// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "DiscIO/DirectoryBlob.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "Common/Align.h" #include "Common/Assert.h" #include "Common/CommonPaths.h" #include "Common/CommonTypes.h" #include "Common/File.h" #include "Common/FileUtil.h" #include "Common/Logging/Log.h" #include "Common/StringUtil.h" #include "Common/Swap.h" #include "Core/Boot/DolReader.h" #include "DiscIO/Blob.h" #include "DiscIO/VolumeWii.h" namespace DiscIO { // Reads as many bytes as the vector fits (or less, if the file is smaller). // Returns the number of bytes read. static size_t ReadFileToVector(const std::string& path, std::vector* vector); static void PadToAddress(u64 start_address, u64* address, u64* length, u8** buffer); static void Write32(u32 data, u32 offset, std::vector* buffer); static u32 ComputeNameSize(const File::FSTEntry& parent_entry); static std::string ASCIIToUppercase(std::string str); static void ConvertUTF8NamesToSHIFTJIS(File::FSTEntry* parent_entry); enum class PartitionType : u32 { Game = 0, Update = 1, Channel = 2, // There are more types used by Super Smash Bros. Brawl, but they don't have special names }; // 0xFF is an arbitrarily picked value. Note that we can't use 0x00, because that means NTSC-J constexpr u32 INVALID_REGION = 0xFF; constexpr u8 ENTRY_SIZE = 0x0c; constexpr u8 FILE_ENTRY = 0; constexpr u8 DIRECTORY_ENTRY = 1; DiscContent::DiscContent(u64 offset, u64 size, const std::string& path) : m_offset(offset), m_size(size), m_content_source(path) { } DiscContent::DiscContent(u64 offset, u64 size, const u8* data) : m_offset(offset), m_size(size), m_content_source(data) { } DiscContent::DiscContent(u64 offset) : m_offset(offset) { } u64 DiscContent::GetOffset() const { return m_offset; } u64 DiscContent::GetEndOffset() const { return m_offset + m_size; } u64 DiscContent::GetSize() const { return m_size; } bool DiscContent::Read(u64* offset, u64* length, u8** buffer) const { if (m_size == 0) return true; _dbg_assert_(DISCIO, *offset >= m_offset); const u64 offset_in_content = *offset - m_offset; if (offset_in_content < m_size) { const u64 bytes_to_read = std::min(m_size - offset_in_content, *length); if (std::holds_alternative(m_content_source)) { File::IOFile file(std::get(m_content_source), "rb"); file.Seek(offset_in_content, SEEK_SET); if (!file.ReadBytes(*buffer, bytes_to_read)) return false; } else { const u8* const content_pointer = std::get(m_content_source) + offset_in_content; std::copy(content_pointer, content_pointer + bytes_to_read, *buffer); } *length -= bytes_to_read; *buffer += bytes_to_read; *offset += bytes_to_read; } return true; } void DiscContentContainer::Add(u64 offset, u64 size, const std::string& path) { if (size != 0) m_contents.emplace(offset, size, path); } void DiscContentContainer::Add(u64 offset, u64 size, const u8* data) { if (size != 0) m_contents.emplace(offset, size, data); } u64 DiscContentContainer::CheckSizeAndAdd(u64 offset, const std::string& path) { const u64 size = File::GetSize(path); Add(offset, size, path); return size; } u64 DiscContentContainer::CheckSizeAndAdd(u64 offset, u64 max_size, const std::string& path) { const u64 size = std::min(File::GetSize(path), max_size); Add(offset, size, path); return size; } bool DiscContentContainer::Read(u64 offset, u64 length, u8* buffer) const { // Determine which DiscContent the offset refers to std::set::const_iterator it = m_contents.upper_bound(DiscContent(offset)); while (it != m_contents.end() && length > 0) { // Zero fill to start of DiscContent data PadToAddress(it->GetOffset(), &offset, &length, &buffer); if (!it->Read(&offset, &length, &buffer)) return false; ++it; _dbg_assert_(DISCIO, it == m_contents.end() || it->GetOffset() >= offset); } // Zero fill if we went beyond the last DiscContent std::fill_n(buffer, static_cast(length), 0); return true; } static std::optional ParsePartitionDirectoryName(const std::string& name) { if (name.size() < 2) return {}; if (!strcasecmp(name.c_str(), "DATA")) return PartitionType::Game; if (!strcasecmp(name.c_str(), "UPDATE")) return PartitionType::Update; if (!strcasecmp(name.c_str(), "CHANNEL")) return PartitionType::Channel; if (name[0] == 'P' || name[0] == 'p') { // e.g. "P-HA8E" (normally only used for Super Smash Bros. Brawl's VC partitions) if (name[1] == '-' && name.size() == 6) { const u32 result = Common::swap32(reinterpret_cast(name.data() + 2)); return static_cast(result); } // e.g. "P0" if (std::all_of(name.cbegin() + 1, name.cend(), [](char c) { return c >= '0' && c <= '9'; })) { u32 result; if (TryParse(name.substr(1), &result)) return static_cast(result); } } return {}; } static bool IsDirectorySeparator(char c) { return c == '/' #ifdef _WIN32 || c == '\\' #endif ; } static bool PathCharactersEqual(char a, char b) { return a == b || (IsDirectorySeparator(a) && IsDirectorySeparator(b)); } static bool PathEndsWith(const std::string& path, const std::string& suffix) { if (suffix.size() > path.size()) return false; std::string::const_iterator path_iterator = path.cend() - suffix.size(); std::string::const_iterator suffix_iterator = suffix.cbegin(); while (path_iterator != path.cend()) { if (!PathCharactersEqual(*path_iterator, *suffix_iterator)) return false; path_iterator++; suffix_iterator++; } return true; } static bool IsValidDirectoryBlob(const std::string& dol_path, std::string* partition_root, std::string* true_root = nullptr) { if (!PathEndsWith(dol_path, "/sys/main.dol")) return false; const size_t chars_to_remove = std::string("sys/main.dol").size(); *partition_root = dol_path.substr(0, dol_path.size() - chars_to_remove); if (File::GetSize(*partition_root + "sys/boot.bin") < 0x20) return false; #ifdef _WIN32 constexpr const char* dir_separator = "/\\"; #else constexpr char dir_separator = '/'; #endif if (true_root) { *true_root = dol_path.substr(0, dol_path.find_last_of(dir_separator, partition_root->size() - 2) + 1); } return true; } static bool ExistsAndIsValidDirectoryBlob(const std::string& dol_path) { std::string partition_root; return File::Exists(dol_path) && IsValidDirectoryBlob(dol_path, &partition_root); } static bool IsInFilesDirectory(const std::string& path) { size_t files_pos = std::string::npos; while (true) { files_pos = path.rfind("files", files_pos); if (files_pos == std::string::npos) return false; const size_t slash_before_pos = files_pos - 1; const size_t slash_after_pos = files_pos + 5; if ((files_pos == 0 || IsDirectorySeparator(path[slash_before_pos])) && (slash_after_pos == path.size() || (IsDirectorySeparator(path[slash_after_pos]))) && ExistsAndIsValidDirectoryBlob(path.substr(0, files_pos) + "sys/main.dol")) { return true; } --files_pos; } } static bool IsMainDolForNonGamePartition(const std::string& path) { std::string partition_root, true_root; if (!IsValidDirectoryBlob(path, &partition_root, &true_root)) return false; // This is not a /sys/main.dol std::string partition_directory_name = partition_root.substr(true_root.size()); partition_directory_name.pop_back(); // Remove trailing slash const std::optional partition_type = ParsePartitionDirectoryName(partition_directory_name); if (!partition_type || *partition_type == PartitionType::Game) return false; // volume_path is the game partition's /sys/main.dol const File::FSTEntry true_root_entry = File::ScanDirectoryTree(true_root, false); for (const File::FSTEntry& entry : true_root_entry.children) { if (entry.isDirectory && ParsePartitionDirectoryName(entry.virtualName) == PartitionType::Game && ExistsAndIsValidDirectoryBlob(entry.physicalName + "/sys/main.dol")) { return true; // volume_path is the /sys/main.dol for a non-game partition } } return false; // volume_path is the game partition's /sys/main.dol } bool ShouldHideFromGameList(const std::string& volume_path) { return IsInFilesDirectory(volume_path) || IsMainDolForNonGamePartition(volume_path); } std::unique_ptr DirectoryBlobReader::Create(const std::string& dol_path) { std::string partition_root, true_root; if (!IsValidDirectoryBlob(dol_path, &partition_root, &true_root)) return nullptr; return std::unique_ptr(new DirectoryBlobReader(partition_root, true_root)); } DirectoryBlobReader::DirectoryBlobReader(const std::string& game_partition_root, const std::string& true_root) { DirectoryBlobPartition game_partition(game_partition_root, {}); m_is_wii = game_partition.IsWii(); if (!m_is_wii) { m_gamecube_pseudopartition = std::move(game_partition); m_data_size = m_gamecube_pseudopartition.GetDataSize(); } else { SetNonpartitionDiscHeader(game_partition.GetHeader(), game_partition_root); SetWiiRegionData(game_partition_root); std::vector partitions; partitions.emplace_back(std::move(game_partition), PartitionType::Game); std::string game_partition_directory_name = game_partition_root.substr(true_root.size()); game_partition_directory_name.pop_back(); // Remove trailing slash if (ParsePartitionDirectoryName(game_partition_directory_name) == PartitionType::Game) { const File::FSTEntry true_root_entry = File::ScanDirectoryTree(true_root, false); for (const File::FSTEntry& entry : true_root_entry.children) { if (entry.isDirectory) { const std::optional type = ParsePartitionDirectoryName(entry.virtualName); if (type && *type != PartitionType::Game) { partitions.emplace_back(DirectoryBlobPartition(entry.physicalName + "/", m_is_wii), *type); } } } } SetPartitions(std::move(partitions)); } } bool DirectoryBlobReader::Read(u64 offset, u64 length, u8* buffer) { // TODO: We don't handle raw access to the encrypted area of Wii discs correctly. return (m_is_wii ? m_nonpartition_contents : m_gamecube_pseudopartition.GetContents()) .Read(offset, length, buffer); } bool DirectoryBlobReader::SupportsReadWiiDecrypted() const { return m_is_wii; } bool DirectoryBlobReader::ReadWiiDecrypted(u64 offset, u64 size, u8* buffer, u64 partition_offset) { if (!m_is_wii) return false; auto it = m_partitions.find(partition_offset); if (it == m_partitions.end()) return false; return it->second.GetContents().Read(offset, size, buffer); } BlobType DirectoryBlobReader::GetBlobType() const { return BlobType::DIRECTORY; } u64 DirectoryBlobReader::GetRawSize() const { // Not implemented return 0; } u64 DirectoryBlobReader::GetDataSize() const { return m_data_size; } void DirectoryBlobReader::SetNonpartitionDiscHeader(const std::vector& partition_header, const std::string& game_partition_root) { constexpr u64 NONPARTITION_DISCHEADER_ADDRESS = 0; constexpr u64 NONPARTITION_DISCHEADER_SIZE = 0x100; m_disc_header_nonpartition.resize(NONPARTITION_DISCHEADER_SIZE); const size_t header_bin_bytes_read = ReadFileToVector(game_partition_root + "disc/header.bin", &m_disc_header_nonpartition); // If header.bin is missing or smaller than expected, use the content of sys/boot.bin instead std::copy(partition_header.data() + header_bin_bytes_read, partition_header.data() + m_disc_header_nonpartition.size(), m_disc_header_nonpartition.data() + header_bin_bytes_read); // 0x60 and 0x61 are the only differences between the partition and non-partition headers if (header_bin_bytes_read < 0x60) m_disc_header_nonpartition[0x60] = 0; if (header_bin_bytes_read < 0x61) m_disc_header_nonpartition[0x61] = 0; m_nonpartition_contents.Add(NONPARTITION_DISCHEADER_ADDRESS, m_disc_header_nonpartition); } void DirectoryBlobReader::SetWiiRegionData(const std::string& game_partition_root) { m_wii_region_data.resize(0x10, 0x00); m_wii_region_data.resize(0x20, 0x80); Write32(INVALID_REGION, 0, &m_wii_region_data); const std::string region_bin_path = game_partition_root + "disc/region.bin"; const size_t bytes_read = ReadFileToVector(region_bin_path, &m_wii_region_data); if (bytes_read < 0x4) ERROR_LOG(DISCIO, "Couldn't read region from %s", region_bin_path.c_str()); else if (bytes_read < 0x20) ERROR_LOG(DISCIO, "Couldn't read age ratings from %s", region_bin_path.c_str()); constexpr u64 WII_REGION_DATA_ADDRESS = 0x4E000; constexpr u64 WII_REGION_DATA_SIZE = 0x20; m_nonpartition_contents.Add(WII_REGION_DATA_ADDRESS, m_wii_region_data); } void DirectoryBlobReader::SetPartitions(std::vector&& partitions) { std::sort(partitions.begin(), partitions.end(), [](const PartitionWithType& lhs, const PartitionWithType& rhs) { if (lhs.type == rhs.type) return lhs.partition.GetRootDirectory() < rhs.partition.GetRootDirectory(); // Ascending sort by partition type, except Update (1) comes before before Game (0) return (lhs.type > PartitionType::Update || rhs.type > PartitionType::Update) ? lhs.type < rhs.type : lhs.type > rhs.type; }); u32 subtable_1_size = 0; while (subtable_1_size < partitions.size() && subtable_1_size < 3 && partitions[subtable_1_size].type <= PartitionType::Channel) { ++subtable_1_size; } const u32 subtable_2_size = static_cast(partitions.size() - subtable_1_size); constexpr u32 PARTITION_TABLE_ADDRESS = 0x40000; constexpr u32 PARTITION_SUBTABLE1_OFFSET = 0x20; constexpr u32 PARTITION_SUBTABLE2_OFFSET = 0x40; m_partition_table.resize(PARTITION_SUBTABLE2_OFFSET + subtable_2_size * 8); Write32(subtable_1_size, 0x0, &m_partition_table); Write32((PARTITION_TABLE_ADDRESS + PARTITION_SUBTABLE1_OFFSET) >> 2, 0x4, &m_partition_table); if (subtable_2_size != 0) { Write32(subtable_2_size, 0x8, &m_partition_table); Write32((PARTITION_TABLE_ADDRESS + PARTITION_SUBTABLE2_OFFSET) >> 2, 0xC, &m_partition_table); } constexpr u64 STANDARD_UPDATE_PARTITION_ADDRESS = 0x50000; constexpr u64 STANDARD_GAME_PARTITION_ADDRESS = 0xF800000; u64 partition_address = STANDARD_UPDATE_PARTITION_ADDRESS; u64 offset_in_table = PARTITION_SUBTABLE1_OFFSET; for (size_t i = 0; i < partitions.size(); ++i) { if (i == subtable_1_size) offset_in_table = PARTITION_SUBTABLE2_OFFSET; if (partitions[i].type == PartitionType::Game) partition_address = std::max(partition_address, STANDARD_GAME_PARTITION_ADDRESS); Write32(static_cast(partition_address >> 2), offset_in_table, &m_partition_table); offset_in_table += 4; Write32(static_cast(partitions[i].type), offset_in_table, &m_partition_table); offset_in_table += 4; SetPartitionHeader(partitions[i].partition, partition_address); const u64 partition_data_size = partitions[i].partition.GetDataSize(); m_partitions.emplace(partition_address, std::move(partitions[i].partition)); const u64 unaligned_next_partition_address = VolumeWii::PartitionOffsetToRawOffset(partition_data_size, Partition(partition_address)); partition_address = Common::AlignUp(unaligned_next_partition_address, 0x10000ull); } m_data_size = partition_address; m_nonpartition_contents.Add(PARTITION_TABLE_ADDRESS, m_partition_table); } // This function sets the header that's shortly before the start of the encrypted // area, not the header that's right at the beginning of the encrypted area void DirectoryBlobReader::SetPartitionHeader(const DirectoryBlobPartition& partition, u64 partition_address) { constexpr u32 TICKET_OFFSET = 0x0; constexpr u32 TICKET_SIZE = 0x2a4; constexpr u32 TMD_OFFSET = 0x2c0; constexpr u32 MAX_TMD_SIZE = 0x49e4; constexpr u32 H3_OFFSET = 0x4000; constexpr u32 H3_SIZE = 0x18000; const std::string& partition_root = partition.GetRootDirectory(); m_nonpartition_contents.CheckSizeAndAdd(partition_address + TICKET_OFFSET, TICKET_SIZE, partition_root + "ticket.bin"); const u64 tmd_size = m_nonpartition_contents.CheckSizeAndAdd( partition_address + TMD_OFFSET, MAX_TMD_SIZE, partition_root + "tmd.bin"); const u64 cert_offset = Common::AlignUp(TMD_OFFSET + tmd_size, 0x20ull); const u64 max_cert_size = H3_OFFSET - cert_offset; const u64 cert_size = m_nonpartition_contents.CheckSizeAndAdd( partition_address + cert_offset, max_cert_size, partition_root + "cert.bin"); m_nonpartition_contents.CheckSizeAndAdd(partition_address + H3_OFFSET, H3_SIZE, partition_root + "h3.bin"); constexpr u32 PARTITION_HEADER_SIZE = 0x1c; constexpr u32 DATA_OFFSET = 0x20000; const u64 data_size = Common::AlignUp(partition.GetDataSize(), 0x7c00) / 0x7c00 * 0x8000; m_partition_headers.emplace_back(PARTITION_HEADER_SIZE); std::vector& partition_header = m_partition_headers.back(); Write32(static_cast(tmd_size), 0x0, &partition_header); Write32(TMD_OFFSET >> 2, 0x4, &partition_header); Write32(static_cast(cert_size), 0x8, &partition_header); Write32(static_cast(cert_offset >> 2), 0x0C, &partition_header); Write32(H3_OFFSET >> 2, 0x10, &partition_header); Write32(DATA_OFFSET >> 2, 0x14, &partition_header); Write32(static_cast(data_size >> 2), 0x18, &partition_header); m_nonpartition_contents.Add(partition_address + TICKET_SIZE, partition_header); } DirectoryBlobPartition::DirectoryBlobPartition(const std::string& root_directory, std::optional is_wii) : m_root_directory(root_directory) { SetDiscHeaderAndDiscType(is_wii); SetBI2(); BuildFST(SetDOL(SetApploader())); } void DirectoryBlobPartition::SetDiscHeaderAndDiscType(std::optional is_wii) { constexpr u64 DISCHEADER_ADDRESS = 0; constexpr u64 DISCHEADER_SIZE = 0x440; m_disc_header.resize(DISCHEADER_SIZE); const std::string boot_bin_path = m_root_directory + "sys/boot.bin"; if (ReadFileToVector(boot_bin_path, &m_disc_header) < 0x20) ERROR_LOG(DISCIO, "%s doesn't exist or is too small", boot_bin_path.c_str()); m_contents.Add(DISCHEADER_ADDRESS, m_disc_header); if (is_wii.has_value()) { m_is_wii = *is_wii; } else { m_is_wii = Common::swap32(&m_disc_header[0x18]) == 0x5d1c9ea3; const bool is_gc = Common::swap32(&m_disc_header[0x1c]) == 0xc2339f3d; if (m_is_wii == is_gc) ERROR_LOG(DISCIO, "Couldn't detect disc type based on %s", boot_bin_path.c_str()); } m_address_shift = m_is_wii ? 2 : 0; } void DirectoryBlobPartition::SetBI2() { constexpr u64 BI2_ADDRESS = 0x440; constexpr u64 BI2_SIZE = 0x2000; m_bi2.resize(BI2_SIZE); if (!m_is_wii) Write32(INVALID_REGION, 0x18, &m_bi2); const std::string bi2_path = m_root_directory + "sys/bi2.bin"; const size_t bytes_read = ReadFileToVector(bi2_path, &m_bi2); if (!m_is_wii && bytes_read < 0x1C) ERROR_LOG(DISCIO, "Couldn't read region from %s", bi2_path.c_str()); m_contents.Add(BI2_ADDRESS, m_bi2); } u64 DirectoryBlobPartition::SetApploader() { bool success = false; const std::string path = m_root_directory + "sys/apploader.img"; File::IOFile file(path, "rb"); m_apploader.resize(file.GetSize()); if (m_apploader.size() < 0x20 || !file.ReadBytes(m_apploader.data(), m_apploader.size())) { ERROR_LOG(DISCIO, "%s couldn't be accessed or is too small", path.c_str()); } else { const size_t apploader_size = 0x20 + Common::swap32(*(u32*)&m_apploader[0x14]) + Common::swap32(*(u32*)&m_apploader[0x18]); if (apploader_size != m_apploader.size()) ERROR_LOG(DISCIO, "%s is the wrong size... Is it really an apploader?", path.c_str()); else success = true; } if (!success) { m_apploader.resize(0x20); // Make sure BS2 HLE doesn't try to run the apploader Write32(static_cast(-1), 0x10, &m_apploader); } constexpr u64 APPLOADER_ADDRESS = 0x2440; m_contents.Add(APPLOADER_ADDRESS, m_apploader); // Return DOL address, 32 byte aligned (plus 32 byte padding) return Common::AlignUp(APPLOADER_ADDRESS + m_apploader.size() + 0x20, 0x20ull); } u64 DirectoryBlobPartition::SetDOL(u64 dol_address) { const u64 dol_size = m_contents.CheckSizeAndAdd(dol_address, m_root_directory + "sys/main.dol"); Write32(static_cast(dol_address >> m_address_shift), 0x0420, &m_disc_header); // Return FST address, 32 byte aligned (plus 32 byte padding) return Common::AlignUp(dol_address + dol_size + 0x20, 0x20ull); } void DirectoryBlobPartition::BuildFST(u64 fst_address) { m_fst_data.clear(); File::FSTEntry rootEntry = File::ScanDirectoryTree(m_root_directory + "files/", true); ConvertUTF8NamesToSHIFTJIS(&rootEntry); u32 name_table_size = Common::AlignUp(ComputeNameSize(rootEntry), 1ull << m_address_shift); u64 total_entries = rootEntry.size + 1; // The root entry itself isn't counted in rootEntry.size const u64 name_table_offset = total_entries * ENTRY_SIZE; m_fst_data.resize(name_table_offset + name_table_size); // 32 KiB aligned start of data on disc u64 current_data_address = Common::AlignUp(fst_address + m_fst_data.size(), 0x8000ull); u32 fst_offset = 0; // Offset within FST data u32 name_offset = 0; // Offset within name table u32 root_offset = 0; // Offset of root of FST // write root entry WriteEntryData(&fst_offset, DIRECTORY_ENTRY, 0, 0, total_entries, m_address_shift); WriteDirectory(rootEntry, &fst_offset, &name_offset, ¤t_data_address, root_offset, name_table_offset); // overflow check, compare the aligned name offset with the aligned name table size _assert_(Common::AlignUp(name_offset, 1ull << m_address_shift) == name_table_size); // write FST size and location Write32((u32)(fst_address >> m_address_shift), 0x0424, &m_disc_header); Write32((u32)(m_fst_data.size() >> m_address_shift), 0x0428, &m_disc_header); Write32((u32)(m_fst_data.size() >> m_address_shift), 0x042c, &m_disc_header); m_contents.Add(fst_address, m_fst_data); m_data_size = current_data_address; } void DirectoryBlobPartition::WriteEntryData(u32* entry_offset, u8 type, u32 name_offset, u64 data_offset, u64 length, u32 address_shift) { m_fst_data[(*entry_offset)++] = type; m_fst_data[(*entry_offset)++] = (name_offset >> 16) & 0xff; m_fst_data[(*entry_offset)++] = (name_offset >> 8) & 0xff; m_fst_data[(*entry_offset)++] = (name_offset)&0xff; Write32((u32)(data_offset >> address_shift), *entry_offset, &m_fst_data); *entry_offset += 4; Write32((u32)length, *entry_offset, &m_fst_data); *entry_offset += 4; } void DirectoryBlobPartition::WriteEntryName(u32* name_offset, const std::string& name, u64 name_table_offset) { strncpy((char*)&m_fst_data[*name_offset + name_table_offset], name.c_str(), name.length() + 1); *name_offset += (u32)(name.length() + 1); } void DirectoryBlobPartition::WriteDirectory(const File::FSTEntry& parent_entry, u32* fst_offset, u32* name_offset, u64* data_offset, u32 parent_entry_index, u64 name_table_offset) { std::vector sorted_entries = parent_entry.children; // Sort for determinism std::sort(sorted_entries.begin(), sorted_entries.end(), [](const File::FSTEntry& one, const File::FSTEntry& two) { const std::string one_upper = ASCIIToUppercase(one.virtualName); const std::string two_upper = ASCIIToUppercase(two.virtualName); return one_upper == two_upper ? one.virtualName < two.virtualName : one_upper < two_upper; }); for (const File::FSTEntry& entry : sorted_entries) { if (entry.isDirectory) { u32 entry_index = *fst_offset / ENTRY_SIZE; WriteEntryData(fst_offset, DIRECTORY_ENTRY, *name_offset, parent_entry_index, entry_index + entry.size + 1, 0); WriteEntryName(name_offset, entry.virtualName, name_table_offset); WriteDirectory(entry, fst_offset, name_offset, data_offset, entry_index, name_table_offset); } else { // put entry in FST WriteEntryData(fst_offset, FILE_ENTRY, *name_offset, *data_offset, entry.size, m_address_shift); WriteEntryName(name_offset, entry.virtualName, name_table_offset); // write entry to virtual disc m_contents.Add(*data_offset, entry.size, entry.physicalName); // 32 KiB aligned - many games are fine with less alignment, but not all *data_offset = Common::AlignUp(*data_offset + entry.size, 0x8000ull); } } } static size_t ReadFileToVector(const std::string& path, std::vector* vector) { File::IOFile file(path, "rb"); size_t bytes_read; file.ReadArray(vector->data(), std::min(file.GetSize(), vector->size()), &bytes_read); return bytes_read; } static void PadToAddress(u64 start_address, u64* address, u64* length, u8** buffer) { if (start_address > *address && *length > 0) { u64 padBytes = std::min(start_address - *address, *length); memset(*buffer, 0, (size_t)padBytes); *length -= padBytes; *buffer += padBytes; *address += padBytes; } } static void Write32(u32 data, u32 offset, std::vector* buffer) { (*buffer)[offset++] = (data >> 24); (*buffer)[offset++] = (data >> 16) & 0xff; (*buffer)[offset++] = (data >> 8) & 0xff; (*buffer)[offset] = data & 0xff; } static u32 ComputeNameSize(const File::FSTEntry& parent_entry) { u32 name_size = 0; for (const File::FSTEntry& entry : parent_entry.children) { if (entry.isDirectory) name_size += ComputeNameSize(entry); name_size += (u32)entry.virtualName.length() + 1; } return name_size; } static void ConvertUTF8NamesToSHIFTJIS(File::FSTEntry* parent_entry) { for (File::FSTEntry& entry : parent_entry->children) { if (entry.isDirectory) ConvertUTF8NamesToSHIFTJIS(&entry); entry.virtualName = UTF8ToSHIFTJIS(entry.virtualName); } } static std::string ASCIIToUppercase(std::string str) { std::transform(str.begin(), str.end(), str.begin(), [](char c) { return std::toupper(c, std::locale::classic()); }); return str; } } // namespace