// Copyright 2013 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "InputCommon/ControllerInterface/CoreDevice.h" #include #include #include #include #include #include #include #include "Common/MathUtil.h" #include "Common/Thread.h" namespace ciface::Core { // Compared to an input's current state (ideally 1.0) minus abs(initial_state) (ideally 0.0). // Note: Detect() logic assumes this is greater than 0.5. constexpr ControlState INPUT_DETECT_THRESHOLD = 0.55; class CombinedInput final : public Device::Input { public: using Inputs = std::pair; CombinedInput(std::string name, const Inputs& inputs) : m_name(std::move(name)), m_inputs(inputs) { } ControlState GetState() const override { ControlState result = 0; if (m_inputs.first) result = m_inputs.first->GetState(); if (m_inputs.second) result = std::max(result, m_inputs.second->GetState()); return result; } std::string GetName() const override { return m_name; } bool IsDetectable() const override { return false; } bool IsChild(const Input* input) const override { return m_inputs.first == input || m_inputs.second == input; } private: const std::string m_name; const std::pair m_inputs; }; Device::~Device() { // delete inputs for (Device::Input* input : m_inputs) delete input; // delete outputs for (Device::Output* output : m_outputs) delete output; } std::optional Device::GetPreferredId() const { return {}; } void Device::AddInput(Device::Input* const i) { m_inputs.push_back(i); } void Device::AddOutput(Device::Output* const o) { m_outputs.push_back(o); } std::string Device::GetQualifiedName() const { return fmt::format("{}/{}/{}", GetSource(), GetId(), GetName()); } auto Device::GetParentMostInput(Input* child) const -> Input* { for (auto* input : m_inputs) { if (input->IsChild(child)) { // Running recursively is currently unnecessary but it doesn't hurt. return GetParentMostInput(input); } } return child; } Device::Input* Device::FindInput(std::string_view name) const { for (Input* input : m_inputs) { if (input->IsMatchingName(name)) return input; } return nullptr; } Device::Output* Device::FindOutput(std::string_view name) const { for (Output* output : m_outputs) { if (output->IsMatchingName(name)) return output; } return nullptr; } bool Device::Control::IsMatchingName(std::string_view name) const { return GetName() == name; } ControlState Device::FullAnalogSurface::GetState() const { return (1 + std::max(0.0, m_high.GetState()) - std::max(0.0, m_low.GetState())) / 2; } std::string Device::FullAnalogSurface::GetName() const { // E.g. "Full Axis X+" return "Full " + m_high.GetName(); } bool Device::FullAnalogSurface::IsMatchingName(std::string_view name) const { if (Control::IsMatchingName(name)) return true; // Old naming scheme was "Axis X-+" which is too visually similar to "Axis X+". // This has caused countless problems for users with mysterious misconfigurations. // We match this old name to support old configurations. const auto old_name = m_low.GetName() + *m_high.GetName().rbegin(); return old_name == name; } void Device::AddCombinedInput(std::string name, const std::pair& inputs) { AddInput(new CombinedInput(std::move(name), {FindInput(inputs.first), FindInput(inputs.second)})); } // // DeviceQualifier :: ToString // // Get string from a device qualifier / serialize // std::string DeviceQualifier::ToString() const { if (source.empty() && (cid < 0) && name.empty()) return {}; if (cid > -1) return fmt::format("{}/{}/{}", source, cid, name); else return fmt::format("{}//{}", source, name); } // // DeviceQualifier :: FromString // // Set a device qualifier from a string / unserialize // void DeviceQualifier::FromString(const std::string& str) { *this = {}; std::istringstream ss(str); std::getline(ss, source, '/'); // silly std::getline(ss, name, '/'); std::istringstream(name) >> cid; std::getline(ss, name); } // // DeviceQualifier :: FromDevice // // Set a device qualifier from a device // void DeviceQualifier::FromDevice(const Device* const dev) { name = dev->GetName(); cid = dev->GetId(); source = dev->GetSource(); } bool DeviceQualifier::operator==(const Device* const dev) const { if (dev->GetId() == cid) if (dev->GetName() == name) if (dev->GetSource() == source) return true; return false; } bool DeviceQualifier::operator!=(const Device* const dev) const { return !operator==(dev); } bool DeviceQualifier::operator==(const DeviceQualifier& devq) const { return std::tie(cid, name, source) == std::tie(devq.cid, devq.name, devq.source); } bool DeviceQualifier::operator!=(const DeviceQualifier& devq) const { return !operator==(devq); } std::shared_ptr DeviceContainer::FindDevice(const DeviceQualifier& devq) const { std::lock_guard lk(m_devices_mutex); for (const auto& d : m_devices) { if (devq == d.get()) return d; } return nullptr; } std::vector> DeviceContainer::GetAllDevices() const { std::lock_guard lk(m_devices_mutex); std::vector> devices; for (const auto& d : m_devices) devices.emplace_back(d); return devices; } std::vector DeviceContainer::GetAllDeviceStrings() const { std::lock_guard lk(m_devices_mutex); std::vector device_strings; DeviceQualifier device_qualifier; for (const auto& d : m_devices) { device_qualifier.FromDevice(d.get()); device_strings.emplace_back(device_qualifier.ToString()); } return device_strings; } bool DeviceContainer::HasDefaultDevice() const { std::lock_guard lk(m_devices_mutex); // Devices are already sorted by priority return !m_devices.empty() && m_devices[0]->GetSortPriority() >= 0; } std::string DeviceContainer::GetDefaultDeviceString() const { std::lock_guard lk(m_devices_mutex); // Devices are already sorted by priority if (m_devices.empty() || m_devices[0]->GetSortPriority() < 0) return ""; DeviceQualifier device_qualifier; device_qualifier.FromDevice(m_devices[0].get()); return device_qualifier.ToString(); } Device::Input* DeviceContainer::FindInput(std::string_view name, const Device* def_dev) const { if (def_dev) { Device::Input* const inp = def_dev->FindInput(name); if (inp) return inp; } std::lock_guard lk(m_devices_mutex); for (const auto& d : m_devices) { Device::Input* const i = d->FindInput(name); if (i) return i; } return nullptr; } Device::Output* DeviceContainer::FindOutput(std::string_view name, const Device* def_dev) const { return def_dev->FindOutput(name); } bool DeviceContainer::HasConnectedDevice(const DeviceQualifier& qualifier) const { const auto device = FindDevice(qualifier); return device != nullptr && device->IsValid(); } // Wait for inputs on supplied devices. // Inputs are only considered if they are first seen in a neutral state. // This is useful for crazy flightsticks that have certain buttons that are always held down // and also properly handles detection when using "FullAnalogSurface" inputs. // Multiple detections are returned until the various timeouts have been reached. auto DeviceContainer::DetectInput(const std::vector& device_strings, std::chrono::milliseconds initial_wait, std::chrono::milliseconds confirmation_wait, std::chrono::milliseconds maximum_wait) const -> std::vector { struct InputState { InputState(ciface::Core::Device::Input* input_) : input{input_} { stats.Push(0.0); } ciface::Core::Device::Input* input; ControlState initial_state = input->GetState(); ControlState last_state = initial_state; MathUtil::RunningVariance stats; // Prevent multiiple detections until after release. bool is_ready = true; void Update() { const auto new_state = input->GetState(); if (!is_ready && new_state < (1 - INPUT_DETECT_THRESHOLD)) { last_state = new_state; is_ready = true; stats.Clear(); } const auto difference = new_state - last_state; stats.Push(difference); last_state = new_state; } bool IsPressed() { if (!is_ready) return false; // We want an input that was initially 0.0 and currently 1.0. const auto detection_score = (last_state - std::abs(initial_state)); return detection_score > INPUT_DETECT_THRESHOLD; } }; struct DeviceState { std::shared_ptr device; std::vector input_states; }; // Acquire devices and initial input states. std::vector device_states; for (const auto& device_string : device_strings) { DeviceQualifier dq; dq.FromString(device_string); auto device = FindDevice(dq); if (!device) continue; std::vector input_states; for (auto* input : device->Inputs()) { // Don't detect things like absolute cursor positions, accelerometers, or gyroscopes. if (!input->IsDetectable()) continue; // Undesirable axes will have negative values here when trying to map a // "FullAnalogSurface". input_states.push_back(InputState{input}); } if (!input_states.empty()) device_states.emplace_back(DeviceState{std::move(device), std::move(input_states)}); } if (device_states.empty()) return {}; std::vector detections; const auto start_time = Clock::now(); while (true) { const auto now = Clock::now(); const auto elapsed_time = now - start_time; if (elapsed_time >= maximum_wait || (detections.empty() && elapsed_time >= initial_wait) || (!detections.empty() && detections.back().release_time.has_value() && now >= *detections.back().release_time + confirmation_wait)) { break; } Common::SleepCurrentThread(10); for (auto& device_state : device_states) { for (std::size_t i = 0; i != device_state.input_states.size(); ++i) { auto& input_state = device_state.input_states[i]; input_state.Update(); if (input_state.IsPressed()) { input_state.is_ready = false; // Digital presses will evaluate as 1 here. // Analog presses will evaluate greater than 1. const auto smoothness = 1 / std::sqrt(input_state.stats.Variance() / input_state.stats.Mean()); InputDetection new_detection; new_detection.device = device_state.device; new_detection.input = input_state.input; new_detection.press_time = Clock::now(); new_detection.smoothness = smoothness; // We found an input. Add it to our detections. detections.emplace_back(std::move(new_detection)); } } } // Check for any releases of our detected inputs. for (auto& d : detections) { if (!d.release_time.has_value() && d.input->GetState() < (1 - INPUT_DETECT_THRESHOLD)) d.release_time = Clock::now(); } } return detections; } } // namespace ciface::Core