// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "Common/CPUDetect.h" #include #include #include "Common/CommonTypes.h" #include "Common/Intrinsics.h" #ifndef _WIN32 #ifdef __FreeBSD__ #include #include #include #endif static inline void __cpuidex(int info[4], int function_id, int subfunction_id) { #ifdef __FreeBSD__ // Despite the name, this is just do_cpuid() with ECX as second input. cpuid_count((u_int)function_id, (u_int)subfunction_id, (u_int*)info); #else info[0] = function_id; // eax info[2] = subfunction_id; // ecx __asm__("cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(function_id), "c"(subfunction_id)); #endif } static inline void __cpuid(int info[4], int function_id) { return __cpuidex(info, function_id, 0); } #endif // ifndef _WIN32 #ifdef _WIN32 static u64 xgetbv(u32 index) { return _xgetbv(index); } constexpr u32 XCR_XFEATURE_ENABLED_MASK = _XCR_XFEATURE_ENABLED_MASK; #else static u64 xgetbv(u32 index) { u32 eax, edx; __asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index)); return ((u64)edx << 32) | eax; } constexpr u32 XCR_XFEATURE_ENABLED_MASK = 0; #endif // ifdef _WIN32 CPUInfo cpu_info; CPUInfo::CPUInfo() { Detect(); } // Detects the various CPU features void CPUInfo::Detect() { #ifdef _M_X86_64 Mode64bit = true; OS64bit = true; #endif num_cores = 1; // Set obvious defaults, for extra safety if (Mode64bit) { bSSE = true; bSSE2 = true; bLongMode = true; } // Assume CPU supports the CPUID instruction. Those that don't can barely // boot modern OS:es anyway. int cpu_id[4]; // Detect CPU's CPUID capabilities, and grab CPU string __cpuid(cpu_id, 0x00000000); u32 max_std_fn = cpu_id[0]; // EAX std::memcpy(&brand_string[0], &cpu_id[1], sizeof(int)); std::memcpy(&brand_string[4], &cpu_id[3], sizeof(int)); std::memcpy(&brand_string[8], &cpu_id[2], sizeof(int)); __cpuid(cpu_id, 0x80000000); u32 max_ex_fn = cpu_id[0]; if (!strcmp(brand_string, "GenuineIntel")) vendor = CPUVendor::Intel; else if (!strcmp(brand_string, "AuthenticAMD")) vendor = CPUVendor::AMD; else vendor = CPUVendor::Other; // Set reasonable default brand string even if brand string not available. strcpy(cpu_string, brand_string); // Detect family and other misc stuff. bool ht = false; HTT = ht; logical_cpu_count = 1; if (max_std_fn >= 1) { __cpuid(cpu_id, 0x00000001); int family = ((cpu_id[0] >> 8) & 0xf) + ((cpu_id[0] >> 20) & 0xff); int model = ((cpu_id[0] >> 4) & 0xf) + ((cpu_id[0] >> 12) & 0xf0); // Detect people unfortunate enough to be running Dolphin on an Atom if (family == 6 && (model == 0x1C || model == 0x26 || model == 0x27 || model == 0x35 || model == 0x36 || model == 0x37 || model == 0x4A || model == 0x4D || model == 0x5A || model == 0x5D)) bAtom = true; // Detect AMD Zen1, Zen1+ and Zen2 if (family == 23) bZen1p2 = true; logical_cpu_count = (cpu_id[1] >> 16) & 0xFF; ht = (cpu_id[3] >> 28) & 1; if ((cpu_id[3] >> 25) & 1) bSSE = true; if ((cpu_id[3] >> 26) & 1) bSSE2 = true; if ((cpu_id[2]) & 1) bSSE3 = true; if ((cpu_id[2] >> 9) & 1) bSSSE3 = true; if ((cpu_id[2] >> 19) & 1) bSSE4_1 = true; if ((cpu_id[2] >> 20) & 1) bSSE4_2 = true; if ((cpu_id[2] >> 22) & 1) bMOVBE = true; if ((cpu_id[2] >> 25) & 1) bAES = true; if ((cpu_id[3] >> 24) & 1) { // We can use FXSAVE. bFXSR = true; } // AVX support requires 3 separate checks: // - Is the AVX bit set in CPUID? // - Is the XSAVE bit set in CPUID? // - XGETBV result has the XCR bit set. if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1)) { if ((xgetbv(XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6) { bAVX = true; if ((cpu_id[2] >> 12) & 1) bFMA = true; } } if (max_std_fn >= 7) { __cpuidex(cpu_id, 0x00000007, 0x00000000); // careful; we can't enable AVX2 unless the XSAVE/XGETBV checks above passed if ((cpu_id[1] >> 5) & 1) bAVX2 = bAVX; if ((cpu_id[1] >> 3) & 1) bBMI1 = true; if ((cpu_id[1] >> 8) & 1) bBMI2 = true; } } bFlushToZero = bSSE; bFastBMI2 = bBMI2 && !bZen1p2; if (max_ex_fn >= 0x80000004) { // Extract CPU model string __cpuid(cpu_id, 0x80000002); memcpy(cpu_string, cpu_id, sizeof(cpu_id)); __cpuid(cpu_id, 0x80000003); memcpy(cpu_string + 16, cpu_id, sizeof(cpu_id)); __cpuid(cpu_id, 0x80000004); memcpy(cpu_string + 32, cpu_id, sizeof(cpu_id)); } if (max_ex_fn >= 0x80000001) { // Check for more features. __cpuid(cpu_id, 0x80000001); if (cpu_id[2] & 1) bLAHFSAHF64 = true; if ((cpu_id[2] >> 5) & 1) bLZCNT = true; if ((cpu_id[2] >> 16) & 1) bFMA4 = true; if ((cpu_id[3] >> 29) & 1) bLongMode = true; } num_cores = (logical_cpu_count == 0) ? 1 : logical_cpu_count; if (max_ex_fn >= 0x80000008) { // Get number of cores. This is a bit complicated. Following AMD manual here. __cpuid(cpu_id, 0x80000008); int apic_id_core_id_size = (cpu_id[2] >> 12) & 0xF; if (apic_id_core_id_size == 0) { if (ht) { // New mechanism for modern Intel CPUs. if (vendor == CPUVendor::Intel) { __cpuidex(cpu_id, 0x00000004, 0x00000000); int cores_x_package = ((cpu_id[0] >> 26) & 0x3F) + 1; HTT = (cores_x_package < logical_cpu_count); cores_x_package = ((logical_cpu_count % cores_x_package) == 0) ? cores_x_package : 1; num_cores = (cores_x_package > 1) ? cores_x_package : num_cores; logical_cpu_count /= cores_x_package; } } } else { // Use AMD's new method. num_cores = (cpu_id[2] & 0xFF) + 1; } } } // Turn the CPU info into a string we can show std::string CPUInfo::Summarize() { std::string sum(cpu_string); sum += " ("; sum += brand_string; sum += ")"; if (bSSE) sum += ", SSE"; if (bSSE2) { sum += ", SSE2"; if (!bFlushToZero) sum += " (but not DAZ!)"; } if (bSSE3) sum += ", SSE3"; if (bSSSE3) sum += ", SSSE3"; if (bSSE4_1) sum += ", SSE4.1"; if (bSSE4_2) sum += ", SSE4.2"; if (HTT) sum += ", HTT"; if (bAVX) sum += ", AVX"; if (bAVX2) sum += ", AVX2"; if (bBMI1) sum += ", BMI1"; if (bBMI2) sum += ", BMI2"; if (bFMA) sum += ", FMA"; if (bAES) sum += ", AES"; if (bMOVBE) sum += ", MOVBE"; if (bLongMode) sum += ", 64-bit support"; return sum; }