// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/Vulkan/StreamBuffer.h" #include #include #include #include "Common/Align.h" #include "Common/Assert.h" #include "Common/MsgHandler.h" #include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/VulkanContext.h" namespace Vulkan { StreamBuffer::StreamBuffer(VkBufferUsageFlags usage, u32 size) : m_usage(usage), m_size(size) { } StreamBuffer::~StreamBuffer() { if (m_host_pointer) vkUnmapMemory(g_vulkan_context->GetDevice(), m_memory); if (m_buffer != VK_NULL_HANDLE) g_command_buffer_mgr->DeferBufferDestruction(m_buffer); if (m_memory != VK_NULL_HANDLE) g_command_buffer_mgr->DeferDeviceMemoryDestruction(m_memory); } std::unique_ptr StreamBuffer::Create(VkBufferUsageFlags usage, u32 size) { std::unique_ptr buffer = std::make_unique(usage, size); if (!buffer->AllocateBuffer()) return nullptr; return buffer; } bool StreamBuffer::AllocateBuffer() { // Create the buffer descriptor VkBufferCreateInfo buffer_create_info = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkBufferCreateFlags flags static_cast(m_size), // VkDeviceSize size m_usage, // VkBufferUsageFlags usage VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode 0, // uint32_t queueFamilyIndexCount nullptr // const uint32_t* pQueueFamilyIndices }; VkBuffer buffer = VK_NULL_HANDLE; VkResult res = vkCreateBuffer(g_vulkan_context->GetDevice(), &buffer_create_info, nullptr, &buffer); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateBuffer failed: "); return false; } // Get memory requirements (types etc) for this buffer VkMemoryRequirements memory_requirements; vkGetBufferMemoryRequirements(g_vulkan_context->GetDevice(), buffer, &memory_requirements); // Aim for a coherent mapping if possible. u32 memory_type_index = g_vulkan_context->GetUploadMemoryType(memory_requirements.memoryTypeBits, &m_coherent_mapping); // Allocate memory for backing this buffer VkMemoryAllocateInfo memory_allocate_info = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType nullptr, // const void* pNext memory_requirements.size, // VkDeviceSize allocationSize memory_type_index // uint32_t memoryTypeIndex }; VkDeviceMemory memory = VK_NULL_HANDLE; res = vkAllocateMemory(g_vulkan_context->GetDevice(), &memory_allocate_info, nullptr, &memory); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkAllocateMemory failed: "); vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr); return false; } // Bind memory to buffer res = vkBindBufferMemory(g_vulkan_context->GetDevice(), buffer, memory, 0); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkBindBufferMemory failed: "); vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr); vkFreeMemory(g_vulkan_context->GetDevice(), memory, nullptr); return false; } // Map this buffer into user-space void* mapped_ptr = nullptr; res = vkMapMemory(g_vulkan_context->GetDevice(), memory, 0, m_size, 0, &mapped_ptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkMapMemory failed: "); vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr); vkFreeMemory(g_vulkan_context->GetDevice(), memory, nullptr); return false; } // Unmap current host pointer (if there was a previous buffer) if (m_host_pointer) vkUnmapMemory(g_vulkan_context->GetDevice(), m_memory); // Destroy the backings for the buffer after the command buffer executes if (m_buffer != VK_NULL_HANDLE) g_command_buffer_mgr->DeferBufferDestruction(m_buffer); if (m_memory != VK_NULL_HANDLE) g_command_buffer_mgr->DeferDeviceMemoryDestruction(m_memory); // Replace with the new buffer m_buffer = buffer; m_memory = memory; m_host_pointer = reinterpret_cast(mapped_ptr); m_current_offset = 0; m_current_gpu_position = 0; m_tracked_fences.clear(); return true; } bool StreamBuffer::ReserveMemory(u32 num_bytes, u32 alignment) { const u32 required_bytes = num_bytes + alignment; // Check for sane allocations if (required_bytes > m_size) { PanicAlertFmt("Attempting to allocate {} bytes from a {} byte stream buffer", num_bytes, m_size); return false; } // Is the GPU behind or up to date with our current offset? UpdateCurrentFencePosition(); if (m_current_offset >= m_current_gpu_position) { const u32 remaining_bytes = m_size - m_current_offset; if (required_bytes <= remaining_bytes) { // Place at the current position, after the GPU position. m_current_offset = Common::AlignUp(m_current_offset, alignment); m_last_allocation_size = num_bytes; return true; } // Check for space at the start of the buffer // We use < here because we don't want to have the case of m_current_offset == // m_current_gpu_position. That would mean the code above would assume the // GPU has caught up to us, which it hasn't. if (required_bytes < m_current_gpu_position) { // Reset offset to zero, since we're allocating behind the gpu now m_current_offset = 0; m_last_allocation_size = num_bytes; return true; } } // Is the GPU ahead of our current offset? if (m_current_offset < m_current_gpu_position) { // We have from m_current_offset..m_current_gpu_position space to use. const u32 remaining_bytes = m_current_gpu_position - m_current_offset; if (required_bytes < remaining_bytes) { // Place at the current position, since this is still behind the GPU. m_current_offset = Common::AlignUp(m_current_offset, alignment); m_last_allocation_size = num_bytes; return true; } } // Can we find a fence to wait on that will give us enough memory? if (WaitForClearSpace(required_bytes)) { m_current_offset = Common::AlignUp(m_current_offset, alignment); m_last_allocation_size = num_bytes; return true; } // We tried everything we could, and still couldn't get anything. This means that too much space // in the buffer is being used by the command buffer currently being recorded. Therefore, the // only option is to execute it, and wait until it's done. return false; } void StreamBuffer::CommitMemory(u32 final_num_bytes) { ASSERT((m_current_offset + final_num_bytes) <= m_size); ASSERT(final_num_bytes <= m_last_allocation_size); // For non-coherent mappings, flush the memory range if (!m_coherent_mapping) { VkMappedMemoryRange range = {VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, nullptr, m_memory, m_current_offset, final_num_bytes}; vkFlushMappedMemoryRanges(g_vulkan_context->GetDevice(), 1, &range); } m_current_offset += final_num_bytes; } void StreamBuffer::UpdateCurrentFencePosition() { // Don't create a tracking entry if the GPU is caught up with the buffer. if (m_current_offset == m_current_gpu_position) return; // Has the offset changed since the last fence? const u64 counter = g_command_buffer_mgr->GetCurrentFenceCounter(); if (!m_tracked_fences.empty() && m_tracked_fences.back().first == counter) { // Still haven't executed a command buffer, so just update the offset. m_tracked_fences.back().second = m_current_offset; return; } // New buffer, so update the GPU position while we're at it. UpdateGPUPosition(); m_tracked_fences.emplace_back(counter, m_current_offset); } void StreamBuffer::UpdateGPUPosition() { auto start = m_tracked_fences.begin(); auto end = start; const u64 completed_counter = g_command_buffer_mgr->GetCompletedFenceCounter(); while (end != m_tracked_fences.end() && completed_counter >= end->first) { m_current_gpu_position = end->second; ++end; } if (start != end) m_tracked_fences.erase(start, end); } bool StreamBuffer::WaitForClearSpace(u32 num_bytes) { u32 new_offset = 0; u32 new_gpu_position = 0; auto iter = m_tracked_fences.begin(); for (; iter != m_tracked_fences.end(); ++iter) { // Would this fence bring us in line with the GPU? // This is the "last resort" case, where a command buffer execution has been forced // after no additional data has been written to it, so we can assume that after the // fence has been signaled the entire buffer is now consumed. u32 gpu_position = iter->second; if (m_current_offset == gpu_position) { new_offset = 0; new_gpu_position = 0; break; } // Assuming that we wait for this fence, are we allocating in front of the GPU? if (m_current_offset > gpu_position) { // This would suggest the GPU has now followed us and wrapped around, so we have from // m_current_position..m_size free, as well as and 0..gpu_position. const u32 remaining_space_after_offset = m_size - m_current_offset; if (remaining_space_after_offset >= num_bytes) { // Switch to allocating in front of the GPU, using the remainder of the buffer. new_offset = m_current_offset; new_gpu_position = gpu_position; break; } // We can wrap around to the start, behind the GPU, if there is enough space. // We use > here because otherwise we'd end up lining up with the GPU, and then the // allocator would assume that the GPU has consumed what we just wrote. if (gpu_position > num_bytes) { new_offset = 0; new_gpu_position = gpu_position; break; } } else { // We're currently allocating behind the GPU. This would give us between the current // offset and the GPU position worth of space to work with. Again, > because we can't // align the GPU position with the buffer offset. u32 available_space_inbetween = gpu_position - m_current_offset; if (available_space_inbetween > num_bytes) { // Leave the offset as-is, but update the GPU position. new_offset = m_current_offset; new_gpu_position = gpu_position; break; } } } // Did any fences satisfy this condition? // Has the command buffer been executed yet? If not, the caller should execute it. if (iter == m_tracked_fences.end() || iter->first == g_command_buffer_mgr->GetCurrentFenceCounter()) { return false; } // Wait until this fence is signaled. This will fire the callback, updating the GPU position. g_command_buffer_mgr->WaitForFenceCounter(iter->first); m_tracked_fences.erase(m_tracked_fences.begin(), m_current_offset == iter->second ? m_tracked_fences.end() : ++iter); m_current_offset = new_offset; m_current_gpu_position = new_gpu_position; return true; } } // namespace Vulkan