// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The gpu draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #include #include #include "Common/Atomic.h" #include "Common/StringUtil.h" #include "Common/Timer.h" #include "Core/Core.h" #include "Core/Host.h" #include "Core/FifoPlayer/FifoRecorder.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/Debugger.h" #include "VideoCommon/Fifo.h" #include "VideoCommon/FPSCounter.h" #include "VideoCommon/FramebufferManagerBase.h" #include "VideoCommon/MainBase.h" #include "VideoCommon/OpcodeDecoding.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" // TODO: Move these out of here. int frameCount; int OSDChoice; static int OSDTime; Renderer *g_renderer = nullptr; std::mutex Renderer::s_criticalScreenshot; std::string Renderer::s_sScreenshotName; volatile bool Renderer::s_bScreenshot; // The framebuffer size int Renderer::s_target_width; int Renderer::s_target_height; // TODO: Add functionality to reinit all the render targets when the window is resized. int Renderer::s_backbuffer_width; int Renderer::s_backbuffer_height; PostProcessingShaderImplementation* Renderer::m_post_processor; TargetRectangle Renderer::target_rc; int Renderer::s_LastEFBScale; bool Renderer::XFBWrited; PEControl::PixelFormat Renderer::prev_efb_format = PEControl::INVALID_FMT; unsigned int Renderer::efb_scale_numeratorX = 1; unsigned int Renderer::efb_scale_numeratorY = 1; unsigned int Renderer::efb_scale_denominatorX = 1; unsigned int Renderer::efb_scale_denominatorY = 1; Renderer::Renderer() : frame_data() , bLastFrameDumped(false) { UpdateActiveConfig(); TextureCache::OnConfigChanged(g_ActiveConfig); #if defined _WIN32 || defined HAVE_LIBAV bAVIDumping = false; #endif OSDChoice = 0; OSDTime = 0; } Renderer::~Renderer() { // invalidate previous efb format prev_efb_format = PEControl::INVALID_FMT; efb_scale_numeratorX = efb_scale_numeratorY = efb_scale_denominatorX = efb_scale_denominatorY = 1; #if defined _WIN32 || defined HAVE_LIBAV if (g_ActiveConfig.bDumpFrames && bLastFrameDumped && bAVIDumping) AVIDump::Stop(); #else if (pFrameDump.IsOpen()) pFrameDump.Close(); #endif } void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbWidth, u32 fbHeight, float Gamma) { CheckFifoRecording(); if (!fbWidth || !fbHeight) return; VideoFifo_CheckEFBAccess(); VideoFifo_CheckSwapRequestAt(xfbAddr, fbWidth, fbHeight); XFBWrited = true; if (g_ActiveConfig.bUseXFB) { FramebufferManagerBase::CopyToXFB(xfbAddr, fbWidth, fbHeight, sourceRc,Gamma); } else { Swap(xfbAddr, fbWidth, fbWidth, fbHeight, sourceRc, Gamma); s_swapRequested.Clear(); } } int Renderer::EFBToScaledX(int x) { switch (g_ActiveConfig.iEFBScale) { case SCALE_AUTO: // fractional return FramebufferManagerBase::ScaleToVirtualXfbWidth(x, s_backbuffer_width); default: return x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX; }; } int Renderer::EFBToScaledY(int y) { switch (g_ActiveConfig.iEFBScale) { case SCALE_AUTO: // fractional return FramebufferManagerBase::ScaleToVirtualXfbHeight(y, s_backbuffer_height); default: return y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY; }; } void Renderer::CalculateTargetScale(int x, int y, int &scaledX, int &scaledY) { if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL) { scaledX = x; scaledY = y; } else { scaledX = x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX; scaledY = y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY; } } // return true if target size changed bool Renderer::CalculateTargetSize(unsigned int framebuffer_width, unsigned int framebuffer_height) { int newEFBWidth, newEFBHeight; // TODO: Ugly. Clean up switch (s_LastEFBScale) { case 2: // 1x efb_scale_numeratorX = efb_scale_numeratorY = 1; efb_scale_denominatorX = efb_scale_denominatorY = 1; break; case 3: // 1.5x efb_scale_numeratorX = efb_scale_numeratorY = 3; efb_scale_denominatorX = efb_scale_denominatorY = 2; break; case 4: // 2x efb_scale_numeratorX = efb_scale_numeratorY = 2; efb_scale_denominatorX = efb_scale_denominatorY = 1; break; case 5: // 2.5x efb_scale_numeratorX = efb_scale_numeratorY = 5; efb_scale_denominatorX = efb_scale_denominatorY = 2; break; case 6: // 3x efb_scale_numeratorX = efb_scale_numeratorY = 3; efb_scale_denominatorX = efb_scale_denominatorY = 1; break; case 7: // 4x efb_scale_numeratorX = efb_scale_numeratorY = 4; efb_scale_denominatorX = efb_scale_denominatorY = 1; break; default: // fractional & integral handled later break; } switch (s_LastEFBScale) { case 0: // fractional case 1: // integral newEFBWidth = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH, framebuffer_width); newEFBHeight = FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT, framebuffer_height); if (s_LastEFBScale == 1) { newEFBWidth = ((newEFBWidth-1) / EFB_WIDTH + 1) * EFB_WIDTH; newEFBHeight = ((newEFBHeight-1) / EFB_HEIGHT + 1) * EFB_HEIGHT; } efb_scale_numeratorX = newEFBWidth; efb_scale_denominatorX = EFB_WIDTH; efb_scale_numeratorY = newEFBHeight; efb_scale_denominatorY = EFB_HEIGHT; break; default: CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT, newEFBWidth, newEFBHeight); break; } if (newEFBWidth != s_target_width || newEFBHeight != s_target_height) { s_target_width = newEFBWidth; s_target_height = newEFBHeight; return true; } return false; } void Renderer::SetScreenshot(const std::string& filename) { std::lock_guard lk(s_criticalScreenshot); s_sScreenshotName = filename; s_bScreenshot = true; } // Create On-Screen-Messages void Renderer::DrawDebugText() { // OSD Menu messages if (OSDChoice > 0) { OSDTime = Common::Timer::GetTimeMs() + 3000; OSDChoice = -OSDChoice; } if ((u32)OSDTime <= Common::Timer::GetTimeMs()) return; const char* res_text = ""; switch (g_ActiveConfig.iEFBScale) { case SCALE_AUTO: res_text = "Auto (fractional)"; break; case SCALE_AUTO_INTEGRAL: res_text = "Auto (integral)"; break; case SCALE_1X: res_text = "Native"; break; case SCALE_1_5X: res_text = "1.5x"; break; case SCALE_2X: res_text = "2x"; break; case SCALE_2_5X: res_text = "2.5x"; break; case SCALE_3X: res_text = "3x"; break; case SCALE_4X: res_text = "4x"; break; } const char* ar_text = ""; switch (g_ActiveConfig.iAspectRatio) { case ASPECT_AUTO: ar_text = "Auto"; break; case ASPECT_FORCE_16_9: ar_text = "16:9"; break; case ASPECT_FORCE_4_3: ar_text = "4:3"; break; case ASPECT_STRETCH: ar_text = "Stretch"; break; } const char* const efbcopy_text = g_ActiveConfig.bEFBCopyEnable ? (g_ActiveConfig.bCopyEFBToTexture ? "to Texture" : "to RAM") : "Disabled"; // The rows const std::string lines[] = { std::string("3: Internal Resolution: ") + res_text, std::string("4: Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""), std::string("5: Copy EFB: ") + efbcopy_text, std::string("6: Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"), }; enum { lines_count = sizeof(lines)/sizeof(*lines) }; std::string final_yellow, final_cyan; // If there is more text than this we will have a collision if (g_ActiveConfig.bShowFPS) { final_yellow = final_cyan = "\n\n"; } // The latest changed setting in yellow for (int i = 0; i != lines_count; ++i) { if (OSDChoice == -i - 1) final_yellow += lines[i]; final_yellow += '\n'; } // The other settings in cyan for (int i = 0; i != lines_count; ++i) { if (OSDChoice != -i - 1) final_cyan += lines[i]; final_cyan += '\n'; } // Render a shadow g_renderer->RenderText(final_cyan, 21, 21, 0xDD000000); g_renderer->RenderText(final_yellow, 21, 21, 0xDD000000); //and then the text g_renderer->RenderText(final_cyan, 20, 20, 0xFF00FFFF); g_renderer->RenderText(final_yellow, 20, 20, 0xFFFFFF00); } void Renderer::UpdateDrawRectangle(int backbuffer_width, int backbuffer_height) { float FloatGLWidth = (float)backbuffer_width; float FloatGLHeight = (float)backbuffer_height; float FloatXOffset = 0; float FloatYOffset = 0; // The rendering window size const float WinWidth = FloatGLWidth; const float WinHeight = FloatGLHeight; // Handle aspect ratio. // Default to auto. bool use16_9 = g_aspect_wide; // Update aspect ratio hack values // Won't take effect until next frame // Don't know if there is a better place for this code so there isn't a 1 frame delay if ( g_ActiveConfig.bWidescreenHack ) { float source_aspect = use16_9 ? (16.0f / 9.0f) : (4.0f / 3.0f); float target_aspect; switch ( g_ActiveConfig.iAspectRatio ) { case ASPECT_FORCE_16_9 : target_aspect = 16.0f / 9.0f; break; case ASPECT_FORCE_4_3 : target_aspect = 4.0f / 3.0f; break; case ASPECT_STRETCH : target_aspect = WinWidth / WinHeight; break; default : // ASPECT_AUTO == no hacking target_aspect = source_aspect; break; } float adjust = source_aspect / target_aspect; if ( adjust > 1 ) { // Vert+ g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1/adjust; } else { // Hor+ g_Config.fAspectRatioHackW = adjust; g_Config.fAspectRatioHackH = 1; } } else { // Hack is disabled g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1; } // Check for force-settings and override. if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_16_9) use16_9 = true; else if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_4_3) use16_9 = false; if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH) { // The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio float Ratio = (WinWidth / WinHeight) / (!use16_9 ? (4.0f / 3.0f) : (16.0f / 9.0f)); // Check if height or width is the limiting factor. If ratio > 1 the picture is too wide and have to limit the width. if (Ratio > 1.0f) { // Scale down and center in the X direction. FloatGLWidth /= Ratio; FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f; } // The window is too high, we have to limit the height else { // Scale down and center in the Y direction. FloatGLHeight *= Ratio; FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f; } } // ----------------------------------------------------------------------- // Crop the picture from 4:3 to 5:4 or from 16:9 to 16:10. // Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset // ------------------ if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop) { float Ratio = !use16_9 ? ((4.0f / 3.0f) / (5.0f / 4.0f)) : (((16.0f / 9.0f) / (16.0f / 10.0f))); // The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is adjusted) float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth; float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight; // The new width and height FloatGLWidth = FloatGLWidth * Ratio; FloatGLHeight = FloatGLHeight * Ratio; // Adjust the X and Y offset FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f); FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f); } int XOffset = (int)(FloatXOffset + 0.5f); int YOffset = (int)(FloatYOffset + 0.5f); int iWhidth = (int)ceil(FloatGLWidth); int iHeight = (int)ceil(FloatGLHeight); iWhidth -= iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders iHeight -= iHeight % 4; target_rc.left = XOffset; target_rc.top = YOffset; target_rc.right = XOffset + iWhidth; target_rc.bottom = YOffset + iHeight; } void Renderer::SetWindowSize(int width, int height) { if (width < 1) width = 1; if (height < 1) height = 1; // Scale the window size by the EFB scale. CalculateTargetScale(width, height, width, height); Host_RequestRenderWindowSize(width, height); } void Renderer::CheckFifoRecording() { bool wasRecording = g_bRecordFifoData; g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording(); if (g_bRecordFifoData) { if (!wasRecording) { RecordVideoMemory(); } FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase, CommandProcessor::fifo.CPEnd); } } void Renderer::RecordVideoMemory() { u32 *bpmem_ptr = (u32*)&bpmem; u32 cpmem[256]; // The FIFO recording format splits XF memory into xfmem and xfregs; follow // that split here. u32 *xfmem_ptr = (u32*)&xfmem; u32 *xfregs_ptr = (u32*)&xfmem + FifoDataFile::XF_MEM_SIZE; u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE; memset(cpmem, 0, 256 * 4); FillCPMemoryArray(cpmem); FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size); } void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, float Gamma) { // TODO: merge more generic parts into VideoCommon g_renderer->SwapImpl(xfbAddr, fbWidth, fbStride, fbHeight, rc, Gamma); if (XFBWrited) g_renderer->m_fps_counter.Update(); frameCount++; GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true); // Begin new frame // Set default viewport and scissor, for the clear to work correctly // New frame stats.ResetFrame(); Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB)); XFBWrited = false; }