// Copyright 2014 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include #include #include // NOLINT #include "Common/Common.h" #include "Common/MathUtil.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/OpcodeDecoding.h" #include "VideoCommon/VertexLoaderBase.h" #include "VideoCommon/VertexLoaderManager.h" TEST(VertexLoaderUID, UniqueEnough) { std::unordered_set uids; TVtxDesc vtx_desc; VAT vat; uids.insert(VertexLoaderUID(vtx_desc, vat)); vtx_desc.low.Hex = 0x76543210; vtx_desc.high.Hex = 0xFEDCBA98; EXPECT_FALSE(uids.contains(VertexLoaderUID(vtx_desc, vat))); uids.insert(VertexLoaderUID(vtx_desc, vat)); vat.g0.Hex = 0xFFFFFFFF; vat.g1.Hex = 0xFFFFFFFF; vat.g2.Hex = 0xFFFFFFFF; EXPECT_FALSE(uids.contains(VertexLoaderUID(vtx_desc, vat))); uids.insert(VertexLoaderUID(vtx_desc, vat)); } static u8 input_memory[16 * 1024 * 1024]; static u8 output_memory[16 * 1024 * 1024]; class VertexLoaderTest : public testing::Test { protected: void SetUp() override { memset(input_memory, 0, sizeof(input_memory)); memset(output_memory, 0xFF, sizeof(input_memory)); m_vtx_desc.low.Hex = 0; m_vtx_desc.high.Hex = 0; m_vtx_attr.g0.Hex = 0; m_vtx_attr.g1.Hex = 0; m_vtx_attr.g2.Hex = 0; m_loader = nullptr; ResetPointers(); } void CreateAndCheckSizes(size_t input_size, size_t output_size) { m_loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr); ASSERT_EQ(input_size, m_loader->m_vertex_size); ASSERT_EQ((int)output_size, m_loader->m_native_vtx_decl.stride); } template void Input(T val) { // Write swapped. m_src.Write(val); } void ExpectOut(float expected) { // Read unswapped. const float actual = m_dst.Read(); if (!actual || std::isnan(actual)) EXPECT_EQ(std::bit_cast(expected), std::bit_cast(actual)); else EXPECT_EQ(expected, actual); } void RunVertices(int count, int expected_count = -1) { if (expected_count == -1) expected_count = count; ResetPointers(); int actual_count = m_loader->RunVertices(m_src.GetPointer(), m_dst.GetPointer(), count); EXPECT_EQ(actual_count, expected_count); } void ResetPointers() { m_src = DataReader(input_memory, input_memory + sizeof(input_memory)); m_dst = DataReader(output_memory, output_memory + sizeof(output_memory)); } DataReader m_src; DataReader m_dst; TVtxDesc m_vtx_desc; VAT m_vtx_attr; std::unique_ptr m_loader; }; class VertexLoaderParamTest : public VertexLoaderTest, public ::testing::WithParamInterface< std::tuple> { }; INSTANTIATE_TEST_SUITE_P( AllCombinations, VertexLoaderParamTest, ::testing::Combine( ::testing::Values(VertexComponentFormat::Direct, VertexComponentFormat::Index8, VertexComponentFormat::Index16), ::testing::Values(ComponentFormat::UByte, ComponentFormat::Byte, ComponentFormat::UShort, ComponentFormat::Short, ComponentFormat::Float, ComponentFormat::InvalidFloat5, ComponentFormat::InvalidFloat6, ComponentFormat::InvalidFloat7), ::testing::Values(CoordComponentCount::XY, CoordComponentCount::XYZ), ::testing::Values(0, 1, 31) // frac )); TEST_P(VertexLoaderParamTest, PositionAll) { VertexComponentFormat addr; ComponentFormat format; CoordComponentCount elements; int frac; std::tie(addr, format, elements, frac) = GetParam(); this->m_vtx_desc.low.Position = addr; this->m_vtx_attr.g0.PosFormat = format; this->m_vtx_attr.g0.PosElements = elements; this->m_vtx_attr.g0.PosFrac = frac; this->m_vtx_attr.g0.ByteDequant = true; const u32 elem_size = GetElementSize(format); const u32 elem_count = elements == CoordComponentCount::XY ? 2 : 3; std::vector values = { std::numeric_limits::lowest(), std::numeric_limits::denorm_min(), std::numeric_limits::min(), std::numeric_limits::max(), std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity(), -0x8000, -0x80, -1, -0.0, 0, 1, 123, 0x7F, 0xFF, 0x7FFF, 0xFFFF, 12345678, }; ASSERT_EQ(0u, values.size() % 2); ASSERT_EQ(0u, values.size() % 3); int count = (int)values.size() / elem_count; size_t input_size = elem_count * elem_size; if (IsIndexed(addr)) { input_size = addr == VertexComponentFormat::Index8 ? 1 : 2; for (int i = 0; i < count; i++) { if (addr == VertexComponentFormat::Index8) Input(i); else Input(i); } VertexLoaderManager::cached_arraybases[CPArray::Position] = m_src.GetPointer(); g_main_cp_state.array_strides[CPArray::Position] = elem_count * elem_size; } CreateAndCheckSizes(input_size, elem_count * sizeof(float)); for (float value : values) { switch (format) { case ComponentFormat::UByte: Input(MathUtil::SaturatingCast(value)); break; case ComponentFormat::Byte: Input(MathUtil::SaturatingCast(value)); break; case ComponentFormat::UShort: Input(MathUtil::SaturatingCast(value)); break; case ComponentFormat::Short: Input(MathUtil::SaturatingCast(value)); break; case ComponentFormat::Float: case ComponentFormat::InvalidFloat5: case ComponentFormat::InvalidFloat6: case ComponentFormat::InvalidFloat7: Input(value); break; } } RunVertices(count); float scale = 1.f / (1u << (format >= ComponentFormat::Float ? 0 : frac)); for (auto iter = values.begin(); iter != values.end();) { float f, g; switch (format) { case ComponentFormat::UByte: f = MathUtil::SaturatingCast(*iter++); g = MathUtil::SaturatingCast(*iter++); break; case ComponentFormat::Byte: f = MathUtil::SaturatingCast(*iter++); g = MathUtil::SaturatingCast(*iter++); break; case ComponentFormat::UShort: f = MathUtil::SaturatingCast(*iter++); g = MathUtil::SaturatingCast(*iter++); break; case ComponentFormat::Short: f = MathUtil::SaturatingCast(*iter++); g = MathUtil::SaturatingCast(*iter++); break; case ComponentFormat::Float: case ComponentFormat::InvalidFloat5: case ComponentFormat::InvalidFloat6: case ComponentFormat::InvalidFloat7: f = *iter++; g = *iter++; break; default: FAIL() << "Unknown format"; } ExpectOut(f * scale); ExpectOut(g * scale); } } TEST_F(VertexLoaderTest, PositionIndex16FloatXY) { m_vtx_desc.low.Position = VertexComponentFormat::Index16; m_vtx_attr.g0.PosFormat = ComponentFormat::Float; CreateAndCheckSizes(sizeof(u16), 2 * sizeof(float)); Input(1); Input(0); VertexLoaderManager::cached_arraybases[CPArray::Position] = m_src.GetPointer(); g_main_cp_state.array_strides[CPArray::Position] = sizeof(float); // ;) Input(1.f); Input(2.f); Input(3.f); RunVertices(2); ExpectOut(2); ExpectOut(3); ExpectOut(1); ExpectOut(2); } class VertexLoaderSpeedTest : public VertexLoaderTest, public ::testing::WithParamInterface> { }; INSTANTIATE_TEST_SUITE_P( FormatsAndElements, VertexLoaderSpeedTest, ::testing::Combine(::testing::Values(ComponentFormat::UByte, ComponentFormat::Byte, ComponentFormat::UShort, ComponentFormat::Short, ComponentFormat::Float), ::testing::Values(0, 1))); TEST_P(VertexLoaderSpeedTest, PositionDirectAll) { ComponentFormat format; int elements_i; std::tie(format, elements_i) = GetParam(); CoordComponentCount elements = static_cast(elements_i); fmt::print("format: {}, elements: {}\n", format, elements); const u32 elem_count = elements == CoordComponentCount::XY ? 2 : 3; m_vtx_desc.low.Position = VertexComponentFormat::Direct; m_vtx_attr.g0.PosFormat = format; m_vtx_attr.g0.PosElements = elements; const size_t elem_size = GetElementSize(format); CreateAndCheckSizes(elem_count * elem_size, elem_count * sizeof(float)); for (int i = 0; i < 1000; ++i) RunVertices(100000); } TEST_P(VertexLoaderSpeedTest, TexCoordSingleElement) { ComponentFormat format; int elements_i; std::tie(format, elements_i) = GetParam(); TexComponentCount elements = static_cast(elements_i); fmt::print("format: {}, elements: {}\n", format, elements); const u32 elem_count = elements == TexComponentCount::S ? 1 : 2; m_vtx_desc.low.Position = VertexComponentFormat::Direct; m_vtx_attr.g0.PosFormat = ComponentFormat::Byte; m_vtx_desc.high.Tex0Coord = VertexComponentFormat::Direct; m_vtx_attr.g0.Tex0CoordFormat = format; m_vtx_attr.g0.Tex0CoordElements = elements; const size_t elem_size = GetElementSize(format); CreateAndCheckSizes(2 * sizeof(s8) + elem_count * elem_size, 2 * sizeof(float) + elem_count * sizeof(float)); for (int i = 0; i < 1000; ++i) RunVertices(100000); } TEST_F(VertexLoaderTest, LargeFloatVertexSpeed) { // Enables most attributes in floating point indexed mode to test speed. m_vtx_desc.low.PosMatIdx = true; m_vtx_desc.low.Tex0MatIdx = true; m_vtx_desc.low.Tex1MatIdx = true; m_vtx_desc.low.Tex2MatIdx = true; m_vtx_desc.low.Tex3MatIdx = true; m_vtx_desc.low.Tex4MatIdx = true; m_vtx_desc.low.Tex5MatIdx = true; m_vtx_desc.low.Tex6MatIdx = true; m_vtx_desc.low.Tex7MatIdx = true; m_vtx_desc.low.Position = VertexComponentFormat::Index16; m_vtx_desc.low.Normal = VertexComponentFormat::Index16; m_vtx_desc.low.Color0 = VertexComponentFormat::Index16; m_vtx_desc.low.Color1 = VertexComponentFormat::Index16; m_vtx_desc.high.Tex0Coord = VertexComponentFormat::Index16; m_vtx_desc.high.Tex1Coord = VertexComponentFormat::Index16; m_vtx_desc.high.Tex2Coord = VertexComponentFormat::Index16; m_vtx_desc.high.Tex3Coord = VertexComponentFormat::Index16; m_vtx_desc.high.Tex4Coord = VertexComponentFormat::Index16; m_vtx_desc.high.Tex5Coord = VertexComponentFormat::Index16; m_vtx_desc.high.Tex6Coord = VertexComponentFormat::Index16; m_vtx_desc.high.Tex7Coord = VertexComponentFormat::Index16; m_vtx_attr.g0.PosElements = CoordComponentCount::XYZ; m_vtx_attr.g0.PosFormat = ComponentFormat::Float; m_vtx_attr.g0.NormalElements = NormalComponentCount::NTB; m_vtx_attr.g0.NormalFormat = ComponentFormat::Float; m_vtx_attr.g0.Color0Elements = ColorComponentCount::RGBA; m_vtx_attr.g0.Color0Comp = ColorFormat::RGBA8888; m_vtx_attr.g0.Color1Elements = ColorComponentCount::RGBA; m_vtx_attr.g0.Color1Comp = ColorFormat::RGBA8888; m_vtx_attr.g0.Tex0CoordElements = TexComponentCount::ST; m_vtx_attr.g0.Tex0CoordFormat = ComponentFormat::Float; m_vtx_attr.g1.Tex1CoordElements = TexComponentCount::ST; m_vtx_attr.g1.Tex1CoordFormat = ComponentFormat::Float; m_vtx_attr.g1.Tex2CoordElements = TexComponentCount::ST; m_vtx_attr.g1.Tex2CoordFormat = ComponentFormat::Float; m_vtx_attr.g1.Tex3CoordElements = TexComponentCount::ST; m_vtx_attr.g1.Tex3CoordFormat = ComponentFormat::Float; m_vtx_attr.g1.Tex4CoordElements = TexComponentCount::ST; m_vtx_attr.g1.Tex4CoordFormat = ComponentFormat::Float; m_vtx_attr.g2.Tex5CoordElements = TexComponentCount::ST; m_vtx_attr.g2.Tex5CoordFormat = ComponentFormat::Float; m_vtx_attr.g2.Tex6CoordElements = TexComponentCount::ST; m_vtx_attr.g2.Tex6CoordFormat = ComponentFormat::Float; m_vtx_attr.g2.Tex7CoordElements = TexComponentCount::ST; m_vtx_attr.g2.Tex7CoordFormat = ComponentFormat::Float; CreateAndCheckSizes(33, 156); for (int i = 0; i < NUM_VERTEX_COMPONENT_ARRAYS; i++) { VertexLoaderManager::cached_arraybases[static_cast(i)] = m_src.GetPointer(); g_main_cp_state.array_strides[static_cast(i)] = 129; } // This test is only done 100x in a row since it's ~20x slower using the // current vertex loader implementation. for (int i = 0; i < 100; ++i) RunVertices(100000); } TEST_F(VertexLoaderTest, DirectAllComponents) { m_vtx_desc.low.PosMatIdx = true; m_vtx_desc.low.Tex0MatIdx = true; m_vtx_desc.low.Tex1MatIdx = true; m_vtx_desc.low.Tex2MatIdx = true; m_vtx_desc.low.Tex3MatIdx = true; m_vtx_desc.low.Tex4MatIdx = true; m_vtx_desc.low.Tex5MatIdx = true; m_vtx_desc.low.Tex6MatIdx = true; m_vtx_desc.low.Tex7MatIdx = true; m_vtx_desc.low.Position = VertexComponentFormat::Direct; m_vtx_desc.low.Normal = VertexComponentFormat::Direct; m_vtx_desc.low.Color0 = VertexComponentFormat::Direct; m_vtx_desc.low.Color1 = VertexComponentFormat::Direct; m_vtx_desc.high.Tex0Coord = VertexComponentFormat::Direct; m_vtx_desc.high.Tex1Coord = VertexComponentFormat::Direct; m_vtx_desc.high.Tex2Coord = VertexComponentFormat::Direct; m_vtx_desc.high.Tex3Coord = VertexComponentFormat::Direct; m_vtx_desc.high.Tex4Coord = VertexComponentFormat::Direct; m_vtx_desc.high.Tex5Coord = VertexComponentFormat::Direct; m_vtx_desc.high.Tex6Coord = VertexComponentFormat::Direct; m_vtx_desc.high.Tex7Coord = VertexComponentFormat::Direct; m_vtx_attr.g0.PosElements = CoordComponentCount::XYZ; m_vtx_attr.g0.PosFormat = ComponentFormat::Float; m_vtx_attr.g0.NormalElements = NormalComponentCount::NTB; m_vtx_attr.g0.NormalFormat = ComponentFormat::Float; m_vtx_attr.g0.Color0Elements = ColorComponentCount::RGBA; m_vtx_attr.g0.Color0Comp = ColorFormat::RGBA8888; m_vtx_attr.g0.Color1Elements = ColorComponentCount::RGBA; m_vtx_attr.g0.Color1Comp = ColorFormat::RGBA8888; m_vtx_attr.g0.Tex0CoordElements = TexComponentCount::ST; m_vtx_attr.g0.Tex0CoordFormat = ComponentFormat::Float; m_vtx_attr.g1.Tex1CoordElements = TexComponentCount::ST; m_vtx_attr.g1.Tex1CoordFormat = ComponentFormat::Float; m_vtx_attr.g1.Tex2CoordElements = TexComponentCount::ST; m_vtx_attr.g1.Tex2CoordFormat = ComponentFormat::Float; m_vtx_attr.g1.Tex3CoordElements = TexComponentCount::ST; m_vtx_attr.g1.Tex3CoordFormat = ComponentFormat::Float; m_vtx_attr.g1.Tex4CoordElements = TexComponentCount::ST; m_vtx_attr.g1.Tex4CoordFormat = ComponentFormat::Float; m_vtx_attr.g2.Tex5CoordElements = TexComponentCount::ST; m_vtx_attr.g2.Tex5CoordFormat = ComponentFormat::Float; m_vtx_attr.g2.Tex6CoordElements = TexComponentCount::ST; m_vtx_attr.g2.Tex6CoordFormat = ComponentFormat::Float; m_vtx_attr.g2.Tex7CoordElements = TexComponentCount::ST; m_vtx_attr.g2.Tex7CoordFormat = ComponentFormat::Float; CreateAndCheckSizes(129, 39 * sizeof(float)); // Pos matrix idx Input(20); // Tex matrix idx Input(0); Input(1); Input(2); Input(3); Input(4); Input(5); Input(6); Input(7); // Position Input(-1.0f); Input(-2.0f); Input(-3.0f); // Normal Input(-4.0f); Input(-5.0f); Input(-6.0f); // Tangent Input(-7.0f); Input(-8.0f); Input(-9.0f); // Binormal Input(-10.0f); Input(-11.0f); Input(-12.0f); // Colors Input(0x01234567); Input(0x89abcdef); // Texture coordinates Input(0.1f); Input(-0.9f); Input(1.1f); Input(-1.9f); Input(2.1f); Input(-2.9f); Input(3.1f); Input(-3.9f); Input(4.1f); Input(-4.9f); Input(5.1f); Input(-5.9f); Input(6.1f); Input(-6.9f); Input(7.1f); Input(-7.9f); RunVertices(1); // Position matrix ASSERT_EQ(m_loader->m_native_vtx_decl.posmtx.offset, 0 * sizeof(float)); EXPECT_EQ((m_dst.Read()), 20u); // Position ASSERT_EQ(m_loader->m_native_vtx_decl.position.offset, 1 * sizeof(float)); ExpectOut(-1.0f); ExpectOut(-2.0f); ExpectOut(-3.0f); // Normal ASSERT_EQ(m_loader->m_native_vtx_decl.normals[0].offset, 4 * sizeof(float)); ExpectOut(-4.0f); ExpectOut(-5.0f); ExpectOut(-6.0f); // Tangent ASSERT_EQ(m_loader->m_native_vtx_decl.normals[1].offset, 7 * sizeof(float)); ExpectOut(-7.0f); ExpectOut(-8.0f); ExpectOut(-9.0f); // Binormal ASSERT_EQ(m_loader->m_native_vtx_decl.normals[2].offset, 10 * sizeof(float)); ExpectOut(-10.0f); ExpectOut(-11.0f); ExpectOut(-12.0f); // Colors ASSERT_EQ(m_loader->m_native_vtx_decl.colors[0].offset, 13 * sizeof(float)); EXPECT_EQ((m_dst.Read()), 0x01234567u); ASSERT_EQ(m_loader->m_native_vtx_decl.colors[1].offset, 14 * sizeof(float)); EXPECT_EQ((m_dst.Read()), 0x89abcdefu); // Texture coordinates and matrices (interleaved) ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[0].offset, 15 * sizeof(float)); ExpectOut(0.1f); // S ExpectOut(-0.9f); // T ExpectOut(0.0f); // matrix (yes, a float) ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[1].offset, 18 * sizeof(float)); ExpectOut(1.1f); ExpectOut(-1.9f); ExpectOut(1.0f); ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[2].offset, 21 * sizeof(float)); ExpectOut(2.1f); ExpectOut(-2.9f); ExpectOut(2.0f); ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[3].offset, 24 * sizeof(float)); ExpectOut(3.1f); ExpectOut(-3.9f); ExpectOut(3.0f); ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[4].offset, 27 * sizeof(float)); ExpectOut(4.1f); ExpectOut(-4.9f); ExpectOut(4.0f); ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[5].offset, 30 * sizeof(float)); ExpectOut(5.1f); ExpectOut(-5.9f); ExpectOut(5.0f); ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[6].offset, 33 * sizeof(float)); ExpectOut(6.1f); ExpectOut(-6.9f); ExpectOut(6.0f); ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[7].offset, 36 * sizeof(float)); ExpectOut(7.1f); ExpectOut(-7.9f); ExpectOut(7.0f); } class VertexLoaderNormalTest : public VertexLoaderTest, public ::testing::WithParamInterface< std::tuple> { }; INSTANTIATE_TEST_SUITE_P( AllCombinations, VertexLoaderNormalTest, ::testing::Combine( ::testing::Values(VertexComponentFormat::NotPresent, VertexComponentFormat::Direct, VertexComponentFormat::Index8, VertexComponentFormat::Index16), ::testing::Values(ComponentFormat::UByte, ComponentFormat::Byte, ComponentFormat::UShort, ComponentFormat::Short, ComponentFormat::Float, ComponentFormat::InvalidFloat5, ComponentFormat::InvalidFloat6, ComponentFormat::InvalidFloat7), ::testing::Values(NormalComponentCount::N, NormalComponentCount::NTB), ::testing::Values(false, true))); TEST_P(VertexLoaderNormalTest, NormalAll) { VertexComponentFormat addr; ComponentFormat format; NormalComponentCount elements; bool index3; std::tie(addr, format, elements, index3) = GetParam(); m_vtx_desc.low.Position = VertexComponentFormat::Direct; m_vtx_attr.g0.PosFormat = ComponentFormat::Float; m_vtx_attr.g0.PosElements = CoordComponentCount::XY; m_vtx_attr.g0.PosFrac = 0; m_vtx_desc.low.Normal = addr; m_vtx_attr.g0.NormalFormat = format; m_vtx_attr.g0.NormalElements = elements; m_vtx_attr.g0.NormalIndex3 = index3; const u32 in_size = [&]() -> u32 { if (addr == VertexComponentFormat::NotPresent) return 0; if (IsIndexed(addr)) { const u32 base_size = (addr == VertexComponentFormat::Index8) ? 1 : 2; if (elements == NormalComponentCount::NTB) return (index3 ? 3 : 1) * base_size; else return 1 * base_size; } else { const u32 base_count = (elements == NormalComponentCount::NTB) ? 9 : 3; const u32 base_size = GetElementSize(format); return base_count * base_size; } }(); const u32 out_size = [&]() -> u32 { if (addr == VertexComponentFormat::NotPresent) return 0; const u32 base_count = (elements == NormalComponentCount::NTB) ? 9 : 3; return base_count * sizeof(float); }(); CreateAndCheckSizes(2 * sizeof(float) + in_size, 2 * sizeof(float) + out_size); auto input_with_expected_type = [&](float value) { switch (format) { case ComponentFormat::UByte: Input(value * (1 << 7)); break; case ComponentFormat::Byte: Input(value * (1 << 6)); break; case ComponentFormat::UShort: Input(value * (1 << 15)); break; case ComponentFormat::Short: Input(value * (1 << 14)); break; case ComponentFormat::Float: case ComponentFormat::InvalidFloat5: case ComponentFormat::InvalidFloat6: case ComponentFormat::InvalidFloat7: Input(value); break; } }; auto create_normal = [&](int counter_base) { if (addr == VertexComponentFormat::Direct) { input_with_expected_type(counter_base / 32.f); input_with_expected_type((counter_base + 1) / 32.f); input_with_expected_type((counter_base + 2) / 32.f); } else if (addr == VertexComponentFormat::Index8) { // We set up arrays so that this works Input(counter_base); } else if (addr == VertexComponentFormat::Index16) { Input(counter_base); } // Do nothing for NotPresent }; auto create_tangent_and_binormal = [&](int counter_base) { if (IsIndexed(addr)) { // With NormalIndex3, specifying the same index 3 times should give the same result // as specifying one index in non-index3 mode (as the index is biased by bytes). // If index3 is disabled, we don't want to write any more indices. if (index3) { // Tangent create_normal(counter_base); // Binormal create_normal(counter_base); } } else { // Tangent create_normal(counter_base + 3); // Binormal create_normal(counter_base + 6); } }; // Create our two vertices // Position 1 Input(4.0f); Input(8.0f); // Normal 1 create_normal(1); if (elements == NormalComponentCount::NTB) { create_tangent_and_binormal(1); } // Position 2 Input(6.0f); Input(12.0f); // Normal 1 create_normal(10); if (elements == NormalComponentCount::NTB) { create_tangent_and_binormal(10); } // Create an array for indexed representations for (int i = 0; i < NUM_VERTEX_COMPONENT_ARRAYS; i++) { VertexLoaderManager::cached_arraybases[static_cast(i)] = m_src.GetPointer(); g_main_cp_state.array_strides[static_cast(i)] = GetElementSize(format); } for (int i = 0; i < 32; i++) input_with_expected_type(i / 32.f); // Pre-fill these values to detect if they're modified VertexLoaderManager::normal_cache = {-42.f, -43.f, -44.f, -45.f}; VertexLoaderManager::binormal_cache = {42.f, 43.f, 44.f, 45.f}; VertexLoaderManager::tangent_cache = {46.f, 47.f, 48.f, 49.f}; RunVertices(2); // First vertex, position ExpectOut(4.0f); ExpectOut(8.0f); if (addr != VertexComponentFormat::NotPresent) { // Normal ExpectOut(1 / 32.f); ExpectOut(2 / 32.f); ExpectOut(3 / 32.f); if (elements == NormalComponentCount::NTB) { // Tangent ExpectOut(4 / 32.f); ExpectOut(5 / 32.f); ExpectOut(6 / 32.f); // Binormal ExpectOut(7 / 32.f); ExpectOut(8 / 32.f); ExpectOut(9 / 32.f); } } // Second vertex, position ExpectOut(6.0f); ExpectOut(12.0f); if (addr != VertexComponentFormat::NotPresent) { // Normal ExpectOut(10 / 32.f); ExpectOut(11 / 32.f); ExpectOut(12 / 32.f); EXPECT_EQ(VertexLoaderManager::normal_cache[0], 10 / 32.f); EXPECT_EQ(VertexLoaderManager::normal_cache[1], 11 / 32.f); EXPECT_EQ(VertexLoaderManager::normal_cache[2], 12 / 32.f); if (elements == NormalComponentCount::NTB) { // Tangent ExpectOut(13 / 32.f); ExpectOut(14 / 32.f); ExpectOut(15 / 32.f); // Binormal ExpectOut(16 / 32.f); ExpectOut(17 / 32.f); ExpectOut(18 / 32.f); EXPECT_EQ(VertexLoaderManager::tangent_cache[0], 13 / 32.f); EXPECT_EQ(VertexLoaderManager::tangent_cache[1], 14 / 32.f); EXPECT_EQ(VertexLoaderManager::tangent_cache[2], 15 / 32.f); // Last index is padding/junk EXPECT_EQ(VertexLoaderManager::binormal_cache[0], 16 / 32.f); EXPECT_EQ(VertexLoaderManager::binormal_cache[1], 17 / 32.f); EXPECT_EQ(VertexLoaderManager::binormal_cache[2], 18 / 32.f); } } if (addr == VertexComponentFormat::NotPresent) { // Expect these to not be written EXPECT_EQ(VertexLoaderManager::normal_cache[0], -42.f); EXPECT_EQ(VertexLoaderManager::normal_cache[1], -43.f); EXPECT_EQ(VertexLoaderManager::normal_cache[2], -44.f); EXPECT_EQ(VertexLoaderManager::normal_cache[3], -45.f); } if (addr == VertexComponentFormat::NotPresent || elements == NormalComponentCount::N) { // Expect these to not be written EXPECT_EQ(VertexLoaderManager::binormal_cache[0], 42.f); EXPECT_EQ(VertexLoaderManager::binormal_cache[1], 43.f); EXPECT_EQ(VertexLoaderManager::binormal_cache[2], 44.f); EXPECT_EQ(VertexLoaderManager::binormal_cache[3], 45.f); EXPECT_EQ(VertexLoaderManager::tangent_cache[0], 46.f); EXPECT_EQ(VertexLoaderManager::tangent_cache[1], 47.f); EXPECT_EQ(VertexLoaderManager::tangent_cache[2], 48.f); EXPECT_EQ(VertexLoaderManager::tangent_cache[3], 49.f); } } class VertexLoaderSkippedColorsTest : public VertexLoaderTest, public ::testing::WithParamInterface> { }; INSTANTIATE_TEST_SUITE_P(AllCombinations, VertexLoaderSkippedColorsTest, ::testing::Combine(::testing::Values(false, true), ::testing::Values(false, true))); TEST_P(VertexLoaderSkippedColorsTest, SkippedColors) { bool enable_color_0, enable_color_1; std::tie(enable_color_0, enable_color_1) = GetParam(); size_t input_size = 1; size_t output_size = 3 * sizeof(float); size_t color_0_offset = 0; size_t color_1_offset = 0; m_vtx_desc.low.Position = VertexComponentFormat::Index8; if (enable_color_0) { m_vtx_desc.low.Color0 = VertexComponentFormat::Index8; input_size++; color_0_offset = output_size; output_size += sizeof(u32); } if (enable_color_1) { m_vtx_desc.low.Color1 = VertexComponentFormat::Index8; input_size++; color_1_offset = output_size; output_size += sizeof(u32); } m_vtx_attr.g0.PosElements = CoordComponentCount::XYZ; m_vtx_attr.g0.PosFormat = ComponentFormat::Float; m_vtx_attr.g0.Color0Elements = ColorComponentCount::RGBA; m_vtx_attr.g0.Color0Comp = ColorFormat::RGBA8888; m_vtx_attr.g0.Color1Elements = ColorComponentCount::RGBA; m_vtx_attr.g0.Color1Comp = ColorFormat::RGBA8888; CreateAndCheckSizes(input_size, output_size); // Vertex 0 Input(1); if (enable_color_0) Input(1); if (enable_color_1) Input(1); // Vertex 1 Input(0); if (enable_color_0) Input(0); if (enable_color_1) Input(0); // Position array VertexLoaderManager::cached_arraybases[CPArray::Position] = m_src.GetPointer(); g_main_cp_state.array_strides[CPArray::Position] = sizeof(float); // so 1, 2, 3 for index 0; 2, 3, 4 for index 1 Input(1.f); Input(2.f); Input(3.f); Input(4.f); // Color array 0 VertexLoaderManager::cached_arraybases[CPArray::Color0] = m_src.GetPointer(); g_main_cp_state.array_strides[CPArray::Color0] = sizeof(u32); Input(0x00010203u); Input(0x04050607u); // Color array 1 VertexLoaderManager::cached_arraybases[CPArray::Color1] = m_src.GetPointer(); g_main_cp_state.array_strides[CPArray::Color1] = sizeof(u32); Input(0x08090a0bu); Input(0x0c0d0e0fu); ASSERT_EQ(m_loader->m_native_vtx_decl.colors[0].enable, enable_color_0); if (enable_color_0) { ASSERT_EQ(m_loader->m_native_vtx_decl.colors[0].offset, color_0_offset); } ASSERT_EQ(m_loader->m_native_vtx_decl.colors[1].enable, enable_color_1); if (enable_color_1) { ASSERT_EQ(m_loader->m_native_vtx_decl.colors[1].offset, color_1_offset); } RunVertices(2); // Vertex 0 ExpectOut(2); ExpectOut(3); ExpectOut(4); if (enable_color_0) { EXPECT_EQ((m_dst.Read()), 0x04050607u); } if (enable_color_1) { EXPECT_EQ((m_dst.Read()), 0x0c0d0e0fu); } // Vertex 1 ExpectOut(1); ExpectOut(2); ExpectOut(3); if (enable_color_0) { EXPECT_EQ((m_dst.Read()), 0x00010203u); } if (enable_color_1) { EXPECT_EQ((m_dst.Read()), 0x08090a0bu); } } class VertexLoaderSkippedTexCoordsTest : public VertexLoaderTest, public ::testing::WithParamInterface { public: static constexpr u32 NUM_COMPONENTS_TO_TEST = 3; static constexpr u32 NUM_PARAMETERS_PER_COMPONENT = 3; static constexpr u32 NUM_COMBINATIONS = 1 << (NUM_COMPONENTS_TO_TEST * NUM_PARAMETERS_PER_COMPONENT); }; INSTANTIATE_TEST_SUITE_P(AllCombinations, VertexLoaderSkippedTexCoordsTest, ::testing::Range(0u, VertexLoaderSkippedTexCoordsTest::NUM_COMBINATIONS)); TEST_P(VertexLoaderSkippedTexCoordsTest, SkippedTextures) { std::array enable_tex, enable_matrix, use_st; const u32 param = GetParam(); for (u32 component = 0; component < NUM_COMPONENTS_TO_TEST; component++) { const u32 bits = param >> (component * NUM_PARAMETERS_PER_COMPONENT); enable_tex[component] = (bits & 1); enable_matrix[component] = (bits & 2); use_st[component] = (bits & 4); } size_t input_size = 1; size_t output_size = 3 * sizeof(float); std::array component_enabled{}; std::array component_offset{}; m_vtx_desc.low.Position = VertexComponentFormat::Index8; m_vtx_attr.g0.PosElements = CoordComponentCount::XYZ; m_vtx_attr.g0.PosFormat = ComponentFormat::Float; for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++) { if (enable_matrix[i] || enable_tex[i]) { component_enabled[i] = true; component_offset[i] = output_size; if (enable_matrix[i]) { output_size += 3 * sizeof(float); } else { if (use_st[i]) { output_size += 2 * sizeof(float); } else { output_size += sizeof(float); } } } if (enable_matrix[i]) { m_vtx_desc.low.TexMatIdx[i] = enable_matrix[i]; input_size++; } if (enable_tex[i]) { m_vtx_desc.high.TexCoord[i] = VertexComponentFormat::Index8; input_size++; } m_vtx_attr.SetTexElements(i, use_st[i] ? TexComponentCount::ST : TexComponentCount::S); m_vtx_attr.SetTexFormat(i, ComponentFormat::Float); m_vtx_attr.SetTexFrac(i, 0); } CreateAndCheckSizes(input_size, output_size); // Vertex 0 for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++) { if (enable_matrix[i]) Input(u8(20 + i)); } Input(1); // Position for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++) { if (enable_tex[i]) Input(1); } // Vertex 1 for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++) { if (enable_matrix[i]) Input(u8(10 + i)); } Input(0); // Position for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++) { if (enable_tex[i]) Input(0); } // Position array VertexLoaderManager::cached_arraybases[CPArray::Position] = m_src.GetPointer(); g_main_cp_state.array_strides[CPArray::Position] = sizeof(float); // so 1, 2, 3 for index 0; 2, 3, 4 for index 1 Input(1.f); Input(2.f); Input(3.f); Input(4.f); // Texture coord arrays for (u8 i = 0; i < NUM_COMPONENTS_TO_TEST; i++) { VertexLoaderManager::cached_arraybases[CPArray::TexCoord0 + i] = m_src.GetPointer(); g_main_cp_state.array_strides[CPArray::TexCoord0 + i] = 2 * sizeof(float); Input(i * 100 + 11); Input(i * 100 + 12); Input(i * 100 + 21); Input(i * 100 + 22); } for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++) { ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[i].enable, component_enabled[i]); if (component_enabled[i]) { ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[i].offset, component_offset[i]); } } RunVertices(2); // Vertex 0 ExpectOut(2); ExpectOut(3); ExpectOut(4); for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++) { size_t num_read = 0; if (enable_tex[i]) { ExpectOut(i * 100 + 21); num_read++; if (use_st[i]) { ExpectOut(i * 100 + 22); num_read++; } } if (enable_matrix[i]) { // With a matrix there are always 3 components; otherwise-unused components should be 0 while (num_read++ < 2) ExpectOut(0); ExpectOut(20 + i); } } // Vertex 1 ExpectOut(1); ExpectOut(2); ExpectOut(3); for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++) { size_t num_read = 0; if (enable_tex[i]) { ExpectOut(i * 100 + 11); num_read++; if (use_st[i]) { ExpectOut(i * 100 + 12); num_read++; } } if (enable_matrix[i]) { // With a matrix there are always 3 components; otherwise-unused components should be 0 while (num_read++ < 2) ExpectOut(0); ExpectOut(10 + i); } } } // For gtest, which doesn't know about our fmt::formatters by default static void PrintTo(const VertexComponentFormat& t, std::ostream* os) { *os << fmt::to_string(t); } static void PrintTo(const ComponentFormat& t, std::ostream* os) { *os << fmt::to_string(t); } static void PrintTo(const CoordComponentCount& t, std::ostream* os) { *os << fmt::to_string(t); } static void PrintTo(const NormalComponentCount& t, std::ostream* os) { *os << fmt::to_string(t); }