// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Globals.h" #include "FramebufferManager.h" #include "TextureConverter.h" #include "XFB.h" #include "Render.h" extern bool s_bHaveFramebufferBlit; // comes from Render.cpp FramebufferManager g_framebufferManager; void FramebufferManager::Init(int targetWidth, int targetHeight, int msaaSamples, int msaaCoverageSamples) { m_targetWidth = targetWidth; m_targetHeight = targetHeight; m_msaaSamples = msaaSamples; m_msaaCoverageSamples = msaaCoverageSamples; // The EFB can be set to different pixel formats by the game through the // BPMEM_ZCOMPARE register (which should probably have a different name). // They are: // - 24-bit RGB (8-bit components) with 24-bit Z // - 24-bit RGBA (6-bit components) with 24-bit Z // - Multisampled 16-bit RGB (5-6-5 format) with 16-bit Z // We only use one EFB format here: 32-bit ARGB with 24-bit Z. // Multisampling depends on user settings. // The distinction becomes important for certain operations, i.e. the // alpha channel should be ignored if the EFB does not have one. // Create EFB target. glGenFramebuffersEXT(1, &m_efbFramebuffer); if (m_msaaSamples <= 1) { // EFB targets will be textures in non-MSAA mode. GLuint glObj[2]; glGenTextures(2, glObj); m_efbColor = glObj[0]; m_efbDepth = glObj[1]; glBindTexture(GL_TEXTURE_RECTANGLE_ARB, m_efbColor); glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_RGBA8, m_targetWidth, m_targetHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_RECTANGLE_ARB, m_efbDepth); glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_DEPTH_COMPONENT24, m_targetWidth, m_targetHeight, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_RECTANGLE_ARB, 0); // Bind target textures to the EFB framebuffer. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_efbFramebuffer); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_RECTANGLE_ARB, m_efbColor, 0); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_RECTANGLE_ARB, m_efbDepth, 0); GL_REPORT_FBO_ERROR(); } else { // EFB targets will be renderbuffers in MSAA mode (required by OpenGL). // Resolve targets will be created to transfer EFB to RAM textures. // XFB framebuffer will be created to transfer EFB to XFB texture. // Create EFB target renderbuffers. GLuint glObj[2]; glGenRenderbuffersEXT(2, glObj); m_efbColor = glObj[0]; m_efbDepth = glObj[1]; glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, m_efbColor); if (m_msaaCoverageSamples) glRenderbufferStorageMultisampleCoverageNV(GL_RENDERBUFFER_EXT, m_msaaCoverageSamples, m_msaaSamples, GL_RGBA8, m_targetWidth, m_targetHeight); else glRenderbufferStorageMultisampleEXT(GL_RENDERBUFFER_EXT, m_msaaSamples, GL_RGBA8, m_targetWidth, m_targetHeight); glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, m_efbDepth); if (m_msaaCoverageSamples) glRenderbufferStorageMultisampleCoverageNV(GL_RENDERBUFFER_EXT, m_msaaCoverageSamples, m_msaaSamples, GL_DEPTH_COMPONENT24, m_targetWidth, m_targetHeight); else glRenderbufferStorageMultisampleEXT(GL_RENDERBUFFER_EXT, m_msaaSamples, GL_DEPTH_COMPONENT24, m_targetWidth, m_targetHeight); glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, 0); // Bind target renderbuffers to EFB framebuffer. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_efbFramebuffer); glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_RENDERBUFFER_EXT, m_efbColor); glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, m_efbDepth); GL_REPORT_FBO_ERROR(); // Create resolved targets for transferring multisampled EFB to texture. glGenFramebuffersEXT(1, &m_resolvedFramebuffer); glGenTextures(2, glObj); m_resolvedColorTexture = glObj[0]; m_resolvedDepthTexture = glObj[1]; glBindTexture(GL_TEXTURE_RECTANGLE_ARB, m_resolvedColorTexture); glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_RGBA8, m_targetWidth, m_targetHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_RECTANGLE_ARB, m_resolvedDepthTexture); glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_DEPTH_COMPONENT24, m_targetWidth, m_targetHeight, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_RECTANGLE_ARB, 0); // Bind resolved textures to resolved framebuffer. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_resolvedFramebuffer); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_RECTANGLE_ARB, m_resolvedColorTexture, 0); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_RECTANGLE_ARB, m_resolvedDepthTexture, 0); GL_REPORT_FBO_ERROR(); // Return to EFB framebuffer. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_efbFramebuffer); } // Create XFB framebuffer; targets will be created elsewhere. glGenFramebuffersEXT(1, &m_xfbFramebuffer); // EFB framebuffer is currently bound. } void FramebufferManager::Shutdown() { glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); GLuint glObj[3]; // Note: OpenGL deletion functions silently ignore parameters of "0". glObj[0] = m_efbFramebuffer; glObj[1] = m_resolvedFramebuffer; glObj[2] = m_xfbFramebuffer; glDeleteFramebuffersEXT(3, glObj); m_efbFramebuffer = 0; m_xfbFramebuffer = 0; glObj[0] = m_resolvedColorTexture; glObj[1] = m_resolvedDepthTexture; glObj[2] = m_realXFBSource.texture; glDeleteTextures(3, glObj); m_resolvedColorTexture = 0; m_resolvedDepthTexture = 0; m_realXFBSource.texture = 0; glObj[0] = m_efbColor; glObj[1] = m_efbDepth; if (m_msaaSamples <= 1) glDeleteTextures(2, glObj); else glDeleteRenderbuffersEXT(2, glObj); m_efbColor = 0; m_efbDepth = 0; for (VirtualXFBListType::iterator it = m_virtualXFBList.begin(); it != m_virtualXFBList.end(); ++it) { glDeleteTextures(1, &it->xfbSource.texture); } m_virtualXFBList.clear(); } void FramebufferManager::CopyToXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc) { if (g_ActiveConfig.bUseRealXFB) copyToRealXFB(xfbAddr, fbWidth, fbHeight, sourceRc); else copyToVirtualXFB(xfbAddr, fbWidth, fbHeight, sourceRc); } const XFBSource** FramebufferManager::GetXFBSource(u32 xfbAddr, u32 fbWidth, u32 fbHeight, u32 &xfbCount) { if (g_ActiveConfig.bUseRealXFB) return getRealXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount); else return getVirtualXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount); } GLuint FramebufferManager::GetEFBColorTexture(const EFBRectangle& sourceRc) const { if (m_msaaSamples <= 1) { return m_efbColor; } else { // Transfer the EFB to a resolved texture. EXT_framebuffer_blit is // required. TargetRectangle targetRc = ConvertEFBRectangle(sourceRc); targetRc.ClampLL(0, 0, m_targetWidth, m_targetHeight); // Resolve. glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, m_efbFramebuffer); glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, m_resolvedFramebuffer); glBlitFramebufferEXT( targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, GL_COLOR_BUFFER_BIT, GL_NEAREST ); // Return to EFB. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_efbFramebuffer); return m_resolvedColorTexture; } } GLuint FramebufferManager::GetEFBDepthTexture(const EFBRectangle& sourceRc) const { if (m_msaaSamples <= 1) { return m_efbDepth; } else { // Transfer the EFB to a resolved texture. EXT_framebuffer_blit is // required. TargetRectangle targetRc = ConvertEFBRectangle(sourceRc); targetRc.ClampLL(0, 0, m_targetWidth, m_targetHeight); // Resolve. glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, m_efbFramebuffer); glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, m_resolvedFramebuffer); glBlitFramebufferEXT( targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, GL_DEPTH_BUFFER_BIT, GL_NEAREST ); // Return to EFB. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_efbFramebuffer); return m_resolvedDepthTexture; } } TargetRectangle FramebufferManager::ConvertEFBRectangle(const EFBRectangle& rc) const { TargetRectangle result; float XScale = Renderer::GetTargetScaleX(); float YScale = Renderer::GetTargetScaleY(); result.left = rc.left * XScale; result.top = Renderer::GetTargetHeight() - (rc.top * YScale); result.right = rc.right * XScale ; result.bottom = Renderer::GetTargetHeight() - (rc.bottom * YScale); return result; } FramebufferManager::VirtualXFBListType::iterator FramebufferManager::findVirtualXFB(u32 xfbAddr, u32 width, u32 height) { u32 srcLower = xfbAddr; u32 srcUpper = xfbAddr + 2 * width * height; VirtualXFBListType::iterator it; for (it = m_virtualXFBList.begin(); it != m_virtualXFBList.end(); ++it) { u32 dstLower = it->xfbAddr; u32 dstUpper = it->xfbAddr + 2 * it->xfbWidth * it->xfbHeight; if (dstLower >= srcLower && dstUpper <= srcUpper) return it; } // That address is not in the Virtual XFB list. return m_virtualXFBList.end(); } void FramebufferManager::replaceVirtualXFB() { VirtualXFBListType::iterator it = m_virtualXFBList.begin(); s32 srcLower = it->xfbAddr; s32 srcUpper = it->xfbAddr + 2 * it->xfbWidth * it->xfbHeight; s32 lineSize = 2 * it->xfbWidth; it++; while (it != m_virtualXFBList.end()) { s32 dstLower = it->xfbAddr; s32 dstUpper = it->xfbAddr + 2 * it->xfbWidth * it->xfbHeight; if (dstLower >= srcLower && dstUpper <= srcUpper) { // invalidate the data it->xfbAddr = 0; it->xfbHeight = 0; it->xfbWidth = 0; } else if (addrRangesOverlap(srcLower, srcUpper, dstLower, dstUpper)) { s32 upperOverlap = (srcUpper - dstLower) / lineSize; s32 lowerOverlap = (dstUpper - srcLower) / lineSize; if (upperOverlap > 0 && lowerOverlap < 0) { it->xfbAddr += lineSize * upperOverlap; it->xfbHeight -= upperOverlap; } else if (lowerOverlap > 0) { it->xfbHeight -= lowerOverlap; } } it++; } } void FramebufferManager::copyToRealXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc) { u8* pXFB = Memory_GetPtr(xfbAddr); if (!pXFB) { WARN_LOG(VIDEO, "Tried to copy to invalid XFB address"); return; } XFB_Write(pXFB, sourceRc, fbWidth, fbHeight); } void FramebufferManager::copyToVirtualXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc) { GLuint xfbTexture; VirtualXFBListType::iterator it = findVirtualXFB(xfbAddr, fbWidth, fbHeight); if (it == m_virtualXFBList.end() && (int)m_virtualXFBList.size() >= MAX_VIRTUAL_XFB) { // replace the last virtual XFB it--; } if (it != m_virtualXFBList.end()) { // Overwrite an existing Virtual XFB. it->xfbAddr = xfbAddr; it->xfbWidth = fbWidth; it->xfbHeight = fbHeight; it->xfbSource.srcAddr = xfbAddr; it->xfbSource.srcWidth = fbWidth; it->xfbSource.srcHeight = fbHeight; it->xfbSource.texWidth = Renderer::GetTargetWidth(); it->xfbSource.texHeight = Renderer::GetTargetHeight(); it->xfbSource.sourceRc = ConvertEFBRectangle(sourceRc); xfbTexture = it->xfbSource.texture; // Move this Virtual XFB to the front of the list. m_virtualXFBList.splice(m_virtualXFBList.begin(), m_virtualXFBList, it); // Keep stale XFB data from being used replaceVirtualXFB(); } else { // Create a new Virtual XFB and place it at the front of the list. glGenTextures(1, &xfbTexture); #if 0// XXX: Some video drivers don't handle glCopyTexImage2D correctly, so use EXT_framebuffer_blit whenever possible. if (m_msaaSamples > 1) #else if (s_bHaveFramebufferBlit) #endif { // In MSAA mode, allocate the texture image here. In non-MSAA mode, // the image will be allocated by glCopyTexImage2D (later). glBindTexture(GL_TEXTURE_RECTANGLE_ARB, xfbTexture); glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 4, m_targetWidth, m_targetHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_RECTANGLE_ARB, 0); } VirtualXFB newVirt; newVirt.xfbAddr = xfbAddr; newVirt.xfbWidth = fbWidth; newVirt.xfbHeight = fbHeight; newVirt.xfbSource.texture = xfbTexture; newVirt.xfbSource.texWidth = m_targetWidth; newVirt.xfbSource.texHeight = m_targetHeight; newVirt.xfbSource.sourceRc = ConvertEFBRectangle(sourceRc); // Add the new Virtual XFB to the list if ((int)m_virtualXFBList.size() >= MAX_VIRTUAL_XFB) { // List overflowed; delete the oldest. glDeleteTextures(1, &m_virtualXFBList.back().xfbSource.texture); m_virtualXFBList.pop_back(); } m_virtualXFBList.push_front(newVirt); } // Copy EFB to XFB texture #if 0 if (m_msaaSamples <= 1) #else if (!s_bHaveFramebufferBlit) #endif { // Just copy the EFB directly. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_efbFramebuffer); glBindTexture(GL_TEXTURE_RECTANGLE_ARB, xfbTexture); glCopyTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 4, 0, 0, m_targetWidth, m_targetHeight, 0); glBindTexture(GL_TEXTURE_RECTANGLE_ARB, 0); } else { // OpenGL cannot copy directly from a multisampled framebuffer, so use // EXT_framebuffer_blit. glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, m_efbFramebuffer); glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, m_xfbFramebuffer); // Bind texture. glFramebufferTexture2DEXT(GL_DRAW_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_RECTANGLE_ARB, xfbTexture, 0); GL_REPORT_FBO_ERROR(); glBlitFramebufferEXT( 0, 0, m_targetWidth, m_targetHeight, 0, 0, m_targetWidth, m_targetHeight, GL_COLOR_BUFFER_BIT, GL_NEAREST ); // Unbind texture. glFramebufferTexture2DEXT(GL_DRAW_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_RECTANGLE_ARB, 0, 0); // Return to EFB. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_efbFramebuffer); } } const XFBSource** FramebufferManager::getRealXFBSource(u32 xfbAddr, u32 fbWidth, u32 fbHeight, u32 &xfbCount) { xfbCount = 1; m_realXFBSource.texWidth = MAX_XFB_WIDTH; m_realXFBSource.texHeight = MAX_XFB_HEIGHT; m_realXFBSource.srcAddr = xfbAddr; m_realXFBSource.srcWidth = fbWidth; m_realXFBSource.srcHeight = fbHeight; // OpenGL texture coordinates originate at the lower left, which is why // sourceRc.top = fbHeight and sourceRc.bottom = 0. m_realXFBSource.sourceRc.left = 0; m_realXFBSource.sourceRc.top = fbHeight; m_realXFBSource.sourceRc.right = fbWidth; m_realXFBSource.sourceRc.bottom = 0; if (!m_realXFBSource.texture) { glGenTextures(1, &m_realXFBSource.texture); glBindTexture(GL_TEXTURE_RECTANGLE_ARB, m_realXFBSource.texture); glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 4, MAX_XFB_WIDTH, MAX_XFB_HEIGHT, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_RECTANGLE_ARB, 0); } // Decode YUYV data from GameCube RAM TextureConverter::DecodeToTexture(xfbAddr, fbWidth, fbHeight, m_realXFBSource.texture); m_overlappingXFBArray[0] = &m_realXFBSource; return &m_overlappingXFBArray[0]; } const XFBSource** FramebufferManager::getVirtualXFBSource(u32 xfbAddr, u32 fbWidth, u32 fbHeight, u32 &xfbCount) { xfbCount = 0; if (m_virtualXFBList.size() == 0) { // No Virtual XFBs available. return NULL; } u32 srcLower = xfbAddr; u32 srcUpper = xfbAddr + 2 * fbWidth * fbHeight; VirtualXFBListType::iterator it; for (it = m_virtualXFBList.end(); it != m_virtualXFBList.begin();) { --it; u32 dstLower = it->xfbAddr; u32 dstUpper = it->xfbAddr + 2 * it->xfbWidth * it->xfbHeight; if (addrRangesOverlap(srcLower, srcUpper, dstLower, dstUpper)) { m_overlappingXFBArray[xfbCount] = &(it->xfbSource); xfbCount++; } } return &m_overlappingXFBArray[0]; } void FramebufferManager::SetFramebuffer(GLuint fb) { glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb != 0 ? fb : GetEFBFramebuffer()); } // Apply AA if enabled GLuint FramebufferManager::ResolveAndGetRenderTarget(const EFBRectangle &source_rect) { return GetEFBColorTexture(source_rect); } GLuint FramebufferManager::ResolveAndGetDepthTarget(const EFBRectangle &source_rect) { return GetEFBDepthTexture(source_rect); }