// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "MemoryUtil.h" #include "VideoConfig.h" #include "Statistics.h" #include "HiresTextures.h" #include "RenderBase.h" #include "FileUtil.h" #include "TextureCacheBase.h" #include "Debugger.h" #include "ConfigManager.h" #include "HW/Memmap.h" // ugly extern int frameCount; enum { TEMP_SIZE = (2048 * 2048 * 4), TEXTURE_KILL_THRESHOLD = 200, }; TextureCache *g_texture_cache; GC_ALIGNED16(u8 *TextureCache::temp) = NULL; TextureCache::TexCache TextureCache::textures; bool TextureCache::DeferredInvalidate; TextureCache::TCacheEntryBase::~TCacheEntryBase() { } TextureCache::TextureCache() { if (!temp) temp = (u8*)AllocateAlignedMemory(TEMP_SIZE,16); TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable, g_ActiveConfig.bTexFmtOverlayCenter); if(g_ActiveConfig.bHiresTextures && !g_ActiveConfig.bDumpTextures) HiresTextures::Init(SConfig::GetInstance().m_LocalCoreStartupParameter.m_strUniqueID.c_str()); SetHash64Function(g_ActiveConfig.bHiresTextures || g_ActiveConfig.bDumpTextures); } void TextureCache::Invalidate(bool shutdown) { TexCache::iterator iter = textures.begin(), tcend = textures.end(); for (; iter != tcend; ++iter) { if (shutdown) iter->second->addr = 0; delete iter->second; } textures.clear(); if(g_ActiveConfig.bHiresTextures && !g_ActiveConfig.bDumpTextures) HiresTextures::Init(SConfig::GetInstance().m_LocalCoreStartupParameter.m_strUniqueID.c_str()); SetHash64Function(g_ActiveConfig.bHiresTextures || g_ActiveConfig.bDumpTextures); DeferredInvalidate = false; } void TextureCache::InvalidateDefer() { DeferredInvalidate = true; } TextureCache::~TextureCache() { Invalidate(true); if (temp) { FreeAlignedMemory(temp); temp = NULL; } } void TextureCache::Cleanup() { TexCache::iterator iter = textures.begin(); TexCache::iterator tcend = textures.end(); while (iter != tcend) { if (frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount) // TODO: Deleting EFB copies might not be a good idea here... { delete iter->second; textures.erase(iter++); } else ++iter; } } void TextureCache::InvalidateRange(u32 start_address, u32 size) { TexCache::iterator iter = textures.begin(), tcend = textures.end(); while (iter != tcend) { const int rangePosition = iter->second->IntersectsMemoryRange(start_address, size); if (0 == rangePosition) { delete iter->second; textures.erase(iter++); } else ++iter; } } void TextureCache::MakeRangeDynamic(u32 start_address, u32 size) { TexCache::iterator iter = textures.lower_bound(start_address), tcend = textures.upper_bound(start_address + size); if (iter != textures.begin()) iter--; for (; iter != tcend; ++iter) { const int rangePosition = iter->second->IntersectsMemoryRange(start_address, size); if (0 == rangePosition) { iter->second->SetHashes(TEXHASH_INVALID); } } } bool TextureCache::Find(u32 start_address, u64 hash) { TexCache::iterator iter = textures.lower_bound(start_address); if (iter->second->hash == hash) return true; return false; } int TextureCache::TCacheEntryBase::IntersectsMemoryRange(u32 range_address, u32 range_size) const { if (addr + size_in_bytes < range_address) return -1; if (addr >= range_address + range_size) return 1; return 0; } void TextureCache::ClearRenderTargets() { TexCache::iterator iter = textures.begin(), tcend = textures.end(); for (; iter!=tcend; ++iter) if (iter->second->type != TCET_EC_DYNAMIC) iter->second->type = TCET_NORMAL; } TextureCache::TCacheEntryBase* TextureCache::Load(unsigned int stage, u32 address, unsigned int width, unsigned int height, int texformat, unsigned int tlutaddr, int tlutfmt, bool UseNativeMips, unsigned int maxlevel, bool from_tmem) { if (0 == address) return NULL; // TexelSizeInNibbles(format)*width*height/16; const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat) - 1; const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat) - 1; unsigned int expandedWidth = (width + bsw) & (~bsw); unsigned int expandedHeight = (height + bsh) & (~bsh); const unsigned int nativeW = width; const unsigned int nativeH = height; u32 texID = address; u64 tex_hash = TEXHASH_INVALID; // Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup) u64 tlut_hash = TEXHASH_INVALID; u32 full_format = texformat; PC_TexFormat pcfmt = PC_TEX_FMT_NONE; const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2); if (isPaletteTexture) full_format = texformat | (tlutfmt << 16); const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat); u8* src_data; if (from_tmem) src_data = &texMem[bpmem.tex[stage/4].texImage1[stage%4].tmem_even * TMEM_LINE_SIZE]; else src_data = Memory::GetPointer(address); tex_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples); if (isPaletteTexture) { const u32 palette_size = TexDecoder_GetPaletteSize(texformat); tlut_hash = GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples); // NOTE: For non-paletted textures, texID is equal to the texture address. // A paletted texture, however, may have multiple texIDs assigned though depending on the currently used tlut. // This (changing texID depending on the tlut_hash) is a trick to get around // an issue with Metroid Prime's fonts (it has multiple sets of fonts on each other // stored in a single texture and uses the palette to make different characters // visible or invisible. Thus, unless we want to recreate the textures for every drawn character, // we must make sure that a paletted texture gets assigned multiple IDs for each tlut used. // // TODO: Because texID isn't always the same as the address now, CopyRenderTargetToTexture might be broken now texID ^= ((u32)tlut_hash) ^(u32)(tlut_hash >> 32); tex_hash ^= tlut_hash; } TCacheEntryBase *entry = textures[texID]; if (entry) { // 1. Calculate reference hash: // calculated from RAM texture data for normal textures. Hashes for paletted textures are modified by tlut_hash. 0 for virtual EFB copies. if (g_ActiveConfig.bCopyEFBToTexture && entry->IsEfbCopy()) tex_hash = TEXHASH_INVALID; // 2. a) For EFB copies, only the hash and the texture address need to match if (entry->IsEfbCopy() && tex_hash == entry->hash && address == entry->addr) { if (entry->type != TCET_EC_VRAM) entry->type = TCET_NORMAL; // TODO: Print a warning if the format changes! In this case, we could reinterpret the internal texture object data to the new pixel format (similiar to what is already being done in Renderer::ReinterpretPixelFormat()) goto return_entry; } // 2. b) For normal textures, all texture parameters need to match if (address == entry->addr && tex_hash == entry->hash && full_format == entry->format && entry->num_mipmaps == maxlevel && entry->native_width == nativeW && entry->native_height == nativeH) { goto return_entry; } // 3. If we reach this line, we'll have to upload the new texture data to VRAM. // If we're lucky, the texture parameters didn't change and we can reuse the internal texture object instead of destroying and recreating it. // // TODO: Don't we need to force texture decoding to RGBA8 for dynamic EFB copies? // TODO: Actually, it should be enough if the internal texture format matches... if ((entry->type == TCET_NORMAL && width == entry->native_width && height == entry->native_height && full_format == entry->format && entry->num_mipmaps == maxlevel) || (entry->type == TCET_EC_DYNAMIC && entry->native_width == width && entry->native_height == height)) { // reuse the texture } else { // delete the texture and make a new one delete entry; entry = NULL; } } if (g_ActiveConfig.bHiresTextures) { // Load Custom textures char texPathTemp[MAX_PATH]; unsigned int newWidth = width; unsigned int newHeight = height; sprintf(texPathTemp, "%s_%08x_%i", SConfig::GetInstance().m_LocalCoreStartupParameter.m_strUniqueID.c_str(), (u32) (tex_hash & 0x00000000FFFFFFFFLL), texformat); pcfmt = HiresTextures::GetHiresTex(texPathTemp, &newWidth, &newHeight, texformat, temp); if (pcfmt != PC_TEX_FMT_NONE) { expandedWidth = width = newWidth; expandedHeight = height = newHeight; } } // TODO: RGBA8 textures are stored non-continuously in tmem, that might cause problems when preloading is enabled if (pcfmt == PC_TEX_FMT_NONE) pcfmt = TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlutaddr, tlutfmt, g_ActiveConfig.backend_info.bUseRGBATextures); bool isPow2; unsigned int texLevels; UseNativeMips = UseNativeMips && (width == nativeW && height == nativeH); // Only load native mips if their dimensions fit to our virtual texture dimensions isPow2 = !((width & (width - 1)) || (height & (height - 1))); texLevels = (isPow2 && UseNativeMips && maxlevel) ? GetPow2(std::max(width, height)) : !isPow2; if ((texLevels > (maxlevel + 1)) && maxlevel) texLevels = maxlevel + 1; // create the entry/texture if (NULL == entry) { textures[texID] = entry = g_texture_cache->CreateTexture(width, height, expandedWidth, texLevels, pcfmt); // Sometimes, we can get around recreating a texture if only the number of mip levels changes // e.g. if our texture cache entry got too many mipmap levels we can limit the number of used levels by setting the appropriate render states // Thus, we don't update this member for every Load, but just whenever the texture gets recreated // // TODO: Won't we end up recreating textures all the time because maxlevel doesn't necessarily equal texLevels? entry->num_mipmaps = maxlevel; // TODO: Does this actually work? We can't really adjust mipmap settings per-stage... entry->type = TCET_NORMAL; GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true); } entry->SetGeneralParameters(address, texture_size, full_format, entry->num_mipmaps); entry->SetDimensions(nativeW, nativeH, width, height); entry->hash = tex_hash; if (entry->IsEfbCopy() && !g_ActiveConfig.bCopyEFBToTexture) entry->type = TCET_EC_DYNAMIC; else entry->type = TCET_NORMAL; // load texture entry->Load(width, height, expandedWidth, 0, (texLevels == 0)); // load mips - TODO: Loading mipmaps from tmem is untested! if (texLevels > 1 && pcfmt != PC_TEX_FMT_NONE) { const unsigned int bsdepth = TexDecoder_GetTexelSizeInNibbles(texformat); unsigned int level = 1; unsigned int mipWidth = (width + 1) >> 1; unsigned int mipHeight = (height + 1) >> 1; u8* ptr_even = NULL, *ptr_odd = NULL; if (from_tmem) { ptr_even = &texMem[bpmem.tex[stage/4].texImage1[stage%4].tmem_even * TMEM_LINE_SIZE + texture_size]; ptr_odd = &texMem[bpmem.tex[stage/4].texImage2[stage%4].tmem_odd * TMEM_LINE_SIZE]; } src_data += texture_size; while ((mipHeight || mipWidth) && (level < texLevels)) { u8** ptr; if (from_tmem) ptr = (level % 2) ? &ptr_odd : &ptr_even; else ptr = &src_data; const unsigned int currentWidth = (mipWidth > 0) ? mipWidth : 1; const unsigned int currentHeight = (mipHeight > 0) ? mipHeight : 1; expandedWidth = (currentWidth + bsw) & (~bsw); expandedHeight = (currentHeight + bsh) & (~bsh); TexDecoder_Decode(temp, *ptr, expandedWidth, expandedHeight, texformat, tlutaddr, tlutfmt, g_ActiveConfig.backend_info.bUseRGBATextures); entry->Load(currentWidth, currentHeight, expandedWidth, level, false); *ptr += ((std::max(mipWidth, bsw) * std::max(mipHeight, bsh) * bsdepth) >> 1); mipWidth >>= 1; mipHeight >>= 1; ++level; } } // TODO: won't this cause loaded hires textures to be dumped as well? // dump texture to file if (g_ActiveConfig.bDumpTextures) { char szTemp[MAX_PATH]; std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) + SConfig::GetInstance().m_LocalCoreStartupParameter.m_strUniqueID; // make sure that the directory exists if (false == File::Exists(szDir) || false == File::IsDirectory(szDir)) File::CreateDir(szDir.c_str()); sprintf(szTemp, "%s/%s_%08x_%i.png", szDir.c_str(), SConfig::GetInstance().m_LocalCoreStartupParameter.m_strUniqueID.c_str(), (u32) (tex_hash & 0x00000000FFFFFFFFLL), texformat); if (false == File::Exists(szTemp)) entry->Save(szTemp); } INCSTAT(stats.numTexturesCreated); SETSTAT(stats.numTexturesAlive, textures.size()); return_entry: entry->frameCount = frameCount; entry->Bind(stage); GFX_DEBUGGER_PAUSE_AT(NEXT_TEXTURE_CHANGE, true); return entry; } void TextureCache::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, unsigned int srcFormat, const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf) { // Emulation methods: // - EFB to RAM: // Encodes the requested EFB data at its native resolution to the emulated RAM using shaders. // Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again. // Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture // Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures. // - EFB to texture: // Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders. // Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again. // Since we don't do any further encoding or decoding here, this method is much faster. // It also allows enhancing the visual quality by doing scaled EFB copies. // - hybrid EFB copies: // 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM) // 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range. // If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies. // 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before): // 2a) Entry doesn't exist: // - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture) // - Create a texture cache entry for the target (type = TCET_EC_VRAM) // - Store a hash of the encoded RAM data in the texcache entry. // 2b) Entry exists AND type is TCET_EC_VRAM: // - Like case 2a, but reuse the old texcache entry instead of creating a new one. // 2c) Entry exists AND type is TCET_EC_DYNAMIC: // - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry. // - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway. // 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM. // 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created // 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC. // Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now. // 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture. // Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture. // Compatibility is as good as EFB to RAM. // Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM. // EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway. // // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing. // // For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies. float colmat[28] = {0}; float *const fConstAdd = colmat + 16; float *const ColorMask = colmat + 20; ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f; unsigned int cbufid = -1; if (srcFormat == PIXELFMT_Z24) { switch (dstFormat) { case 0: // Z4 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 0; break; case 1: // Z8 case 8: // Z8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f; cbufid = 1; break; case 3: // Z16 colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f; cbufid = 24; break; case 11: // Z16 (reverse order) colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 2; break; case 6: // Z24X8 colmat[0] = colmat[5] = colmat[10] = 1.0f; cbufid = 3; break; case 9: // Z8M colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 4; break; case 10: // Z8L colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 5; break; case 12: // Z16L - copy lower 16 depth bits // expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha) // Used e.g. in Zelda: Skyward Sword colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 6; break; default: ERROR_LOG(VIDEO, "Unknown copy zbuf format: 0x%x", dstFormat); colmat[2] = colmat[5] = colmat[8] = 1.0f; cbufid = 7; break; } } else if (isIntensity) { fConstAdd[0] = fConstAdd[1] = fConstAdd[2] = 16.0f/255.0f; switch (dstFormat) { case 0: // I4 case 1: // I8 case 2: // IA4 case 3: // IA8 case 8: // I8 // TODO - verify these coefficients colmat[0] = 0.257f; colmat[1] = 0.504f; colmat[2] = 0.098f; colmat[4] = 0.257f; colmat[5] = 0.504f; colmat[6] = 0.098f; colmat[8] = 0.257f; colmat[9] = 0.504f; colmat[10] = 0.098f; if (dstFormat < 2 || dstFormat == 8) { colmat[12] = 0.257f; colmat[13] = 0.504f; colmat[14] = 0.098f; fConstAdd[3] = 16.0f/255.0f; if (dstFormat == 0) { ColorMask[0] = ColorMask[1] = ColorMask[2] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 15.0f; cbufid = 8; } else { cbufid = 9; } } else// alpha { colmat[15] = 1; if (dstFormat == 2) { ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 15.0f; cbufid = 10; } else { cbufid = 11; } } break; default: ERROR_LOG(VIDEO, "Unknown copy intensity format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 23; break; } } else { switch (dstFormat) { case 0: // R4 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; ColorMask[0] = 15.0f; ColorMask[4] = 1.0f / 15.0f; cbufid = 12; break; case 1: // R8 case 8: // R8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; cbufid = 13; break; case 2: // RA4 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[7] = 1.0f / 15.0f; cbufid = 14; break; case 3: // RA8 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; cbufid = 15; break; case 7: // A8 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 16; break; case 9: // G8 colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 17; break; case 10: // B8 colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 18; break; case 11: // RG8 colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 19; break; case 12: // GB8 colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 20; break; case 4: // RGB565 colmat[0] = colmat[5] = colmat[10] = 1.0f; ColorMask[0] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[6] = 1.0f / 31.0f; ColorMask[1] = 63.0f; ColorMask[5] = 1.0f / 63.0f; fConstAdd[3] = 1.0f; // set alpha to 1 cbufid = 21; break; case 5: // RGB5A3 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[1] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 31.0f; ColorMask[3] = 7.0f; ColorMask[7] = 1.0f / 7.0f; cbufid = 22; break; case 6: // RGBA8 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 23; break; default: ERROR_LOG(VIDEO, "Unknown copy color format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 23; break; } } const unsigned int tex_w = scaleByHalf ? srcRect.GetWidth()/2 : srcRect.GetWidth(); const unsigned int tex_h = scaleByHalf ? srcRect.GetHeight()/2 : srcRect.GetHeight(); unsigned int scaled_tex_w = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledX(tex_w) : tex_w; unsigned int scaled_tex_h = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledY(tex_h) : tex_h; TCacheEntryBase *entry = textures[dstAddr]; if (entry) { if ((entry->type == TCET_EC_VRAM && entry->virtual_width == scaled_tex_w && entry->virtual_height == scaled_tex_h) || (entry->type == TCET_EC_DYNAMIC && entry->native_width == tex_w && entry->native_height == tex_h)) { if (entry->type == TCET_EC_DYNAMIC) { scaled_tex_w = tex_w; scaled_tex_h = tex_h; } } else { // remove it and recreate it as a render target delete entry; entry = NULL; } } if (NULL == entry) { // create the texture textures[dstAddr] = entry = g_texture_cache->CreateRenderTargetTexture(scaled_tex_w, scaled_tex_h); // TODO: Using the wrong dstFormat, dumb... entry->SetGeneralParameters(dstAddr, 0, dstFormat, 0); entry->SetDimensions(tex_w, tex_h, scaled_tex_w, scaled_tex_h); entry->SetHashes(TEXHASH_INVALID); entry->type = TCET_EC_VRAM; } entry->frameCount = frameCount; g_renderer->ResetAPIState(); // reset any game specific settings entry->FromRenderTarget(dstAddr, dstFormat, srcFormat, srcRect, isIntensity, scaleByHalf, cbufid, colmat); g_renderer->RestoreAPIState(); }