// Copyright 2017 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoCommon/TextureConverterShaderGen.h" #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" namespace TextureConversionShaderGen { TCShaderUid GetShaderUid(EFBCopyFormat dst_format, bool is_depth_copy, bool is_intensity, bool scale_by_half, float gamma_rcp, const std::array& filter_coefficients) { TCShaderUid out; UidData* const uid_data = out.GetUidData(); if (g_ActiveConfig.bForceTrueColor) { // Increase the precision of EFB copies where it's likely to be safe. switch (dst_format) { case EFBCopyFormat::RGB565: // HACK: XFB is RGB8. // Don't blindly do this in other places though, // the enum value is used to identify XFB copies. // The important thing here is that we need alpha = 1. dst_format = EFBCopyFormat::XFB; break; case EFBCopyFormat::RGB5A3: dst_format = EFBCopyFormat::RGBA8; break; default: // Let's not touch the other formats for now, seems risky. break; } } uid_data->dst_format = dst_format; uid_data->efb_has_alpha = bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24; uid_data->is_depth_copy = is_depth_copy; uid_data->is_intensity = is_intensity; uid_data->scale_by_half = scale_by_half; uid_data->all_copy_filter_coefs_needed = TextureCacheBase::AllCopyFilterCoefsNeeded(filter_coefficients); uid_data->copy_filter_can_overflow = TextureCacheBase::CopyFilterCanOverflow(filter_coefficients); // If the gamma is needed, then include that too. uid_data->apply_gamma = gamma_rcp != 1.0f; return out; } static void WriteHeader(APIType api_type, ShaderCode& out) { out.Write("UBO_BINDING(std140, 1) uniform PSBlock {{\n" " float2 src_offset, src_size;\n" " uint3 filter_coefficients;\n" " float gamma_rcp;\n" " float2 clamp_tb;\n" " float pixel_height;\n" "}};\n"); } ShaderCode GenerateVertexShader(APIType api_type) { ShaderCode out; WriteHeader(api_type, out); if (g_ActiveConfig.backend_info.bSupportsGeometryShaders) { out.Write("VARYING_LOCATION(0) out VertexData {{\n" " float3 v_tex0;\n" "}};\n"); } else { out.Write("VARYING_LOCATION(0) out float3 v_tex0;\n"); } out.Write("#define id gl_VertexID\n" "#define opos gl_Position\n" "void main() {{\n"); out.Write(" v_tex0 = float3(float((id << 1) & 2), float(id & 2), 0.0f);\n"); out.Write( " opos = float4(v_tex0.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);\n"); out.Write(" v_tex0 = float3(src_offset + (src_size * v_tex0.xy), 0.0f);\n"); // NDC space is flipped in Vulkan if (api_type == APIType::Vulkan) out.Write(" opos.y = -opos.y;\n"); out.Write("}}\n"); return out; } ShaderCode GeneratePixelShader(APIType api_type, const UidData* uid_data) { const bool mono_depth = uid_data->is_depth_copy && g_ActiveConfig.bStereoEFBMonoDepth; ShaderCode out; WriteHeader(api_type, out); out.Write("SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n"); out.Write("uint4 SampleEFB(float3 uv, float y_offset) {{\n" " float4 tex_sample = texture(samp0, float3(uv.x, clamp(uv.y + (y_offset * " "pixel_height), clamp_tb.x, clamp_tb.y), {}));\n", mono_depth ? "0.0" : "uv.z"); if (uid_data->is_depth_copy) { if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange) out.Write(" tex_sample.x = 1.0 - tex_sample.x;\n"); out.Write(" uint depth = uint(tex_sample.x * 16777216.0);\n" " return uint4((depth >> 16) & 255u, (depth >> 8) & 255u, depth & 255u, 255u);\n" "}}\n"); } else { out.Write(" return uint4(tex_sample * 255.0);\n" "}}\n"); } if (g_ActiveConfig.backend_info.bSupportsGeometryShaders) { out.Write("VARYING_LOCATION(0) in VertexData {{\n" " float3 v_tex0;\n" "}};\n"); } else { out.Write("VARYING_LOCATION(0) in vec3 v_tex0;\n"); } out.Write("FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n" "void main()\n{{\n"); // The copy filter applies to both color and depth copies. This has been verified on hardware. // The filter is only applied to the RGB channels, the alpha channel is left intact. if (uid_data->all_copy_filter_coefs_needed) { out.Write(" uint4 prev_row = SampleEFB(v_tex0, -1.0f);\n" " uint4 current_row = SampleEFB(v_tex0, 0.0f);\n" " uint4 next_row = SampleEFB(v_tex0, 1.0f);\n" " uint3 combined_rows = prev_row.rgb * filter_coefficients[0] +\n" " current_row.rgb * filter_coefficients[1] +\n" " next_row.rgb * filter_coefficients[2];\n"); } else { out.Write(" uint4 current_row = SampleEFB(v_tex0, 0.0f);\n" " uint3 combined_rows = current_row.rgb * filter_coefficients[1];\n"); } out.Write(" // Shift right by 6 to divide by 64, as filter coefficients\n" " // that sum to 64 result in no change in brightness\n" " uint4 texcol_raw = uint4(combined_rows.rgb >> 6, {});\n", uid_data->efb_has_alpha ? "current_row.a" : "255"); if (uid_data->copy_filter_can_overflow) out.Write(" texcol_raw &= 0x1ffu;\n"); // Note that overflow occurs when the sum of values is >= 128, but this max situation can be hit // on >= 64, so we always include it. out.Write(" texcol_raw = min(texcol_raw, uint4(255, 255, 255, 255));\n"); if (uid_data->apply_gamma) { out.Write(" texcol_raw = uint4(round(pow(abs(float4(texcol_raw) / 255.0),\n" " float4(gamma_rcp, gamma_rcp, gamma_rcp, 1.0)) * 255.0));\n"); } if (uid_data->is_intensity) { out.Write(" // Intensity/YUV format conversion constants determined by hardware testing\n" " const float4 y_const = float4( 66, 129, 25, 16);\n" " const float4 u_const = float4(-38, -74, 112, 128);\n" " const float4 v_const = float4(112, -94, -18, 128);\n" " // Intensity/YUV format conversion\n" " texcol_raw.rgb = uint3(dot(y_const, float4(texcol_raw.rgb, 256)),\n" " dot(u_const, float4(texcol_raw.rgb, 256)),\n" " dot(v_const, float4(texcol_raw.rgb, 256)));\n" " // Divide by 256 and round .5 and higher up\n" " texcol_raw.rgb = (texcol_raw.rgb >> 8) + ((texcol_raw.rgb >> 7) & 1u);\n"); } switch (uid_data->dst_format) { case EFBCopyFormat::R4: // R4 out.Write(" float red = float(texcol_raw.r & 0xF0u) / 240.0;\n" " ocol0 = float4(red, red, red, red);\n"); break; case EFBCopyFormat::R8_0x1: // R8 case EFBCopyFormat::R8: // R8 out.Write(" ocol0 = float4(texcol_raw).rrrr / 255.0;\n"); break; case EFBCopyFormat::RA4: // RA4 out.Write(" float2 red_alpha = float2(texcol_raw.ra & 0xF0u) / 240.0;\n" " ocol0 = red_alpha.rrrg;\n"); break; case EFBCopyFormat::RA8: // RA8 out.Write(" ocol0 = float4(texcol_raw).rrra / 255.0;\n"); break; case EFBCopyFormat::A8: // A8 out.Write(" ocol0 = float4(texcol_raw).aaaa / 255.0;\n"); break; case EFBCopyFormat::G8: // G8 out.Write(" ocol0 = float4(texcol_raw).gggg / 255.0;\n"); break; case EFBCopyFormat::B8: // B8 out.Write(" ocol0 = float4(texcol_raw).bbbb / 255.0;\n"); break; case EFBCopyFormat::RG8: // RG8 out.Write(" ocol0 = float4(texcol_raw).rrrg / 255.0;\n"); break; case EFBCopyFormat::GB8: // GB8 out.Write(" ocol0 = float4(texcol_raw).gggb / 255.0;\n"); break; case EFBCopyFormat::RGB565: // RGB565 out.Write(" float2 red_blue = float2(texcol_raw.rb & 0xF8u) / 248.0;\n" " float green = float(texcol_raw.g & 0xFCu) / 252.0;\n" " ocol0 = float4(red_blue.r, green, red_blue.g, 1.0);\n"); break; case EFBCopyFormat::RGB5A3: // RGB5A3 // TODO: The MSB controls whether we have RGB5 or RGB4A3, this selection // will need to be implemented once we move away from floats. out.Write(" float3 color = float3(texcol_raw.rgb & 0xF8u) / 248.0;\n" " float alpha = float(texcol_raw.a & 0xE0u) / 224.0;\n" " ocol0 = float4(color, alpha);\n"); break; case EFBCopyFormat::RGBA8: // RGBA8 out.Write(" ocol0 = float4(texcol_raw.rgba) / 255.0;\n"); break; case EFBCopyFormat::XFB: out.Write(" ocol0 = float4(float3(texcol_raw.rgb) / 255.0, 1.0);\n"); break; default: ERROR_LOG_FMT(VIDEO, "Unknown copy/intensity color format: {} {}", uid_data->dst_format, uid_data->is_intensity); out.Write(" ocol0 = float4(texcol_raw.rgba) / 255.0;\n"); break; } out.Write("}}\n"); return out; } } // namespace TextureConversionShaderGen