * 256));\n"); WRITE(p, " depth -= expanded.r * 256 * 256;\n"); WRITE(p, " expanded.g = floor(depth / 256);\n"); WRITE(p, " ocol0.r = expanded.g / 255;\n"); WRITE(p, " ocol0.a = expanded.r / 255;\n"); WriteEncoderEnd(p, ApiType); } void WriteZ16LEncoder(char* p,API_TYPE ApiType) { WriteSwizzler(p, GX_CTF_Z16L,ApiType); WRITE(p, " float depth;\n"); WRITE(p, " float3 expanded;\n"); // byte order is reversed WriteSampleColor(p, "b", "depth",ApiType); WRITE(p, " depth *= 16777215.0f;\n"); WRITE(p, " expanded.r = floor(depth / (256 * 256));\n"); WRITE(p, " depth -= expanded.r * 256 * 256;\n"); WRITE(p, " expanded.g = floor(depth / 256);\n"); WRITE(p, " depth -= expanded.g * 256;\n"); WRITE(p, " expanded.b = depth;\n"); WRITE(p, " ocol0.b = expanded.b / 255;\n"); WRITE(p, " ocol0.g = expanded.g / 255;\n"); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "b", "depth",ApiType); WRITE(p, " depth *= 16777215.0f;\n"); WRITE(p, " expanded.r = floor(depth / (256 * 256));\n"); WRITE(p, " depth -= expanded.r * 256 * 256;\n"); WRITE(p, " expanded.g = floor(depth / 256);\n"); WRITE(p, " depth -= expanded.g * 256;\n"); WRITE(p, " expanded.b = depth;\n"); WRITE(p, " ocol0.r = expanded.b;\n"); WRITE(p, " ocol0.a = expanded.g;\n"); WriteEncoderEnd(p, ApiType); } void WriteZ24Encoder(char* p, API_TYPE ApiType) { Write32BitSwizzler(p, GX_TF_Z24X8,ApiType); WRITE(p, " float cl = xb - (halfxb * 2);\n"); WRITE(p, " float depth0;\n"); WRITE(p, " float depth1;\n"); WRITE(p, " float3 expanded0;\n"); WRITE(p, " float3 expanded1;\n"); WriteSampleColor(p, "b", "depth0",ApiType); WriteIncrementSampleX(p,ApiType); WriteSampleColor(p, "b", "depth1",ApiType); for (int i = 0; i < 2; i++) { WRITE(p, " depth%i *= 16777215.0f;\n", i); WRITE(p, " expanded%i.r = floor(depth%i / (256 * 256));\n", i, i); WRITE(p, " depth%i -= expanded%i.r * 256 * 256;\n", i, i); WRITE(p, " expanded%i.g = floor(depth%i / 256);\n", i, i); WRITE(p, " depth%i -= expanded%i.g * 256;\n", i, i); WRITE(p, " expanded%i.b = depth%i;\n", i, i); } WRITE(p, " if(cl > 0.5f) {\n"); // upper 16 WRITE(p, " ocol0.b = expanded0.g / 255;\n"); WRITE(p, " ocol0.g = expanded0.b / 255;\n"); WRITE(p, " ocol0.r = expanded1.g / 255;\n"); WRITE(p, " ocol0.a = expanded1.b / 255;\n"); WRITE(p, " } else {\n"); // lower 8 WRITE(p, " ocol0.b = 1.0f;\n"); WRITE(p, " ocol0.g = expanded0.r / 255;\n"); WRITE(p, " ocol0.r = 1.0f;\n"); WRITE(p, " ocol0.a = expanded1.r / 255;\n"); WRITE(p, " }\n"); WriteEncoderEnd(p, ApiType); } const char *GenerateEncodingShader(u32 format,API_TYPE ApiType) { setlocale(LC_NUMERIC, "C"); // Reset locale for compilation text[sizeof(text) - 1] = 0x7C; // canary char *p = text; if(ApiType == API_GLSL) { // A few required defines and ones that will make our lives a lot easier if (g_ActiveConfig.backend_info.bSupportsGLSLBinding || g_ActiveConfig.backend_info.bSupportsGLSLUBO) { WRITE(p, "#version 330 compatibility\n"); if (g_ActiveConfig.backend_info.bSupportsGLSLBinding) WRITE(p, "#extension GL_ARB_shading_language_420pack : enable\n"); if (g_ActiveConfig.backend_info.bSupportsGLSLUBO) WRITE(p, "#extension GL_ARB_uniform_buffer_object : enable\n"); } else WRITE(p, "#version 120\n"); // Silly differences WRITE(p, "#define float2 vec2\n"); WRITE(p, "#define float3 vec3\n"); WRITE(p, "#define float4 vec4\n"); // cg to glsl function translation WRITE(p, "#define frac(x) fract(x)\n"); WRITE(p, "#define saturate(x) clamp(x, 0.0f, 1.0f)\n"); WRITE(p, "#define lerp(x, y, z) mix(x, y, z)\n"); // We require this here WRITE(p, "#ifdef GL_ARB_texture_rectangle\n #extension GL_ARB_texture_rectangle : require\n#endif\n"); } switch(format) { case GX_TF_I4: WriteI4Encoder(p,ApiType); break; case GX_TF_I8: WriteI8Encoder(p,ApiType); break; case GX_TF_IA4: WriteIA4Encoder(p,ApiType); break; case GX_TF_IA8: WriteIA8Encoder(p,ApiType); break; case GX_TF_RGB565: WriteRGB565Encoder(p,ApiType); break; case GX_TF_RGB5A3: WriteRGB5A3Encoder(p,ApiType); break; case GX_TF_RGBA8: WriteRGBA8Encoder(p,ApiType); break; case GX_CTF_R4: WriteC4Encoder(p, "r",ApiType); break; case GX_CTF_RA4: WriteCC4Encoder(p, "ar",ApiType); break; case GX_CTF_RA8: WriteCC8Encoder(p, "ar",ApiType); break; case GX_CTF_A8: WriteC8Encoder(p, "a",ApiType); break; case GX_CTF_R8: WriteC8Encoder(p, "r",ApiType); break; case GX_CTF_G8: WriteC8Encoder(p, "g",ApiType); break; case GX_CTF_B8: WriteC8Encoder(p, "b",ApiType); break; case GX_CTF_RG8: WriteCC8Encoder(p, "rg",ApiType); break; case GX_CTF_GB8: WriteCC8Encoder(p, "gb",ApiType); break; case GX_TF_Z8: WriteC8Encoder(p, "b",ApiType); break; case GX_TF_Z16: WriteZ16Encoder(p,ApiType); break; case GX_TF_Z24X8: WriteZ24Encoder(p,ApiType); break; case GX_CTF_Z4: WriteC4Encoder(p, "b",ApiType); break; case GX_CTF_Z8M: WriteZ8Encoder(p, "256.0f",ApiType); break; case GX_CTF_Z8L: WriteZ8Encoder(p, "65536.0f" ,ApiType); break; case GX_CTF_Z16L: WriteZ16LEncoder(p,ApiType); break; default: PanicAlert("Unknown texture copy format: 0x%x\n", format); break; } if (text[sizeof(text) - 1] != 0x7C) PanicAlert("TextureConversionShader generator - buffer too small, canary has been eaten!"); setlocale(LC_NUMERIC, ""); // restore locale return text; } void SetShaderParameters(float width, float height, float offsetX, float offsetY, float widthStride, float heightStride,float buffW,float buffH) { g_renderer->SetPSConstant4f(C_COLORMATRIX, widthStride, heightStride, buffW, buffH); g_renderer->SetPSConstant4f(C_COLORMATRIX + 1, width, (height - 1), offsetX, offsetY); } } // namespace