// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "Common/x64Emitter.h" #include #include "Common/CPUDetect.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/x64Reg.h" namespace Gen { struct NormalOpDef { u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext; }; // 0xCC is code for invalid combination of immediates static const NormalOpDef normalops[11] = { {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, // ADD {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, // ADC {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, // SUB {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, // SBB {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, // AND {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, // OR {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, // XOR {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, // MOV {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, // TEST (to == from) {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, // CMP {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, // XCHG }; enum NormalSSEOps { sseCMP = 0xC2, sseADD = 0x58, // ADD sseSUB = 0x5C, // SUB sseAND = 0x54, // AND sseANDN = 0x55, // ANDN sseOR = 0x56, sseXOR = 0x57, sseMUL = 0x59, // MUL sseDIV = 0x5E, // DIV sseMIN = 0x5D, // MIN sseMAX = 0x5F, // MAX sseCOMIS = 0x2F, // COMIS sseUCOMIS = 0x2E, // UCOMIS sseSQRT = 0x51, // SQRT sseRCP = 0x53, // RCP sseRSQRT = 0x52, // RSQRT (NO DOUBLE PRECISION!!!) sseMOVAPfromRM = 0x28, // MOVAP from RM sseMOVAPtoRM = 0x29, // MOVAP to RM sseMOVUPfromRM = 0x10, // MOVUP from RM sseMOVUPtoRM = 0x11, // MOVUP to RM sseMOVLPfromRM = 0x12, sseMOVLPtoRM = 0x13, sseMOVHPfromRM = 0x16, sseMOVHPtoRM = 0x17, sseMOVHLPS = 0x12, sseMOVLHPS = 0x16, sseMOVDQfromRM = 0x6F, sseMOVDQtoRM = 0x7F, sseMASKMOVDQU = 0xF7, sseLDDQU = 0xF0, sseSHUF = 0xC6, sseMOVNTDQ = 0xE7, sseMOVNTP = 0x2B, }; enum class NormalOp { ADD, ADC, SUB, SBB, AND, OR, XOR, MOV, TEST, CMP, XCHG, }; enum class FloatOp { LD = 0, ST = 2, STP = 3, LD80 = 5, STP80 = 7, Invalid = -1, }; void XEmitter::SetCodePtr(u8* ptr, u8* end, bool write_failed) { code = ptr; m_code_end = end; m_write_failed = write_failed; } void XEmitter::Write8(u8 value) { if (code >= m_code_end) { code = m_code_end; m_write_failed = true; return; } *code++ = value; } void XEmitter::Write16(u16 value) { if (code + sizeof(u16) > m_code_end) { code = m_code_end; m_write_failed = true; return; } std::memcpy(code, &value, sizeof(u16)); code += sizeof(u16); } void XEmitter::Write32(u32 value) { if (code + sizeof(u32) > m_code_end) { code = m_code_end; m_write_failed = true; return; } std::memcpy(code, &value, sizeof(u32)); code += sizeof(u32); } void XEmitter::Write64(u64 value) { if (code + sizeof(u64) > m_code_end) { code = m_code_end; m_write_failed = true; return; } std::memcpy(code, &value, sizeof(u64)); code += sizeof(u64); } void XEmitter::ReserveCodeSpace(int bytes) { if (code + bytes > m_code_end) { code = m_code_end; m_write_failed = true; return; } for (int i = 0; i < bytes; i++) *code++ = 0xCC; } u8* XEmitter::AlignCodeTo(size_t alignment) { ASSERT_MSG(DYNA_REC, alignment != 0 && (alignment & (alignment - 1)) == 0, "Alignment must be power of two"); u64 c = reinterpret_cast(code) & (alignment - 1); if (c) ReserveCodeSpace(static_cast(alignment - c)); return code; } u8* XEmitter::AlignCode4() { return AlignCodeTo(4); } u8* XEmitter::AlignCode16() { return AlignCodeTo(16); } u8* XEmitter::AlignCodePage() { return AlignCodeTo(4096); } // This operation modifies flags; check to see the flags are locked. // If the flags are locked, we should immediately and loudly fail before // causing a subtle JIT bug. void XEmitter::CheckFlags() { ASSERT_MSG(DYNA_REC, !flags_locked, "Attempt to modify flags while flags locked!"); } void XEmitter::WriteModRM(int mod, int reg, int rm) { Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7))); } void XEmitter::WriteSIB(int scale, int index, int base) { Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7))); } void OpArg::WriteREX(XEmitter* emit, int opBits, int bits, int customOp) const { if (customOp == -1) customOp = operandReg; u8 op = 0x40; // REX.W (whether operation is a 64-bit operation) if (opBits == 64) op |= 8; // REX.R (whether ModR/M reg field refers to R8-R15. if (customOp & 8) op |= 4; // REX.X (whether ModR/M SIB index field refers to R8-R15) if (indexReg & 8) op |= 2; // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15) if (offsetOrBaseReg & 8) op |= 1; // Write REX if wr have REX bits to write, or if the operation accesses // SIL, DIL, BPL, or SPL. if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) || (opBits == 8 && (customOp & 0x10c) == 4)) { emit->Write8(op); // Check the operation doesn't access AH, BH, CH, or DH. DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0); DEBUG_ASSERT((customOp & 0x100) == 0); } } void OpArg::WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W) const { int R = !(regOp1 & 8); int X = !(indexReg & 8); int B = !(offsetOrBaseReg & 8); int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf); // do we need any VEX fields that only appear in the three-byte form? if (X == 1 && B == 1 && W == 0 && mmmmm == 1) { u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp; emit->Write8(0xC5); emit->Write8(RvvvvLpp); } else { u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm; u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp; emit->Write8(0xC4); emit->Write8(RXBmmmmm); emit->Write8(WvvvvLpp); } } void OpArg::WriteRest(XEmitter* emit, int extraBytes, X64Reg _operandReg, bool warn_64bit_offset) const { if (_operandReg == INVALID_REG) _operandReg = (X64Reg)this->operandReg; int mod = 0; int ireg = indexReg; bool SIB = false; int _offsetOrBaseReg = this->offsetOrBaseReg; if (scale == SCALE_RIP) // Also, on 32-bit, just an immediate address { // Oh, RIP addressing. _offsetOrBaseReg = 5; emit->WriteModRM(0, _operandReg, _offsetOrBaseReg); // TODO : add some checks u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes; s64 distance = (s64)offset - (s64)ripAddr; ASSERT_MSG(DYNA_REC, (distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset, "WriteRest: op out of range ({:#x} uses {:#x})", ripAddr, offset); s32 offs = (s32)distance; emit->Write32((u32)offs); return; } if (scale == SCALE_NONE) { // Oh, no memory, Just a reg. mod = 3; // 11 } else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8) { SIB = true; mod = 0; _offsetOrBaseReg = 5; // Always has 32-bit displacement } else { if (scale != SCALE_ATREG) { SIB = true; } else if ((_offsetOrBaseReg & 7) == 4) { // Special case for which SCALE_ATREG needs SIB SIB = true; ireg = _offsetOrBaseReg; } // Okay, we're fine. Just disp encoding. // We need displacement. Which size? int ioff = (int)(s64)offset; if (ioff == 0 && (_offsetOrBaseReg & 7) != 5) { mod = 0; // No displacement } else if (ioff >= -128 && ioff <= 127) { mod = 1; // 8-bit displacement } else { mod = 2; // 32-bit displacement } } // Okay. Time to do the actual writing // ModRM byte: int oreg = _offsetOrBaseReg; if (SIB) oreg = 4; emit->WriteModRM(mod, _operandReg & 7, oreg & 7); if (SIB) { // SIB byte int ss; switch (scale) { case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; // RSP case SCALE_1: ss = 0; break; case SCALE_2: ss = 1; break; case SCALE_4: ss = 2; break; case SCALE_8: ss = 3; break; case SCALE_NOBASE_2: ss = 1; break; case SCALE_NOBASE_4: ss = 2; break; case SCALE_NOBASE_8: ss = 3; break; case SCALE_ATREG: ss = 0; break; default: ASSERT_MSG(DYNA_REC, 0, "Invalid scale for SIB byte"); ss = 0; break; } emit->Write8((u8)((ss << 6) | ((ireg & 7) << 3) | (_offsetOrBaseReg & 7))); } if (mod == 1) // 8-bit disp { emit->Write8((u8)(s8)(s32)offset); } else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) // 32-bit disp { emit->Write32((u32)offset); } } // W = operand extended width (1 if 64-bit) // R = register# upper bit // X = scale amnt upper bit // B = base register# upper bit void XEmitter::Rex(int w, int r, int x, int b) { w = w ? 1 : 0; r = r ? 1 : 0; x = x ? 1 : 0; b = b ? 1 : 0; u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b)); if (rx != 0x40) Write8(rx); } void XEmitter::JMP(const u8* addr, const Jump jump) { u64 fn = (u64)addr; if (jump == Jump::Short) { s64 distance = (s64)(fn - ((u64)code + 2)); ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80, "Jump::Short target too far away ({}), needs Jump::Near", distance); // 8 bits will do Write8(0xEB); Write8((u8)(s8)distance); } else { s64 distance = (s64)(fn - ((u64)code + 5)); ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, "Jump::Near target too far away ({}), needs indirect register", distance); Write8(0xE9); Write32((u32)(s32)distance); } } void XEmitter::JMPptr(const OpArg& arg2) { OpArg arg = arg2; if (arg.IsImm()) ASSERT_MSG(DYNA_REC, 0, "JMPptr - Imm argument"); arg.operandReg = 4; arg.WriteREX(this, 0, 0); Write8(0xFF); arg.WriteRest(this); } // Can be used to trap other processors, before overwriting their code // not used in Dolphin void XEmitter::JMPself() { Write8(0xEB); Write8(0xFE); } void XEmitter::CALLptr(OpArg arg) { if (arg.IsImm()) ASSERT_MSG(DYNA_REC, 0, "CALLptr - Imm argument"); arg.operandReg = 2; arg.WriteREX(this, 0, 0); Write8(0xFF); arg.WriteRest(this); } void XEmitter::CALL(const void* fnptr) { u64 distance = u64(fnptr) - (u64(code) + 5); ASSERT_MSG(DYNA_REC, distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL, "CALL out of range ({} calls {})", fmt::ptr(code), fmt::ptr(fnptr)); Write8(0xE8); Write32(u32(distance)); } FixupBranch XEmitter::CALL() { FixupBranch branch; branch.type = FixupBranch::Type::Branch32Bit; branch.ptr = code + 5; Write8(0xE8); Write32(0); // If we couldn't write the full call instruction, indicate that in the returned FixupBranch by // setting the branch's address to null. This will prevent a later SetJumpTarget() from writing to // invalid memory. if (HasWriteFailed()) branch.ptr = nullptr; return branch; } FixupBranch XEmitter::J(const Jump jump) { FixupBranch branch; const bool is_near_jump = jump == Jump::Near; branch.type = is_near_jump ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit; branch.ptr = code + (is_near_jump ? 5 : 2); if (!is_near_jump) { // 8 bits will do Write8(0xEB); Write8(0); } else { Write8(0xE9); Write32(0); } // If we couldn't write the full jump instruction, indicate that in the returned FixupBranch by // setting the branch's address to null. This will prevent a later SetJumpTarget() from writing to // invalid memory. if (HasWriteFailed()) branch.ptr = nullptr; return branch; } FixupBranch XEmitter::J_CC(CCFlags conditionCode, const Jump jump) { FixupBranch branch; const bool is_near_jump = jump == Jump::Near; branch.type = is_near_jump ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit; branch.ptr = code + (is_near_jump ? 6 : 2); if (!is_near_jump) { // 8 bits will do Write8(0x70 + conditionCode); Write8(0); } else { Write8(0x0F); Write8(0x80 + conditionCode); Write32(0); } // If we couldn't write the full jump instruction, indicate that in the returned FixupBranch by // setting the branch's address to null. This will prevent a later SetJumpTarget() from writing to // invalid memory. if (HasWriteFailed()) branch.ptr = nullptr; return branch; } void XEmitter::J_CC(CCFlags conditionCode, const u8* addr) { u64 fn = (u64)addr; s64 distance = (s64)(fn - ((u64)code + 2)); if (distance < -0x80 || distance >= 0x80) { distance = (s64)(fn - ((u64)code + 6)); ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away ({}), needs indirect register", distance); Write8(0x0F); Write8(0x80 + conditionCode); Write32((u32)(s32)distance); } else { Write8(0x70 + conditionCode); Write8((u8)(s8)distance); } } void XEmitter::SetJumpTarget(const FixupBranch& branch) { if (!branch.ptr) return; if (branch.type == FixupBranch::Type::Branch8Bit) { s64 distance = (s64)(code - branch.ptr); ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80, "Jump::Short target too far away ({}), needs Jump::Near", distance); branch.ptr[-1] = (u8)(s8)distance; } else if (branch.type == FixupBranch::Type::Branch32Bit) { s64 distance = (s64)(code - branch.ptr); ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, "Jump::Near target too far away ({}), needs indirect register", distance); s32 valid_distance = static_cast(distance); std::memcpy(&branch.ptr[-4], &valid_distance, sizeof(s32)); } } // Single byte opcodes // There is no PUSHAD/POPAD in 64-bit mode. void XEmitter::INT3() { Write8(0xCC); } void XEmitter::RET() { Write8(0xC3); } void XEmitter::RET_FAST() { Write8(0xF3); Write8(0xC3); } // two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to // a ret // The first sign of decadence: optimized NOPs. void XEmitter::NOP(size_t size) { DEBUG_ASSERT((int)size > 0); while (true) { switch (size) { case 0: return; case 1: Write8(0x90); return; case 2: Write8(0x66); Write8(0x90); return; case 3: Write8(0x0F); Write8(0x1F); Write8(0x00); return; case 4: Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00); return; case 5: Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00); Write8(0x00); return; case 6: Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00); Write8(0x00); return; case 7: Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 8: Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 9: Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 10: Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; default: // Even though x86 instructions are allowed to be up to 15 bytes long, // AMD advises against using NOPs longer than 11 bytes because they // carry a performance penalty on CPUs older than AMD family 16h. Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); size -= 11; continue; } } } void XEmitter::PAUSE() { Write8(0xF3); NOP(); } // use in tight spinloops for energy saving on some CPU void XEmitter::CLC() { CheckFlags(); Write8(0xF8); } // clear carry void XEmitter::CMC() { CheckFlags(); Write8(0xF5); } // flip carry void XEmitter::STC() { CheckFlags(); Write8(0xF9); } // set carry // TODO: xchg ah, al ??? void XEmitter::XCHG_AHAL() { Write8(0x86); Write8(0xe0); // alt. 86 c4 } // These two can not be executed on early Intel 64-bit CPU:s, only on AMD! void XEmitter::LAHF() { Write8(0x9F); } void XEmitter::SAHF() { CheckFlags(); Write8(0x9E); } void XEmitter::PUSHF() { Write8(0x9C); } void XEmitter::POPF() { CheckFlags(); Write8(0x9D); } void XEmitter::LFENCE() { Write8(0x0F); Write8(0xAE); Write8(0xE8); } void XEmitter::MFENCE() { Write8(0x0F); Write8(0xAE); Write8(0xF0); } void XEmitter::SFENCE() { Write8(0x0F); Write8(0xAE); Write8(0xF8); } void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, (int)reg >> 3); Write8(byte + ((int)reg & 7)); } void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, (int)reg >> 3); Write8(byte1); Write8(byte2 + ((int)reg & 7)); } void XEmitter::CWD(int bits) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, 0); Write8(0x99); } void XEmitter::CBW(int bits) { if (bits == 8) Write8(0x66); Rex(bits == 32, 0, 0, 0); Write8(0x98); } // Simple opcodes // push/pop do not need wide to be 64-bit void XEmitter::PUSH(X64Reg reg) { WriteSimple1Byte(32, 0x50, reg); } void XEmitter::POP(X64Reg reg) { WriteSimple1Byte(32, 0x58, reg); } void XEmitter::PUSH(int bits, const OpArg& reg) { if (reg.IsSimpleReg()) PUSH(reg.GetSimpleReg()); else if (reg.IsImm()) { switch (reg.GetImmBits()) { case 8: Write8(0x6A); Write8((u8)(s8)reg.offset); break; case 16: Write8(0x66); Write8(0x68); Write16((u16)(s16)(s32)reg.offset); break; case 32: Write8(0x68); Write32((u32)reg.offset); break; default: ASSERT_MSG(DYNA_REC, 0, "PUSH - Bad imm bits"); break; } } else { if (bits == 16) Write8(0x66); reg.WriteREX(this, bits, bits); Write8(0xFF); reg.WriteRest(this, 0, (X64Reg)6); } } void XEmitter::POP(int /*bits*/, const OpArg& reg) { if (reg.IsSimpleReg()) POP(reg.GetSimpleReg()); else ASSERT_MSG(DYNA_REC, 0, "POP - Unsupported encoding"); } void XEmitter::BSWAP(int bits, X64Reg reg) { if (bits >= 32) { WriteSimple2Byte(bits, 0x0F, 0xC8, reg); } else if (bits == 16) { ROL(16, R(reg), Imm8(8)); } else if (bits == 8) { // Do nothing - can't bswap a single byte... } else { ASSERT_MSG(DYNA_REC, 0, "BSWAP - Wrong number of bits"); } } // Undefined opcode - reserved // If we ever need a way to always cause a non-breakpoint hard exception... void XEmitter::UD2() { Write8(0x0F); Write8(0x0B); } void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg) { ASSERT_MSG(DYNA_REC, !arg.IsImm(), "PREFETCH - Imm argument"); arg.operandReg = static_cast(level); arg.WriteREX(this, 0, 0); Write8(0x0F); Write8(0x18); arg.WriteRest(this); } void XEmitter::SETcc(CCFlags flag, OpArg dest) { ASSERT_MSG(DYNA_REC, !dest.IsImm(), "SETcc - Imm argument"); dest.operandReg = 0; dest.WriteREX(this, 0, 8); Write8(0x0F); Write8(0x90 + (u8)flag); dest.WriteRest(this); } void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag) { ASSERT_MSG(DYNA_REC, !src.IsImm(), "CMOVcc - Imm argument"); ASSERT_MSG(DYNA_REC, bits != 8, "CMOVcc - 8 bits unsupported"); if (bits == 16) Write8(0x66); src.operandReg = dest; src.WriteREX(this, bits, bits); Write8(0x0F); Write8(0x40 + (u8)flag); src.WriteRest(this); } void XEmitter::WriteMulDivType(int bits, OpArg src, int ext) { ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteMulDivType - Imm argument"); CheckFlags(); src.operandReg = ext; if (bits == 16) Write8(0x66); src.WriteREX(this, bits, bits, 0); if (bits == 8) { Write8(0xF6); } else { Write8(0xF7); } src.WriteRest(this); } void XEmitter::MUL(int bits, const OpArg& src) { WriteMulDivType(bits, src, 4); } void XEmitter::DIV(int bits, const OpArg& src) { WriteMulDivType(bits, src, 6); } void XEmitter::IMUL(int bits, const OpArg& src) { WriteMulDivType(bits, src, 5); } void XEmitter::IDIV(int bits, const OpArg& src) { WriteMulDivType(bits, src, 7); } void XEmitter::NEG(int bits, const OpArg& src) { WriteMulDivType(bits, src, 3); } void XEmitter::NOT(int bits, const OpArg& src) { WriteMulDivType(bits, src, 2); } void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep) { ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteBitSearchType - Imm argument"); CheckFlags(); src.operandReg = (u8)dest; if (bits == 16) Write8(0x66); if (rep) Write8(0xF3); src.WriteREX(this, bits, bits); Write8(0x0F); Write8(byte2); src.WriteRest(this); } void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src) { if (bits <= 16) ASSERT_MSG(DYNA_REC, 0, "MOVNTI - bits<=16"); WriteBitSearchType(bits, src, dest, 0xC3); } void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src) { WriteBitSearchType(bits, dest, src, 0xBC); } // Bottom bit to top bit void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src) { WriteBitSearchType(bits, dest, src, 0xBD); } // Top bit to bottom bit void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src) { CheckFlags(); if (!cpu_info.bBMI1) PanicAlertFmt("Trying to use BMI1 on a system that doesn't support it. Bad programmer."); WriteBitSearchType(bits, dest, src, 0xBC, true); } void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src) { CheckFlags(); if (!cpu_info.bLZCNT) PanicAlertFmt("Trying to use LZCNT on a system that doesn't support it. Bad programmer."); WriteBitSearchType(bits, dest, src, 0xBD, true); } void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src) { ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVSX - Imm argument"); if (dbits == sbits) { MOV(dbits, R(dest), src); return; } src.operandReg = (u8)dest; if (dbits == 16) Write8(0x66); src.WriteREX(this, dbits, sbits); if (sbits == 8) { Write8(0x0F); Write8(0xBE); } else if (sbits == 16) { Write8(0x0F); Write8(0xBF); } else if (sbits == 32 && dbits == 64) { Write8(0x63); } else { Crash(); } src.WriteRest(this); } void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src) { ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVZX - Imm argument"); if (dbits == sbits) { MOV(dbits, R(dest), src); return; } src.operandReg = (u8)dest; if (dbits == 16) Write8(0x66); // the 32bit result is automatically zero extended to 64bit src.WriteREX(this, dbits == 64 ? 32 : dbits, sbits); if (sbits == 8) { Write8(0x0F); Write8(0xB6); } else if (sbits == 16) { Write8(0x0F); Write8(0xB7); } else if (sbits == 32 && dbits == 64) { Write8(0x8B); } else { ASSERT_MSG(DYNA_REC, 0, "MOVZX - Invalid size"); } src.WriteRest(this); } void XEmitter::WriteMOVBE(int bits, u8 op, X64Reg reg, const OpArg& arg) { ASSERT_MSG(DYNA_REC, cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it."); if (bits == 8) { MOV(8, op & 1 ? arg : R(reg), op & 1 ? R(reg) : arg); return; } if (bits == 16) Write8(0x66); ASSERT_MSG(DYNA_REC, !arg.IsSimpleReg() && !arg.IsImm(), "MOVBE: need r<-m or m<-r!"); arg.WriteREX(this, bits, bits, reg); Write8(0x0F); Write8(0x38); Write8(op); arg.WriteRest(this, 0, reg); } void XEmitter::MOVBE(int bits, X64Reg dest, const OpArg& src) { WriteMOVBE(bits, 0xF0, dest, src); } void XEmitter::MOVBE(int bits, const OpArg& dest, X64Reg src) { WriteMOVBE(bits, 0xF1, src, dest); } void XEmitter::LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend, MovInfo* info) { if (info) { info->address = GetWritableCodePtr(); info->nonAtomicSwapStore = false; } switch (size) { case 8: if (sign_extend) MOVSX(32, 8, dst, src); else MOVZX(32, 8, dst, src); break; case 16: MOVZX(32, 16, dst, src); if (sign_extend) { BSWAP(32, dst); SAR(32, R(dst), Imm8(16)); } else { ROL(16, R(dst), Imm8(8)); } break; case 32: case 64: if (cpu_info.bMOVBE) { MOVBE(size, dst, src); } else { MOV(size, R(dst), src); BSWAP(size, dst); } break; } } void XEmitter::SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info) { if (cpu_info.bMOVBE) { if (info) { info->address = GetWritableCodePtr(); info->nonAtomicSwapStore = false; } MOVBE(size, dst, src); } else { BSWAP(size, src); if (info) { info->address = GetWritableCodePtr(); info->nonAtomicSwapStore = true; info->nonAtomicSwapStoreSrc = src; } MOV(size, dst, R(src)); } } void XEmitter::LEA(int bits, X64Reg dest, OpArg src) { ASSERT_MSG(DYNA_REC, !src.IsImm(), "LEA - Imm argument"); src.operandReg = (u8)dest; if (bits == 16) Write8(0x66); // TODO: performance warning src.WriteREX(this, bits, bits); Write8(0x8D); src.WriteRest(this, 0, INVALID_REG, bits == 64); } // shift can be either imm8 or cl void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext) { CheckFlags(); bool writeImm = false; if (dest.IsImm()) { ASSERT_MSG(DYNA_REC, 0, "WriteShift - can't shift imms"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { ASSERT_MSG(DYNA_REC, 0, "WriteShift - illegal argument"); } dest.operandReg = ext; if (bits == 16) Write8(0x66); dest.WriteREX(this, bits, bits, 0); if (shift.GetImmBits() == 8) { // ok an imm u8 imm = (u8)shift.offset; if (imm == 1) { Write8(bits == 8 ? 0xD0 : 0xD1); } else { writeImm = true; Write8(bits == 8 ? 0xC0 : 0xC1); } } else { Write8(bits == 8 ? 0xD2 : 0xD3); } dest.WriteRest(this, writeImm ? 1 : 0); if (writeImm) Write8((u8)shift.offset); } // large rotates and shift are slower on Intel than AMD // Intel likes to rotate by 1, and the op is smaller too void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 0); } void XEmitter::ROR(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 1); } void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 2); } void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 3); } void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 4); } void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 5); } void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 7); } // index can be either imm8 or register, don't use memory destination because it's slow void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext) { CheckFlags(); if (dest.IsImm()) { ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - can't test imms"); } if ((index.IsImm() && index.GetImmBits() != 8)) { ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - illegal argument"); } if (bits == 16) Write8(0x66); if (index.IsImm()) { dest.WriteREX(this, bits, bits); Write8(0x0F); Write8(0xBA); dest.WriteRest(this, 1, (X64Reg)ext); Write8((u8)index.offset); } else { X64Reg operand = index.GetSimpleReg(); dest.WriteREX(this, bits, bits, operand); Write8(0x0F); Write8(0x83 + 8 * ext); dest.WriteRest(this, 1, operand); } } void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index) { WriteBitTest(bits, dest, index, 4); } void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index) { WriteBitTest(bits, dest, index, 5); } void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index) { WriteBitTest(bits, dest, index, 6); } void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index) { WriteBitTest(bits, dest, index, 7); } // shift can be either imm8 or cl void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) { CheckFlags(); if (dest.IsImm()) { ASSERT_MSG(DYNA_REC, 0, "SHRD - can't use imms as destination"); } if (!src.IsSimpleReg()) { ASSERT_MSG(DYNA_REC, 0, "SHRD - must use simple register as source"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { ASSERT_MSG(DYNA_REC, 0, "SHRD - illegal shift"); } if (bits == 16) Write8(0x66); X64Reg operand = src.GetSimpleReg(); dest.WriteREX(this, bits, bits, operand); if (shift.GetImmBits() == 8) { Write8(0x0F); Write8(0xAC); dest.WriteRest(this, 1, operand); Write8((u8)shift.offset); } else { Write8(0x0F); Write8(0xAD); dest.WriteRest(this, 0, operand); } } void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) { CheckFlags(); if (dest.IsImm()) { ASSERT_MSG(DYNA_REC, 0, "SHLD - can't use imms as destination"); } if (!src.IsSimpleReg()) { ASSERT_MSG(DYNA_REC, 0, "SHLD - must use simple register as source"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { ASSERT_MSG(DYNA_REC, 0, "SHLD - illegal shift"); } if (bits == 16) Write8(0x66); X64Reg operand = src.GetSimpleReg(); dest.WriteREX(this, bits, bits, operand); if (shift.GetImmBits() == 8) { Write8(0x0F); Write8(0xA4); dest.WriteRest(this, 1, operand); Write8((u8)shift.offset); } else { Write8(0x0F); Write8(0xA5); dest.WriteRest(this, 0, operand); } } void OpArg::WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg _operandReg, int bits) { if (bits == 16) emit->Write8(0x66); this->operandReg = (u8)_operandReg; WriteREX(emit, bits, bits); emit->Write8(op); WriteRest(emit); } // operand can either be immediate or register void OpArg::WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const { X64Reg _operandReg; if (IsImm()) { ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order"); } if (bits == 16) emit->Write8(0x66); int immToWrite = 0; const NormalOpDef& op_def = normalops[static_cast(op)]; if (operand.IsImm()) { WriteREX(emit, bits, bits); if (!toRM) { ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)"); } if (operand.scale == SCALE_IMM8 && bits == 8) { // op al, imm8 if (!scale && offsetOrBaseReg == AL && op_def.eaximm8 != 0xCC) { emit->Write8(op_def.eaximm8); emit->Write8((u8)operand.offset); return; } // mov reg, imm8 if (!scale && op == NormalOp::MOV) { emit->Write8(0xB0 + (offsetOrBaseReg & 7)); emit->Write8((u8)operand.offset); return; } // op r/m8, imm8 emit->Write8(op_def.imm8); immToWrite = 8; } else if ((operand.scale == SCALE_IMM16 && bits == 16) || (operand.scale == SCALE_IMM32 && bits == 32) || (operand.scale == SCALE_IMM32 && bits == 64)) { // Try to save immediate size if we can, but first check to see // if the instruction supports simm8. // op r/m, imm8 if (op_def.simm8 != 0xCC && ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) || (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset))) { emit->Write8(op_def.simm8); immToWrite = 8; } else { // mov reg, imm if (!scale && op == NormalOp::MOV && bits != 64) { emit->Write8(0xB8 + (offsetOrBaseReg & 7)); if (bits == 16) emit->Write16((u16)operand.offset); else emit->Write32((u32)operand.offset); return; } // op eax, imm if (!scale && offsetOrBaseReg == EAX && op_def.eaximm32 != 0xCC) { emit->Write8(op_def.eaximm32); if (bits == 16) emit->Write16((u16)operand.offset); else emit->Write32((u32)operand.offset); return; } // op r/m, imm emit->Write8(op_def.imm32); immToWrite = bits == 16 ? 16 : 32; } } else if ((operand.scale == SCALE_IMM8 && bits == 16) || (operand.scale == SCALE_IMM8 && bits == 32) || (operand.scale == SCALE_IMM8 && bits == 64)) { // op r/m, imm8 emit->Write8(op_def.simm8); immToWrite = 8; } else if (operand.scale == SCALE_IMM64 && bits == 64) { if (scale) { ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - MOV with 64-bit imm requires register destination"); } // mov reg64, imm64 else if (op == NormalOp::MOV) { // movabs reg64, imm64 (10 bytes) if (static_cast(operand.offset) != static_cast(operand.offset)) { emit->Write8(0xB8 + (offsetOrBaseReg & 7)); emit->Write64(operand.offset); return; } // mov reg64, simm32 (7 bytes) emit->Write8(op_def.imm32); immToWrite = 32; } else { ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm"); } } else { ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case {} {}", operand.scale, bits); } // pass extension in REG of ModRM _operandReg = static_cast(op_def.ext); } else { _operandReg = (X64Reg)operand.offsetOrBaseReg; WriteREX(emit, bits, bits, _operandReg); // op r/m, reg if (toRM) { emit->Write8(bits == 8 ? op_def.toRm8 : op_def.toRm32); } // op reg, r/m else { emit->Write8(bits == 8 ? op_def.fromRm8 : op_def.fromRm32); } } WriteRest(emit, immToWrite >> 3, _operandReg); switch (immToWrite) { case 0: break; case 8: emit->Write8((u8)operand.offset); break; case 16: emit->Write16((u16)operand.offset); break; case 32: emit->Write32((u32)operand.offset); break; default: ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case"); } } void XEmitter::WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2) { if (a1.IsImm()) { // Booh! Can't write to an imm ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm"); return; } if (a2.IsImm()) { a1.WriteNormalOp(this, true, op, a2, bits); } else { if (a1.IsSimpleReg()) { a2.WriteNormalOp(this, false, op, a1, bits); } else { ASSERT_MSG(DYNA_REC, a2.IsSimpleReg() || a2.IsImm(), "WriteNormalOp - a1 and a2 cannot both be memory"); a1.WriteNormalOp(this, true, op, a2, bits); } } } void XEmitter::ADD(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(bits, NormalOp::ADD, a1, a2); } void XEmitter::ADC(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(bits, NormalOp::ADC, a1, a2); } void XEmitter::SUB(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(bits, NormalOp::SUB, a1, a2); } void XEmitter::SBB(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(bits, NormalOp::SBB, a1, a2); } void XEmitter::AND(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(bits, NormalOp::AND, a1, a2); } void XEmitter::OR(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(bits, NormalOp::OR, a1, a2); } void XEmitter::XOR(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(bits, NormalOp::XOR, a1, a2); } void XEmitter::MOV(int bits, const OpArg& a1, const OpArg& a2) { if (bits == 64 && a1.IsSimpleReg() && ((a2.scale == SCALE_IMM64 && a2.offset == static_cast(a2.offset)) || (a2.scale == SCALE_IMM32 && static_cast(a2.offset) >= 0))) { WriteNormalOp(32, NormalOp::MOV, a1, a2.AsImm32()); return; } if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg()) ERROR_LOG_FMT(DYNA_REC, "Redundant MOV @ {} - bug in JIT?", fmt::ptr(code)); WriteNormalOp(bits, NormalOp::MOV, a1, a2); } void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(bits, NormalOp::TEST, a1, a2); } void XEmitter::CMP(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(bits, NormalOp::CMP, a1, a2); } void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2) { WriteNormalOp(bits, NormalOp::XCHG, a1, a2); } void XEmitter::CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); if (a1.IsSimpleReg() && a2.IsZero()) // turn 'CMP reg, 0' into shorter 'TEST reg, reg' { WriteNormalOp(bits, NormalOp::TEST, a1, a1); } else { WriteNormalOp(bits, NormalOp::CMP, a1, a2); } } void XEmitter::MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2) { // This stomps on flags, so ensure they aren't locked DEBUG_ASSERT(!flags_locked); // Zero shortcuts (note that this can generate no code in the case where a1 == dest && a2 == zero // or a2 == dest && a1 == zero) if (a1.IsZero()) { if (!a2.IsSimpleReg() || a2.GetSimpleReg() != dest) { MOV(bits, R(dest), a2); } return; } if (a2.IsZero()) { if (!a1.IsSimpleReg() || a1.GetSimpleReg() != dest) { MOV(bits, R(dest), a1); } return; } // If dest == a1 or dest == a2 we can simplify this if (a1.IsSimpleReg() && a1.GetSimpleReg() == dest) { ADD(bits, R(dest), a2); return; } if (a2.IsSimpleReg() && a2.GetSimpleReg() == dest) { ADD(bits, R(dest), a1); return; } // TODO: 32-bit optimizations may apply to other bit sizes (confirm) if (bits == 32) { if (a1.IsImm() && a2.IsImm()) { MOV(32, R(dest), Imm32(a1.Imm32() + a2.Imm32())); return; } if (a1.IsSimpleReg() && a2.IsSimpleReg()) { LEA(32, dest, MRegSum(a1.GetSimpleReg(), a2.GetSimpleReg())); return; } if (a1.IsSimpleReg() && a2.IsImm()) { LEA(32, dest, MDisp(a1.GetSimpleReg(), a2.Imm32())); return; } if (a1.IsImm() && a2.IsSimpleReg()) { LEA(32, dest, MDisp(a2.GetSimpleReg(), a1.Imm32())); return; } } // Fallback MOV(bits, R(dest), a1); ADD(bits, R(dest), a2); } void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2) { CheckFlags(); if (bits == 8) { ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!"); return; } if (a1.IsImm()) { ASSERT_MSG(DYNA_REC, 0, "IMUL - second arg cannot be imm!"); return; } if (!a2.IsImm()) { ASSERT_MSG(DYNA_REC, 0, "IMUL - third arg must be imm!"); return; } if (bits == 16) Write8(0x66); a1.WriteREX(this, bits, bits, regOp); if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) || (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset)) { Write8(0x6B); a1.WriteRest(this, 1, regOp); Write8((u8)a2.offset); } else { Write8(0x69); if (a2.GetImmBits() == 16 && bits == 16) { a1.WriteRest(this, 2, regOp); Write16((u16)a2.offset); } else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64)) { a1.WriteRest(this, 4, regOp); Write32((u32)a2.offset); } else { ASSERT_MSG(DYNA_REC, 0, "IMUL - unhandled case!"); } } } void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a) { CheckFlags(); if (bits == 8) { ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!"); return; } if (a.IsImm()) { IMUL(bits, regOp, R(regOp), a); return; } if (bits == 16) Write8(0x66); a.WriteREX(this, bits, bits, regOp); Write8(0x0F); Write8(0xAF); a.WriteRest(this, 0, regOp); } void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) { if (opPrefix) Write8(opPrefix); arg.operandReg = regOp; arg.WriteREX(this, 0, 0); Write8(0x0F); if (op > 0xFF) Write8((op >> 8) & 0xFF); Write8(op & 0xFF); arg.WriteRest(this, extrabytes); } static int GetVEXmmmmm(u16 op) { // Currently, only 0x38 and 0x3A are used as secondary escape byte. if ((op >> 8) == 0x3A) return 3; else if ((op >> 8) == 0x38) return 2; else return 1; } static int GetVEXpp(u8 opPrefix) { if (opPrefix == 0x66) return 1; else if (opPrefix == 0xF3) return 2; else if (opPrefix == 0xF2) return 3; else return 0; } void XEmitter::WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W, int extrabytes) { int mmmmm = GetVEXmmmmm(op); int pp = GetVEXpp(opPrefix); // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here arg.WriteVEX(this, regOp1, regOp2, 0, pp, mmmmm, W); Write8(op & 0xFF); arg.WriteRest(this, extrabytes, regOp1); } void XEmitter::WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3, int W) { WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, 1); Write8((u8)regOp3 << 4); } void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W, int extrabytes) { if (!cpu_info.bAVX) PanicAlertFmt("Trying to use AVX on a system that doesn't support it. Bad programmer."); WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes); } void XEmitter::WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3, int W) { if (!cpu_info.bAVX) PanicAlertFmt("Trying to use AVX on a system that doesn't support it. Bad programmer."); WriteVEXOp4(opPrefix, op, regOp1, regOp2, arg, regOp3, W); } void XEmitter::WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W) { if (!cpu_info.bFMA) { PanicAlertFmt( "Trying to use FMA3 on a system that doesn't support it. Computer is v. f'n madd."); } WriteVEXOp(0x66, 0x3800 | op, regOp1, regOp2, arg, W); } void XEmitter::WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W) { if (!cpu_info.bFMA4) { PanicAlertFmt( "Trying to use FMA4 on a system that doesn't support it. Computer is v. f'n madd."); } WriteVEXOp4(0x66, 0x3A00 | op, dest, regOp1, arg, regOp2, W); } void XEmitter::WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { if (arg.IsImm()) PanicAlertFmt("BMI1/2 instructions don't support immediate operands."); if (size != 32 && size != 64) PanicAlertFmt("BMI1/2 instructions only support 32-bit and 64-bit modes!"); const int W = size == 64; WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes); } void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { CheckFlags(); if (!cpu_info.bBMI1) PanicAlertFmt("Trying to use BMI1 on a system that doesn't support it. Bad programmer."); WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); } void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { if (!cpu_info.bBMI2) PanicAlertFmt("Trying to use BMI2 on a system that doesn't support it. Bad programmer."); WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); } void XEmitter::MOVD_xmm(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x6E, dest, arg, 0); } void XEmitter::MOVD_xmm(const OpArg& arg, X64Reg src) { WriteSSEOp(0x66, 0x7E, src, arg, 0); } void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) { // Alternate encoding // This does not display correctly in MSVC's debugger, it thinks it's a MOVD arg.operandReg = dest; Write8(0x66); arg.WriteREX(this, 64, 0); Write8(0x0f); Write8(0x6E); arg.WriteRest(this, 0); } void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) { if (src > 7 || arg.IsSimpleReg()) { // Alternate encoding // This does not display correctly in MSVC's debugger, it thinks it's a MOVD arg.operandReg = src; Write8(0x66); arg.WriteREX(this, 64, 0); Write8(0x0f); Write8(0x7E); arg.WriteRest(this, 0); } else { arg.operandReg = src; arg.WriteREX(this, 0, 0); Write8(0x66); Write8(0x0f); Write8(0xD6); arg.WriteRest(this, 0); } } void XEmitter::WriteMXCSR(OpArg arg, int ext) { if (arg.IsImm() || arg.IsSimpleReg()) ASSERT_MSG(DYNA_REC, 0, "MXCSR - invalid operand"); arg.operandReg = ext; arg.WriteREX(this, 0, 0); Write8(0x0F); Write8(0xAE); arg.WriteRest(this); } void XEmitter::STMXCSR(const OpArg& memloc) { WriteMXCSR(memloc, 3); } void XEmitter::LDMXCSR(const OpArg& memloc) { WriteMXCSR(memloc, 2); } void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg); } void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVNTP, regOp, arg); } void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVNTP, regOp, arg); } void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseADD, regOp, arg); } void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseADD, regOp, arg); } void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseSUB, regOp, arg); } void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseSUB, regOp, arg); } void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare) { WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare); } void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare) { WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare); } void XEmitter::MULSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMUL, regOp, arg); } void XEmitter::MULSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseMUL, regOp, arg); } void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseDIV, regOp, arg); } void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseDIV, regOp, arg); } void XEmitter::MINSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMIN, regOp, arg); } void XEmitter::MINSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseMIN, regOp, arg); } void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMAX, regOp, arg); } void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseMAX, regOp, arg); } void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseSQRT, regOp, arg); } void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseSQRT, regOp, arg); } void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseRCP, regOp, arg); } void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseRSQRT, regOp, arg); } void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseADD, regOp, arg); } void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseADD, regOp, arg); } void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseSUB, regOp, arg); } void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseSUB, regOp, arg); } void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare) { WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare); } void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare) { WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare); } void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseAND, regOp, arg); } void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseAND, regOp, arg); } void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseANDN, regOp, arg); } void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseANDN, regOp, arg); } void XEmitter::ORPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseOR, regOp, arg); } void XEmitter::ORPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseOR, regOp, arg); } void XEmitter::XORPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseXOR, regOp, arg); } void XEmitter::XORPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseXOR, regOp, arg); } void XEmitter::MULPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMUL, regOp, arg); } void XEmitter::MULPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMUL, regOp, arg); } void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseDIV, regOp, arg); } void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseDIV, regOp, arg); } void XEmitter::MINPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMIN, regOp, arg); } void XEmitter::MINPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMIN, regOp, arg); } void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMAX, regOp, arg); } void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMAX, regOp, arg); } void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseSQRT, regOp, arg); } void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseSQRT, regOp, arg); } void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); } void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseRSQRT, regOp, arg); } void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0x00, sseSHUF, regOp, arg, 1); Write8(shuffle); } void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0x66, sseSHUF, regOp, arg, 1); Write8(shuffle); } void XEmitter::COMISS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseCOMIS, regOp, arg); } // weird that these should be packed void XEmitter::COMISD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseCOMIS, regOp, arg); } // ordered void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseUCOMIS, regOp, arg); } // unordered void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseUCOMIS, regOp, arg); } void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg); } void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg) { // Prefer MOVAPS to MOVAPD as there is no reason to use MOVAPD over MOVAPS: // - They have equivalent functionality. // - There has never been a microarchitecture with separate single and double domains. // - MOVAPD is one byte longer than MOVAPS. MOVAPS(regOp, arg); } void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg); } void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp) { MOVAPS(arg, regOp); } void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg); } void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg); } void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg); } void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg); } void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg); } void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg); } void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg); } void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg); } void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); } void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); } void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); } void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); } void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); } void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); } void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); } void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); } void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) { WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2)); } void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) { WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2)); } void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, 0x5A, regOp, arg); } void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, 0x5A, regOp, arg); } void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0x5A, regOp, arg); } void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x5A, regOp, arg); } void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0x2D, regOp, arg); } void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x2D, regOp, arg); } void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0x2A, regOp, arg); } void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x2A, regOp, arg); } void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0xE6, regOp, arg); } void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, 0x5B, regOp, arg); } void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0xE6, regOp, arg); } void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, 0x5B, regOp, arg); } void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0x2C, regOp, arg); } void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x2C, regOp, arg); } void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x5B, regOp, arg); } void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, 0xE6, regOp, arg); } void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) { WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src)); } void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x00, 0x50, dest, arg); } void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x50, dest, arg); } void XEmitter::LDDQU(X64Reg dest, const OpArg& arg) { WriteSSEOp(0xF2, sseLDDQU, dest, arg); } // For integer data only void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x00, 0x14, dest, arg); } void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x00, 0x15, dest, arg); } void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x14, dest, arg); } void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x15, dest, arg); } // Pretty much every x86 CPU nowadays supports SSE3, // but the SSE2 fallbacks are easy. void XEmitter::MOVSLDUP(X64Reg regOp, const OpArg& arg) { if (cpu_info.bSSE3) { WriteSSEOp(0xF3, 0x12, regOp, arg); } else { if (!arg.IsSimpleReg(regOp)) MOVAPD(regOp, arg); UNPCKLPS(regOp, R(regOp)); } } void XEmitter::MOVSHDUP(X64Reg regOp, const OpArg& arg) { if (cpu_info.bSSE3) { WriteSSEOp(0xF3, 0x16, regOp, arg); } else { if (!arg.IsSimpleReg(regOp)) MOVAPD(regOp, arg); UNPCKHPS(regOp, R(regOp)); } } void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg) { if (cpu_info.bSSE3) { WriteSSEOp(0xF2, 0x12, regOp, arg); } else { if (!arg.IsSimpleReg()) { MOVSD(regOp, arg); } else if (regOp != arg.GetSimpleReg()) { MOVAPD(regOp, arg); } UNPCKLPD(regOp, R(regOp)); } } // There are a few more left // Also some integer instructions are missing void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x6B, dest, arg); } void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x63, dest, arg); } void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x67, dest, arg); } void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x60, dest, arg); } void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x61, dest, arg); } void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x62, dest, arg); } void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x6C, dest, arg); } void XEmitter::PSRLW(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg)); Write8(shift); } void XEmitter::PSRLD(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg)); Write8(shift); } void XEmitter::PSRLQ(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg)); Write8(shift); } void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg) { WriteSSEOp(0x66, 0xd3, reg, arg); } void XEmitter::PSRLDQ(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg)); Write8(shift); } void XEmitter::PSLLW(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg)); Write8(shift); } void XEmitter::PSLLD(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg)); Write8(shift); } void XEmitter::PSLLQ(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg)); Write8(shift); } void XEmitter::PSLLDQ(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg)); Write8(shift); } // WARNING not REX compatible void XEmitter::PSRAW(X64Reg reg, int shift) { if (reg > 7) PanicAlertFmt("The PSRAW-emitter does not support regs above 7"); Write8(0x66); Write8(0x0f); Write8(0x71); Write8(0xE0 | reg); Write8(shift); } // WARNING not REX compatible void XEmitter::PSRAD(X64Reg reg, int shift) { if (reg > 7) PanicAlertFmt("The PSRAD-emitter does not support regs above 7"); Write8(0x66); Write8(0x0f); Write8(0x72); Write8(0xE0 | reg); Write8(shift); } void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) { if (!cpu_info.bSSSE3) PanicAlertFmt("Trying to use SSSE3 on a system that doesn't support it. Bad programmer."); WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); } void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) { if (!cpu_info.bSSE4_1) PanicAlertFmt("Trying to use SSE4.1 on a system that doesn't support it. Bad programmer."); WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); } void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg) { WriteSSSE3Op(0x66, 0x3800, dest, arg); } void XEmitter::PTEST(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3817, dest, arg); } void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x382b, dest, arg); } void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3820, dest, arg); } void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3821, dest, arg); } void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3822, dest, arg); } void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3823, dest, arg); } void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3824, dest, arg); } void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3825, dest, arg); } void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3830, dest, arg); } void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3831, dest, arg); } void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3832, dest, arg); } void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3833, dest, arg); } void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3834, dest, arg); } void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3835, dest, arg); } void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3810, dest, arg); } void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3814, dest, arg); } void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3815, dest, arg); } void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(blend); } void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(blend); } void XEmitter::PAND(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDB, dest, arg); } void XEmitter::PANDN(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDF, dest, arg); } void XEmitter::PXOR(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEF, dest, arg); } void XEmitter::POR(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEB, dest, arg); } void XEmitter::PADDB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFC, dest, arg); } void XEmitter::PADDW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFD, dest, arg); } void XEmitter::PADDD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFE, dest, arg); } void XEmitter::PADDQ(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xD4, dest, arg); } void XEmitter::PADDSB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEC, dest, arg); } void XEmitter::PADDSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xED, dest, arg); } void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDC, dest, arg); } void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDD, dest, arg); } void XEmitter::PSUBB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xF8, dest, arg); } void XEmitter::PSUBW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xF9, dest, arg); } void XEmitter::PSUBD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFA, dest, arg); } void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFB, dest, arg); } void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xE8, dest, arg); } void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xE9, dest, arg); } void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xD8, dest, arg); } void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xD9, dest, arg); } void XEmitter::PAVGB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xE0, dest, arg); } void XEmitter::PAVGW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xE3, dest, arg); } void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x74, dest, arg); } void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x75, dest, arg); } void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x76, dest, arg); } void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x64, dest, arg); } void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x65, dest, arg); } void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x66, dest, arg); } void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg) { WriteSSEOp(0x66, 0xC5, dest, arg); Write8(subreg); } void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg) { WriteSSEOp(0x66, 0xC4, dest, arg); Write8(subreg); } void XEmitter::PINSRD(X64Reg dest, const OpArg& arg, u8 subreg) { WriteSSE41Op(0x66, 0x3A22, dest, arg); Write8(subreg); } void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xF5, dest, arg); } void XEmitter::PSADBW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xF6, dest, arg); } void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEE, dest, arg); } void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDE, dest, arg); } void XEmitter::PMINSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEA, dest, arg); } void XEmitter::PMINUB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDA, dest, arg); } void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xD7, dest, arg); } void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle); } void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle); } void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle); } // VEX void XEmitter::VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF3, sseADD, regOp1, regOp2, arg); } void XEmitter::VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF3, sseSUB, regOp1, regOp2, arg); } void XEmitter::VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF3, sseMUL, regOp1, regOp2, arg); } void XEmitter::VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF3, sseDIV, regOp1, regOp2, arg); } void XEmitter::VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseADD, regOp1, regOp2, arg); } void XEmitter::VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseSUB, regOp1, regOp2, arg); } void XEmitter::VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseMUL, regOp1, regOp2, arg); } void XEmitter::VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseDIV, regOp1, regOp2, arg); } void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg); } void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg); } void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg); } void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg); } void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg); } void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg); } void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg); } void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg); } void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg); } void XEmitter::VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare) { WriteAVXOp(0x66, sseCMP, regOp1, regOp2, arg, 0, 1); Write8(compare); } void XEmitter::VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) { WriteAVXOp(0x00, sseSHUF, regOp1, regOp2, arg, 0, 1); Write8(shuffle); } void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) { WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 0, 1); Write8(shuffle); } void XEmitter::VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, 0x14, regOp1, regOp2, arg); } void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg); } void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg); } void XEmitter::VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3) { WriteAVXOp4(0x66, 0x3A4B, regOp1, regOp2, arg, regOp3); } void XEmitter::VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend) { WriteAVXOp(0x66, 0x3A0C, regOp1, regOp2, arg, 0, 1); Write8(blend); } void XEmitter::VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend) { WriteAVXOp(0x66, 0x3A0D, regOp1, regOp2, arg, 0, 1); Write8(blend); } void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); } void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); } void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); } void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); } void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); } void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); } void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); } void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); } void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); } void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); } void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); } void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); } void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x98, regOp1, regOp2, arg); } void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xA8, regOp1, regOp2, arg); } void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xB8, regOp1, regOp2, arg); } void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x98, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xA8, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xB8, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x99, regOp1, regOp2, arg); } void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xA9, regOp1, regOp2, arg); } void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xB9, regOp1, regOp2, arg); } void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x99, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xA9, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xB9, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9A, regOp1, regOp2, arg); } void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAA, regOp1, regOp2, arg); } void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBA, regOp1, regOp2, arg); } void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9A, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAA, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBA, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9B, regOp1, regOp2, arg); } void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAB, regOp1, regOp2, arg); } void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBB, regOp1, regOp2, arg); } void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9B, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAB, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBB, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9C, regOp1, regOp2, arg); } void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAC, regOp1, regOp2, arg); } void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBC, regOp1, regOp2, arg); } void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9C, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAC, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBC, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9D, regOp1, regOp2, arg); } void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAD, regOp1, regOp2, arg); } void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBD, regOp1, regOp2, arg); } void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9D, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAD, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBD, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9E, regOp1, regOp2, arg); } void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAE, regOp1, regOp2, arg); } void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBE, regOp1, regOp2, arg); } void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9E, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAE, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBE, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9F, regOp1, regOp2, arg); } void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAF, regOp1, regOp2, arg); } void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBF, regOp1, regOp2, arg); } void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x9F, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xAF, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xBF, regOp1, regOp2, arg, 1); } void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x96, regOp1, regOp2, arg); } void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xA6, regOp1, regOp2, arg); } void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xB6, regOp1, regOp2, arg); } void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x96, regOp1, regOp2, arg, 1); } void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xA6, regOp1, regOp2, arg, 1); } void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xB6, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x97, regOp1, regOp2, arg); } void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xA7, regOp1, regOp2, arg); } void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xB7, regOp1, regOp2, arg); } void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0x97, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xA7, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteFMA3Op(0xB7, regOp1, regOp2, arg, 1); } #define FMA4(name, op) \ void XEmitter::name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) \ { \ WriteFMA4Op(op, dest, regOp1, regOp2, arg, 1); \ } \ void XEmitter::name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) \ { \ WriteFMA4Op(op, dest, regOp1, regOp2, arg, 0); \ } FMA4(VFMADDSUBPS, 0x5C) FMA4(VFMADDSUBPD, 0x5D) FMA4(VFMSUBADDPS, 0x5E) FMA4(VFMSUBADDPD, 0x5F) FMA4(VFMADDPS, 0x68) FMA4(VFMADDPD, 0x69) FMA4(VFMADDSS, 0x6A) FMA4(VFMADDSD, 0x6B) FMA4(VFMSUBPS, 0x6C) FMA4(VFMSUBPD, 0x6D) FMA4(VFMSUBSS, 0x6E) FMA4(VFMSUBSD, 0x6F) FMA4(VFNMADDPS, 0x78) FMA4(VFNMADDPD, 0x79) FMA4(VFNMADDSS, 0x7A) FMA4(VFNMADDSD, 0x7B) FMA4(VFNMSUBPS, 0x7C) FMA4(VFNMSUBPD, 0x7D) FMA4(VFNMSUBSS, 0x7E) FMA4(VFNMSUBSD, 0x7F) #undef FMA4 void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg); } void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg); } void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg); } void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate) { WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate); } void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg); } void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg); } void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg); } void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { CheckFlags(); WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg); } void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg) { WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg); } void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg) { WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg); } void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg) { WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg); } void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg); } void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg); } // Prefixes void XEmitter::LOCK() { Write8(0xF0); } void XEmitter::REP() { Write8(0xF3); } void XEmitter::REPNE() { Write8(0xF2); } void XEmitter::FSOverride() { Write8(0x64); } void XEmitter::GSOverride() { Write8(0x65); } void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); } } // namespace Gen