// Copyright 2014 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include #include "Common/MathUtil.h" TEST(MathUtil, Clamp) { EXPECT_EQ(1, MathUtil::Clamp(1, 0, 2)); EXPECT_EQ(1.0, MathUtil::Clamp(1.0, 0.0, 2.0)); EXPECT_EQ(2, MathUtil::Clamp(4, 0, 2)); EXPECT_EQ(2.0, MathUtil::Clamp(4.0, 0.0, 2.0)); EXPECT_EQ(0, MathUtil::Clamp(-1, 0, 2)); EXPECT_EQ(0.0, MathUtil::Clamp(-1.0, 0.0, 2.0)); } TEST(MathUtil, IsINF) { EXPECT_TRUE(MathUtil::IsINF(+std::numeric_limits::infinity())); EXPECT_TRUE(MathUtil::IsINF(-std::numeric_limits::infinity())); } TEST(MathUtil, IsNAN) { EXPECT_TRUE(MathUtil::IsNAN(std::numeric_limits::quiet_NaN())); EXPECT_TRUE(MathUtil::IsNAN(std::numeric_limits::signaling_NaN())); } TEST(MathUtil, IsQNAN) { EXPECT_TRUE(MathUtil::IsQNAN(std::numeric_limits::quiet_NaN())); EXPECT_FALSE(MathUtil::IsQNAN(std::numeric_limits::signaling_NaN())); } TEST(MathUtil, IsSNAN) { EXPECT_FALSE(MathUtil::IsSNAN(std::numeric_limits::quiet_NaN())); EXPECT_TRUE(MathUtil::IsSNAN(std::numeric_limits::signaling_NaN())); } TEST(MathUtil, Log2) { EXPECT_EQ(0, Log2(1)); EXPECT_EQ(1, Log2(2)); EXPECT_EQ(2, Log2(4)); EXPECT_EQ(3, Log2(8)); EXPECT_EQ(63, Log2(0x8000000000000000ull)); // Rounding behavior. EXPECT_EQ(3, Log2(15)); EXPECT_EQ(63, Log2(0xFFFFFFFFFFFFFFFFull)); } TEST(MathUtil, FlushToZero) { // To test the software implementation we need to make sure FTZ and DAZ are disabled. // Using volatile here to ensure the compiler doesn't constant-fold it, // we want the multiplication to occur at test runtime. volatile float s = std::numeric_limits::denorm_min(); volatile double d = std::numeric_limits::denorm_min(); // Casting away the volatile attribute is required in order for msvc to resolve this to the // correct instance of the comparison function. EXPECT_LT(0.f, (float)(s * 2)); EXPECT_LT(0.0, (double)(d * 2)); EXPECT_EQ(+0.0, MathUtil::FlushToZero(+std::numeric_limits::denorm_min())); EXPECT_EQ(-0.0, MathUtil::FlushToZero(-std::numeric_limits::denorm_min())); EXPECT_EQ(+0.0, MathUtil::FlushToZero(+std::numeric_limits::min() / 2)); EXPECT_EQ(-0.0, MathUtil::FlushToZero(-std::numeric_limits::min() / 2)); EXPECT_EQ(std::numeric_limits::min(), MathUtil::FlushToZero(std::numeric_limits::min())); EXPECT_EQ(std::numeric_limits::max(), MathUtil::FlushToZero(std::numeric_limits::max())); EXPECT_EQ(+std::numeric_limits::infinity(), MathUtil::FlushToZero(+std::numeric_limits::infinity())); EXPECT_EQ(-std::numeric_limits::infinity(), MathUtil::FlushToZero(-std::numeric_limits::infinity())); // Test all subnormals as well as an equally large set of random normal floats. std::default_random_engine engine(0); std::uniform_int_distribution dist(0x00800000u, 0x7fffffffu); for (u32 i = 0; i <= 0x007fffffu; ++i) { MathUtil::IntFloat x(i); EXPECT_EQ(+0.f, MathUtil::FlushToZero(x.f)); x.i = i | 0x80000000u; EXPECT_EQ(-0.f, MathUtil::FlushToZero(x.f)); x.i = dist(engine); MathUtil::IntFloat y(MathUtil::FlushToZero(x.f)); EXPECT_EQ(x.i, y.i); x.i |= 0x80000000u; y.f = MathUtil::FlushToZero(x.f); EXPECT_EQ(x.i, y.i); } }