// Copyright 2016 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoBackends/Vulkan/VulkanContext.h" #include #include #include #include "Common/Assert.h" #include "Common/CommonFuncs.h" #include "Common/Contains.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Common/StringUtil.h" #include "VideoCommon/DriverDetails.h" #include "VideoCommon/VideoCommon.h" namespace Vulkan { static constexpr const char* VALIDATION_LAYER_NAME = "VK_LAYER_KHRONOS_validation"; std::unique_ptr g_vulkan_context; template static void InsertIntoChain(Chain* chain, Element* element) { element->pNext = chain->pNext; chain->pNext = element; } VulkanContext::PhysicalDeviceInfo::PhysicalDeviceInfo(VkPhysicalDevice device) { VkPhysicalDeviceFeatures features; VkPhysicalDeviceProperties2 properties2; VkPhysicalDeviceProperties& properties = properties2.properties; vkGetPhysicalDeviceProperties(device, &properties); vkGetPhysicalDeviceFeatures(device, &features); apiVersion = vkGetPhysicalDeviceProperties2 ? properties.apiVersion : VK_API_VERSION_1_0; if (apiVersion >= VK_API_VERSION_1_1) { VkPhysicalDeviceSubgroupProperties properties_subgroup = {}; VkPhysicalDeviceVulkan12Properties properties_vk12 = {}; properties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; properties2.pNext = nullptr; properties_subgroup.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES; InsertIntoChain(&properties2, &properties_subgroup); if (apiVersion >= VK_API_VERSION_1_2) { properties_vk12.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES; InsertIntoChain(&properties2, &properties_vk12); } vkGetPhysicalDeviceProperties2(device, &properties2); if (apiVersion >= VK_API_VERSION_1_2) { driverID = properties_vk12.driverID; } subgroupSize = properties_subgroup.subgroupSize; // We require basic ops (for gl_SubgroupInvocationID), ballot (for subgroupBallot, // subgroupBallotFindLSB), and arithmetic (for subgroupMin/subgroupMax). // Shuffle is enabled as a workaround until SPIR-V >= 1.5 is enabled with broadcast(uniform) // support. constexpr VkSubgroupFeatureFlags required_operations = VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_BIT; shaderSubgroupOperations = (properties_subgroup.supportedOperations & required_operations) == required_operations && properties_subgroup.supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT; } memcpy(deviceName, properties.deviceName, sizeof(deviceName)); memcpy(pipelineCacheUUID, properties.pipelineCacheUUID, sizeof(pipelineCacheUUID)); vendorID = properties.vendorID; deviceID = properties.deviceID; minUniformBufferOffsetAlignment = std::max(properties.limits.minUniformBufferOffsetAlignment, 1); bufferImageGranularity = std::max(properties.limits.bufferImageGranularity, 1); maxTexelBufferElements = properties.limits.maxTexelBufferElements; maxImageDimension2D = properties.limits.maxImageDimension2D; framebufferColorSampleCounts = properties.limits.framebufferColorSampleCounts; framebufferDepthSampleCounts = properties.limits.framebufferDepthSampleCounts; memcpy(pointSizeRange, properties.limits.pointSizeRange, sizeof(pointSizeRange)); maxSamplerAnisotropy = properties.limits.maxSamplerAnisotropy; dualSrcBlend = features.dualSrcBlend != VK_FALSE; geometryShader = features.geometryShader != VK_FALSE; samplerAnisotropy = features.samplerAnisotropy != VK_FALSE; logicOp = features.logicOp != VK_FALSE; fragmentStoresAndAtomics = features.fragmentStoresAndAtomics != VK_FALSE; sampleRateShading = features.sampleRateShading != VK_FALSE; largePoints = features.largePoints != VK_FALSE; shaderStorageImageMultisample = features.shaderStorageImageMultisample != VK_FALSE; shaderTessellationAndGeometryPointSize = features.shaderTessellationAndGeometryPointSize != VK_FALSE; occlusionQueryPrecise = features.occlusionQueryPrecise != VK_FALSE; shaderClipDistance = features.shaderClipDistance != VK_FALSE; depthClamp = features.depthClamp != VK_FALSE; textureCompressionBC = features.textureCompressionBC != VK_FALSE; } VkPhysicalDeviceFeatures VulkanContext::PhysicalDeviceInfo::features() const { VkPhysicalDeviceFeatures features; memset(&features, 0, sizeof(features)); features.dualSrcBlend = dualSrcBlend ? VK_TRUE : VK_FALSE; features.geometryShader = geometryShader ? VK_TRUE : VK_FALSE; features.samplerAnisotropy = samplerAnisotropy ? VK_TRUE : VK_FALSE; features.logicOp = logicOp ? VK_TRUE : VK_FALSE; features.fragmentStoresAndAtomics = fragmentStoresAndAtomics ? VK_TRUE : VK_FALSE; features.sampleRateShading = sampleRateShading ? VK_TRUE : VK_FALSE; features.largePoints = largePoints ? VK_TRUE : VK_FALSE; features.shaderStorageImageMultisample = shaderStorageImageMultisample ? VK_TRUE : VK_FALSE; features.shaderTessellationAndGeometryPointSize = shaderTessellationAndGeometryPointSize ? VK_TRUE : VK_FALSE; features.occlusionQueryPrecise = occlusionQueryPrecise ? VK_TRUE : VK_FALSE; features.shaderClipDistance = shaderClipDistance ? VK_TRUE : VK_FALSE; features.depthClamp = depthClamp ? VK_TRUE : VK_FALSE; features.textureCompressionBC = textureCompressionBC ? VK_TRUE : VK_FALSE; return features; } VulkanContext::VulkanContext(VkInstance instance, VkPhysicalDevice physical_device) : m_instance(instance), m_physical_device(physical_device), m_device_info(physical_device) { } VulkanContext::~VulkanContext() { if (m_allocator != VK_NULL_HANDLE) vmaDestroyAllocator(m_allocator); if (m_device != VK_NULL_HANDLE) vkDestroyDevice(m_device, nullptr); if (m_debug_utils_messenger != VK_NULL_HANDLE) DisableDebugUtils(); vkDestroyInstance(m_instance, nullptr); } bool VulkanContext::CheckValidationLayerAvailablility() { u32 extension_count = 0; VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } std::vector extension_list(extension_count); res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, extension_list.data()); ASSERT(res == VK_SUCCESS); u32 layer_count = 0; res = vkEnumerateInstanceLayerProperties(&layer_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } std::vector layer_list(layer_count); res = vkEnumerateInstanceLayerProperties(&layer_count, layer_list.data()); ASSERT(res == VK_SUCCESS); bool supports_validation_layers = Common::Contains( layer_list, std::string_view{VALIDATION_LAYER_NAME}, &VkLayerProperties::layerName); bool supports_debug_utils = Common::Contains(extension_list, std::string_view{VK_EXT_DEBUG_UTILS_EXTENSION_NAME}, &VkExtensionProperties::extensionName); if (!supports_debug_utils && supports_validation_layers) { // If the instance doesn't support debug utils but we're using validation layers, // try to use the implementation of the extension provided by the validation layers. extension_count = 0; res = vkEnumerateInstanceExtensionProperties(VALIDATION_LAYER_NAME, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } extension_list.resize(extension_count); res = vkEnumerateInstanceExtensionProperties(VALIDATION_LAYER_NAME, &extension_count, extension_list.data()); ASSERT(res == VK_SUCCESS); supports_debug_utils = Common::Contains(extension_list, std::string_view{VK_EXT_DEBUG_UTILS_EXTENSION_NAME}, &VkExtensionProperties::extensionName); } // Check for both VK_EXT_debug_utils and VK_LAYER_KHRONOS_validation return supports_debug_utils && supports_validation_layers; } static u32 getAPIVersion() { u32 supported_version; u32 used_version = VK_API_VERSION_1_0; if (vkEnumerateInstanceVersion && vkEnumerateInstanceVersion(&supported_version) == VK_SUCCESS) { // The device itself may not support 1.1, so we check that before using any 1.1 functionality. if (supported_version >= VK_API_VERSION_1_2) used_version = VK_API_VERSION_1_2; else if (supported_version >= VK_API_VERSION_1_1) used_version = VK_API_VERSION_1_1; WARN_LOG_FMT(HOST_GPU, "Using Vulkan 1.{}, supported: {}.{}", VK_VERSION_MINOR(used_version), VK_VERSION_MAJOR(supported_version), VK_VERSION_MINOR(supported_version)); } else { WARN_LOG_FMT(HOST_GPU, "Using Vulkan 1.0"); } return used_version; } VkInstance VulkanContext::CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_utils, bool enable_validation_layer, u32* out_vk_api_version) { std::vector enabled_extensions; if (!SelectInstanceExtensions(&enabled_extensions, wstype, enable_debug_utils, enable_validation_layer)) return VK_NULL_HANDLE; VkApplicationInfo app_info = {}; app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; app_info.pNext = nullptr; app_info.pApplicationName = "Dolphin Emulator"; app_info.applicationVersion = VK_MAKE_VERSION(5, 0, 0); app_info.pEngineName = "Dolphin Emulator"; app_info.engineVersion = VK_MAKE_VERSION(5, 0, 0); app_info.apiVersion = getAPIVersion(); *out_vk_api_version = app_info.apiVersion; VkInstanceCreateInfo instance_create_info = {}; instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instance_create_info.pNext = nullptr; instance_create_info.flags = 0; instance_create_info.pApplicationInfo = &app_info; instance_create_info.enabledExtensionCount = static_cast(enabled_extensions.size()); instance_create_info.ppEnabledExtensionNames = enabled_extensions.data(); instance_create_info.enabledLayerCount = 0; instance_create_info.ppEnabledLayerNames = nullptr; // Enable validation layer if the user enabled them in the settings if (enable_validation_layer) { instance_create_info.enabledLayerCount = 1; instance_create_info.ppEnabledLayerNames = &VALIDATION_LAYER_NAME; } VkInstance instance; VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateInstance failed: "); return nullptr; } return instance; } bool VulkanContext::SelectInstanceExtensions(std::vector* extension_list, WindowSystemType wstype, bool enable_debug_utils, bool validation_layer_enabled) { u32 extension_count = 0; VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } if (extension_count == 0) { ERROR_LOG_FMT(VIDEO, "Vulkan: No extensions supported by instance."); return false; } std::vector available_extension_list(extension_count); res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, available_extension_list.data()); ASSERT(res == VK_SUCCESS); u32 validation_layer_extension_count = 0; std::vector validation_layer_extension_list; if (validation_layer_enabled) { res = vkEnumerateInstanceExtensionProperties(VALIDATION_LAYER_NAME, &validation_layer_extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed for validation layers: "); } else { validation_layer_extension_list.resize(validation_layer_extension_count); res = vkEnumerateInstanceExtensionProperties(VALIDATION_LAYER_NAME, &validation_layer_extension_count, validation_layer_extension_list.data()); ASSERT(res == VK_SUCCESS); } } for (const auto& extension_properties : available_extension_list) INFO_LOG_FMT(VIDEO, "Available extension: {}", extension_properties.extensionName); for (const auto& extension_properties : validation_layer_extension_list) { INFO_LOG_FMT(VIDEO, "Available extension in validation layer: {}", extension_properties.extensionName); } auto AddExtension = [&](const char* name, bool required) { bool extension_supported = Common::Contains(available_extension_list, std::string_view{name}, &VkExtensionProperties::extensionName) || Common::Contains(validation_layer_extension_list, std::string_view{name}, &VkExtensionProperties::extensionName); if (extension_supported) { INFO_LOG_FMT(VIDEO, "Enabling extension: {}", name); extension_list->push_back(name); return true; } if (required) ERROR_LOG_FMT(VIDEO, "Vulkan: Missing required extension {}.", name); return false; }; // Common extensions if (wstype != WindowSystemType::Headless && !AddExtension(VK_KHR_SURFACE_EXTENSION_NAME, true)) { return false; } #if defined(VK_USE_PLATFORM_WIN32_KHR) if (wstype == WindowSystemType::Windows && !AddExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true)) { return false; } #endif #if defined(VK_USE_PLATFORM_XLIB_KHR) if (wstype == WindowSystemType::X11 && !AddExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true)) { return false; } #endif #if defined(VK_USE_PLATFORM_ANDROID_KHR) if (wstype == WindowSystemType::Android && !AddExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, true)) { return false; } #endif #if defined(VK_USE_PLATFORM_METAL_EXT) if (wstype == WindowSystemType::MacOS && !AddExtension(VK_EXT_METAL_SURFACE_EXTENSION_NAME, true)) { return false; } #endif AddExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, false); if (wstype != WindowSystemType::Headless) { AddExtension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, false); } // VK_EXT_debug_utils if (AddExtension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, false)) { g_Config.backend_info.bSupportsSettingObjectNames = true; } else if (enable_debug_utils) { WARN_LOG_FMT(VIDEO, "Vulkan: Debug utils requested, but extension is not available."); } return true; } VulkanContext::GPUList VulkanContext::EnumerateGPUs(VkInstance instance) { u32 gpu_count = 0; VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: "); return {}; } GPUList gpus; gpus.resize(gpu_count); res = vkEnumeratePhysicalDevices(instance, &gpu_count, gpus.data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: "); return {}; } return gpus; } void VulkanContext::PopulateBackendInfo(VideoConfig* config) { config->backend_info.api_type = APIType::Vulkan; config->backend_info.bSupports3DVision = false; // D3D-exclusive. config->backend_info.bSupportsEarlyZ = true; // Assumed support. config->backend_info.bSupportsPrimitiveRestart = true; // Assumed support. config->backend_info.bSupportsBindingLayout = false; // Assumed support. config->backend_info.bSupportsPaletteConversion = true; // Assumed support. config->backend_info.bSupportsClipControl = true; // Assumed support. config->backend_info.bSupportsMultithreading = true; // Assumed support. config->backend_info.bSupportsComputeShaders = true; // Assumed support. config->backend_info.bSupportsGPUTextureDecoding = true; // Assumed support. config->backend_info.bSupportsBitfield = true; // Assumed support. config->backend_info.bSupportsPartialDepthCopies = true; // Assumed support. config->backend_info.bSupportsShaderBinaries = true; // Assumed support. config->backend_info.bSupportsPipelineCacheData = false; // Handled via pipeline caches. config->backend_info.bSupportsDynamicSamplerIndexing = true; // Assumed support. config->backend_info.bSupportsPostProcessing = true; // Assumed support. config->backend_info.bSupportsBackgroundCompiling = true; // Assumed support. config->backend_info.bSupportsCopyToVram = true; // Assumed support. config->backend_info.bSupportsReversedDepthRange = true; // Assumed support. config->backend_info.bSupportsExclusiveFullscreen = false; // Dependent on OS and features. config->backend_info.bSupportsDualSourceBlend = false; // Dependent on features. config->backend_info.bSupportsGeometryShaders = false; // Dependent on features. config->backend_info.bSupportsGSInstancing = false; // Dependent on features. config->backend_info.bSupportsBBox = false; // Dependent on features. config->backend_info.bSupportsFragmentStoresAndAtomics = false; // Dependent on features. config->backend_info.bSupportsSSAA = false; // Dependent on features. config->backend_info.bSupportsDepthClamp = false; // Dependent on features. config->backend_info.bSupportsST3CTextures = false; // Dependent on features. config->backend_info.bSupportsBPTCTextures = false; // Dependent on features. config->backend_info.bSupportsLogicOp = false; // Dependent on features. config->backend_info.bSupportsLargePoints = false; // Dependent on features. config->backend_info.bSupportsFramebufferFetch = false; // Dependent on OS and features. config->backend_info.bSupportsCoarseDerivatives = true; // Assumed support. config->backend_info.bSupportsTextureQueryLevels = true; // Assumed support. config->backend_info.bSupportsLodBiasInSampler = false; // Dependent on OS. config->backend_info.bSupportsSettingObjectNames = false; // Dependent on features. config->backend_info.bSupportsPartialMultisampleResolve = true; // Assumed support. config->backend_info.bSupportsDynamicVertexLoader = true; // Assumed support. config->backend_info.bSupportsVSLinePointExpand = true; // Assumed support. config->backend_info.bSupportsHDROutput = true; // Assumed support. } void VulkanContext::PopulateBackendInfoAdapters(VideoConfig* config, const GPUList& gpu_list) { config->backend_info.Adapters.clear(); for (VkPhysicalDevice physical_device : gpu_list) { VkPhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties(physical_device, &properties); config->backend_info.Adapters.push_back(properties.deviceName); } } void VulkanContext::PopulateBackendInfoFeatures(VideoConfig* config, VkPhysicalDevice gpu, const PhysicalDeviceInfo& info) { config->backend_info.MaxTextureSize = info.maxImageDimension2D; config->backend_info.bUsesLowerLeftOrigin = false; config->backend_info.bSupportsDualSourceBlend = info.dualSrcBlend; config->backend_info.bSupportsGeometryShaders = info.geometryShader; config->backend_info.bSupportsGSInstancing = info.geometryShader; config->backend_info.bSupportsBBox = config->backend_info.bSupportsFragmentStoresAndAtomics = info.fragmentStoresAndAtomics; config->backend_info.bSupportsSSAA = info.sampleRateShading; config->backend_info.bSupportsLogicOp = info.logicOp; // Metal doesn't support this. config->backend_info.bSupportsLodBiasInSampler = info.driverID != VK_DRIVER_ID_MOLTENVK; // Disable geometry shader when shaderTessellationAndGeometryPointSize is not supported. // Seems this is needed for gl_Layer. if (!info.shaderTessellationAndGeometryPointSize) { config->backend_info.bSupportsGeometryShaders = VK_FALSE; config->backend_info.bSupportsGSInstancing = VK_FALSE; } // Depth clamping implies shaderClipDistance and depthClamp config->backend_info.bSupportsDepthClamp = info.depthClamp && info.shaderClipDistance; // textureCompressionBC implies BC1 through BC7, which is a superset of DXT1/3/5, which we need. config->backend_info.bSupportsST3CTextures = info.textureCompressionBC; config->backend_info.bSupportsBPTCTextures = info.textureCompressionBC; // Some devices don't support point sizes >1 (e.g. Adreno). // If we can't use a point size above our maximum IR, use triangles instead for EFB pokes. // This means a 6x increase in the size of the vertices, though. config->backend_info.bSupportsLargePoints = info.largePoints && info.pointSizeRange[0] <= 1.0f && info.pointSizeRange[1] >= 16; std::string device_name = info.deviceName; u32 vendor_id = info.vendorID; bool is_moltenvk = info.driverID == VK_DRIVER_ID_MOLTENVK; // Only Apple family GPUs support framebuffer fetch. // We currently use a hacked MoltenVK to implement this, so don't attempt outside of MVK if (is_moltenvk && (vendor_id == 0x106B || device_name.find("Apple") != std::string::npos)) { config->backend_info.bSupportsFramebufferFetch = true; } // Our usage of primitive restart appears to be broken on AMD's binary drivers. // Seems to be fine on GCN Gen 1-2, unconfirmed on GCN Gen 3, causes driver resets on GCN Gen 4. if (DriverDetails::HasBug(DriverDetails::BUG_PRIMITIVE_RESTART)) config->backend_info.bSupportsPrimitiveRestart = false; // Reversed depth range is broken on some drivers, or is broken when used in combination // with depth clamping. Fall back to inverted depth range for these. if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_REVERSED_DEPTH_RANGE)) config->backend_info.bSupportsReversedDepthRange = false; // Dynamic sampler indexing locks up Intel GPUs on MoltenVK/Metal if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_DYNAMIC_SAMPLER_INDEXING)) config->backend_info.bSupportsDynamicSamplerIndexing = false; } void VulkanContext::PopulateBackendInfoMultisampleModes(VideoConfig* config, VkPhysicalDevice gpu, const PhysicalDeviceInfo& info) { // Query image support for the EFB texture formats. VkImageFormatProperties efb_color_properties = {}; vkGetPhysicalDeviceImageFormatProperties( gpu, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, &efb_color_properties); VkImageFormatProperties efb_depth_properties = {}; vkGetPhysicalDeviceImageFormatProperties( gpu, VK_FORMAT_D32_SFLOAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, &efb_depth_properties); // We can only support MSAA if it's supported on our render target formats. VkSampleCountFlags supported_sample_counts = info.framebufferColorSampleCounts & info.framebufferDepthSampleCounts & efb_color_properties.sampleCounts & efb_depth_properties.sampleCounts; // No AA config->backend_info.AAModes.clear(); config->backend_info.AAModes.emplace_back(1); // 2xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_2_BIT) config->backend_info.AAModes.emplace_back(2); // 4xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_4_BIT) config->backend_info.AAModes.emplace_back(4); // 8xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_8_BIT) config->backend_info.AAModes.emplace_back(8); // 16xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_16_BIT) config->backend_info.AAModes.emplace_back(16); // 32xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_32_BIT) config->backend_info.AAModes.emplace_back(32); // 64xMSAA/SSAA if (supported_sample_counts & VK_SAMPLE_COUNT_64_BIT) config->backend_info.AAModes.emplace_back(64); } std::unique_ptr VulkanContext::Create(VkInstance instance, VkPhysicalDevice gpu, VkSurfaceKHR surface, bool enable_debug_utils, bool enable_validation_layer, u32 vk_api_version) { std::unique_ptr context = std::make_unique(instance, gpu); // Initialize DriverDetails so that we can check for bugs to disable features if needed. context->InitDriverDetails(); // Enable debug messages if the "Host GPU" log category is enabled. if (enable_debug_utils) context->EnableDebugUtils(); // Attempt to create the device. if (!context->CreateDevice(surface, enable_validation_layer) || !context->CreateAllocator(vk_api_version)) { // Since we are destroying the instance, we're also responsible for destroying the surface. if (surface != VK_NULL_HANDLE) vkDestroySurfaceKHR(instance, surface, nullptr); return nullptr; } return context; } bool VulkanContext::SelectDeviceExtensions(bool enable_surface) { u32 extension_count = 0; VkResult res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: "); return false; } if (extension_count == 0) { ERROR_LOG_FMT(VIDEO, "Vulkan: No extensions supported by device."); return false; } std::vector available_extension_list(extension_count); res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, available_extension_list.data()); ASSERT(res == VK_SUCCESS); for (const auto& extension_properties : available_extension_list) INFO_LOG_FMT(VIDEO, "Available extension: {}", extension_properties.extensionName); auto AddExtension = [&](const char* name, bool required) { if (Common::Contains(available_extension_list, std::string_view{name}, &VkExtensionProperties::extensionName)) { INFO_LOG_FMT(VIDEO, "Enabling extension: {}", name); m_device_extensions.push_back(name); return true; } if (required) ERROR_LOG_FMT(VIDEO, "Vulkan: Missing required extension {}.", name); return false; }; if (enable_surface && !AddExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true)) return false; #ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN // VK_EXT_full_screen_exclusive if (AddExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME, true)) INFO_LOG_FMT(VIDEO, "Using VK_EXT_full_screen_exclusive for exclusive fullscreen."); #endif AddExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, false); AddExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, false); return true; } void VulkanContext::WarnMissingDeviceFeatures() { if (!m_device_info.largePoints) WARN_LOG_FMT(VIDEO, "Vulkan: Missing large points feature. CPU EFB writes will be slower."); if (!m_device_info.occlusionQueryPrecise) { WARN_LOG_FMT(VIDEO, "Vulkan: Missing precise occlusion queries. Perf queries will be inaccurate."); } } bool VulkanContext::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer) { u32 queue_family_count; vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr); if (queue_family_count == 0) { ERROR_LOG_FMT(VIDEO, "No queue families found on specified vulkan physical device."); return false; } std::vector queue_family_properties(queue_family_count); vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, queue_family_properties.data()); INFO_LOG_FMT(VIDEO, "{} vulkan queue families", queue_family_count); // Find graphics and present queues. m_graphics_queue_family_index = queue_family_count; m_present_queue_family_index = queue_family_count; for (uint32_t i = 0; i < queue_family_count; i++) { VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT; if (graphics_supported) { m_graphics_queue_family_index = i; // Quit now, no need for a present queue. if (!surface) { break; } } if (surface) { VkBool32 present_supported; VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: "); return false; } if (present_supported) { m_present_queue_family_index = i; } // Prefer one queue family index that does both graphics and present. if (graphics_supported && present_supported) { break; } } } if (m_graphics_queue_family_index == queue_family_count) { ERROR_LOG_FMT(VIDEO, "Vulkan: Failed to find an acceptable graphics queue."); return false; } if (surface && m_present_queue_family_index == queue_family_count) { ERROR_LOG_FMT(VIDEO, "Vulkan: Failed to find an acceptable present queue."); return false; } VkDeviceCreateInfo device_info = {}; device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; device_info.pNext = nullptr; device_info.flags = 0; static constexpr float queue_priorities[] = {1.0f}; VkDeviceQueueCreateInfo graphics_queue_info = {}; graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; graphics_queue_info.pNext = nullptr; graphics_queue_info.flags = 0; graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index; graphics_queue_info.queueCount = 1; graphics_queue_info.pQueuePriorities = queue_priorities; VkDeviceQueueCreateInfo present_queue_info = {}; present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; present_queue_info.pNext = nullptr; present_queue_info.flags = 0; present_queue_info.queueFamilyIndex = m_present_queue_family_index; present_queue_info.queueCount = 1; present_queue_info.pQueuePriorities = queue_priorities; std::array queue_infos = {{ graphics_queue_info, present_queue_info, }}; device_info.queueCreateInfoCount = 1; if (m_graphics_queue_family_index != m_present_queue_family_index && m_present_queue_family_index != queue_family_count) { device_info.queueCreateInfoCount = 2; } device_info.pQueueCreateInfos = queue_infos.data(); if (!SelectDeviceExtensions(surface != VK_NULL_HANDLE)) return false; // convert std::string list to a char pointer list which we can feed in std::vector extension_name_pointers; for (const std::string& name : m_device_extensions) extension_name_pointers.push_back(name.c_str()); device_info.enabledLayerCount = 0; device_info.ppEnabledLayerNames = nullptr; device_info.enabledExtensionCount = static_cast(extension_name_pointers.size()); device_info.ppEnabledExtensionNames = extension_name_pointers.data(); WarnMissingDeviceFeatures(); VkPhysicalDeviceFeatures device_features = m_device_info.features(); device_info.pEnabledFeatures = &device_features; // Enable debug layer on debug builds if (enable_validation_layer) { device_info.enabledLayerCount = 1; device_info.ppEnabledLayerNames = &VALIDATION_LAYER_NAME; } VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDevice failed: "); return false; } // With the device created, we can fill the remaining entry points. if (!LoadVulkanDeviceFunctions(m_device)) return false; // Grab the graphics and present queues. vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue); if (surface) { vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue); } return true; } bool VulkanContext::CreateAllocator(u32 vk_api_version) { VmaAllocatorCreateInfo allocator_info = {}; allocator_info.flags = VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT; allocator_info.physicalDevice = m_physical_device; allocator_info.device = m_device; allocator_info.preferredLargeHeapBlockSize = 64 << 20; allocator_info.pAllocationCallbacks = nullptr; allocator_info.pDeviceMemoryCallbacks = nullptr; allocator_info.pHeapSizeLimit = nullptr; allocator_info.pVulkanFunctions = nullptr; allocator_info.instance = m_instance; allocator_info.vulkanApiVersion = vk_api_version; allocator_info.pTypeExternalMemoryHandleTypes = nullptr; if (SupportsDeviceExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME)) allocator_info.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT; VkResult res = vmaCreateAllocator(&allocator_info, &m_allocator); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vmaCreateAllocator failed: "); return false; } return true; } static VKAPI_ATTR VkBool32 VKAPI_CALL DebugUtilsCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageTypes, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) { const std::string log_message = fmt::format("Vulkan debug message: {}", pCallbackData->pMessage); if (messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) ERROR_LOG_FMT(HOST_GPU, "{}", log_message); else if (messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) WARN_LOG_FMT(HOST_GPU, "{}", log_message); else if (messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) INFO_LOG_FMT(HOST_GPU, "{}", log_message); else DEBUG_LOG_FMT(HOST_GPU, "{}", log_message); return VK_FALSE; } bool VulkanContext::EnableDebugUtils() { // Already enabled? if (m_debug_utils_messenger != VK_NULL_HANDLE) return true; // Check for presence of the functions before calling if (!vkCreateDebugUtilsMessengerEXT || !vkDestroyDebugUtilsMessengerEXT || !vkSubmitDebugUtilsMessageEXT) { return false; } VkDebugUtilsMessengerCreateInfoEXT messenger_info = { VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT, nullptr, 0, VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT, VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT, DebugUtilsCallback, nullptr}; VkResult res = vkCreateDebugUtilsMessengerEXT(m_instance, &messenger_info, nullptr, &m_debug_utils_messenger); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDebugUtilsMessengerEXT failed: "); return false; } return true; } void VulkanContext::DisableDebugUtils() { if (m_debug_utils_messenger != VK_NULL_HANDLE) { vkDestroyDebugUtilsMessengerEXT(m_instance, m_debug_utils_messenger, nullptr); m_debug_utils_messenger = VK_NULL_HANDLE; } } bool VulkanContext::SupportsDeviceExtension(const char* name) const { return std::ranges::any_of(m_device_extensions, [name](const std::string& extension) { return extension == name; }); } static bool DriverIsMesa(VkDriverId driver_id) { switch (driver_id) { case VK_DRIVER_ID_MESA_RADV: case VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA: case VK_DRIVER_ID_MESA_LLVMPIPE: case VK_DRIVER_ID_MESA_TURNIP: case VK_DRIVER_ID_MESA_V3DV: case VK_DRIVER_ID_MESA_PANVK: case VK_DRIVER_ID_MESA_VENUS: case VK_DRIVER_ID_MESA_DOZEN: case VK_DRIVER_ID_MESA_NVK: case VK_DRIVER_ID_IMAGINATION_OPEN_SOURCE_MESA: case VK_DRIVER_ID_MESA_HONEYKRISP: return true; default: return false; } } static DriverDetails::Driver GetMesaDriver(VkDriverId driver_id) { switch (driver_id) { // clang-format off case VK_DRIVER_ID_MESA_RADV: return DriverDetails::DRIVER_R600; case VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA: return DriverDetails::DRIVER_I965; case VK_DRIVER_ID_MESA_NVK: return DriverDetails::DRIVER_NOUVEAU; case VK_DRIVER_ID_MESA_TURNIP: return DriverDetails::DRIVER_FREEDRENO; default: return DriverDetails::DRIVER_UNKNOWN; // clang-format on } } void VulkanContext::InitDriverDetails() { DriverDetails::Vendor vendor; DriverDetails::Driver driver; // String comparisons aren't ideal, but there doesn't seem to be any other way to tell // which vendor a driver is for. These names are based on the reports submitted to // vulkan.gpuinfo.org, as of 19/09/2017. std::string device_name = m_device_info.deviceName; u32 vendor_id = m_device_info.vendorID; // Note: driver_id may be 0 on vulkan < 1.2 VkDriverId driver_id = m_device_info.driverID; if (DriverIsMesa(driver_id)) { vendor = DriverDetails::VENDOR_MESA; driver = GetMesaDriver(driver_id); } else if (vendor_id == 0x10DE) { // Currently, there is only the official NV binary driver. // "NVIDIA" does not appear in the device name. vendor = DriverDetails::VENDOR_NVIDIA; driver = DriverDetails::DRIVER_NVIDIA; } else if (vendor_id == 0x1002 || vendor_id == 0x1022 || device_name.find("AMD") != std::string::npos) { // RADV always advertises its name in the device string. // If not RADV, assume the AMD binary driver. if (device_name.find("RADV") != std::string::npos) { vendor = DriverDetails::VENDOR_MESA; driver = DriverDetails::DRIVER_R600; } else { vendor = DriverDetails::VENDOR_ATI; driver = DriverDetails::DRIVER_ATI; } } else if (vendor_id == 0x8086 || vendor_id == 0x8087 || device_name.find("Intel") != std::string::npos) { // Apart from the driver version, Intel does not appear to provide a way to // differentiate between anv and the binary driver (Skylake+). Assume to be // using anv if we're not running on Windows or macOS. #if defined(WIN32) || defined(__APPLE__) vendor = DriverDetails::VENDOR_INTEL; driver = DriverDetails::DRIVER_INTEL; #else vendor = DriverDetails::VENDOR_MESA; driver = DriverDetails::DRIVER_I965; #endif } else if (vendor_id == 0x5143 || device_name.find("Adreno") != std::string::npos) { // Currently only the Qualcomm binary driver exists for Adreno. vendor = DriverDetails::VENDOR_QUALCOMM; driver = DriverDetails::DRIVER_QUALCOMM; } else if (vendor_id == 0x13B6 || device_name.find("Mali") != std::string::npos) { // Currently only the ARM binary driver exists for Mali. vendor = DriverDetails::VENDOR_ARM; driver = DriverDetails::DRIVER_ARM; } else if (vendor_id == 0x1010 || device_name.find("PowerVR") != std::string::npos) { // Currently only the binary driver exists for PowerVR. vendor = DriverDetails::VENDOR_IMGTEC; driver = DriverDetails::DRIVER_IMGTEC; } else if (device_name.find("Apple") != std::string::npos) { vendor = DriverDetails::VENDOR_APPLE; driver = DriverDetails::DRIVER_PORTABILITY; } else { WARN_LOG_FMT(VIDEO, "Unknown Vulkan driver vendor, please report it to us."); WARN_LOG_FMT(VIDEO, "Vendor ID: {:#X}, Device Name: {}", vendor_id, device_name); vendor = DriverDetails::VENDOR_UNKNOWN; driver = DriverDetails::DRIVER_UNKNOWN; } // Vulkan on macOS goes through Metal, and is not susceptible to the same bugs // as the vendor's native Vulkan drivers. We use a different driver fields to // differentiate MoltenVK. if (driver_id == VK_DRIVER_ID_MOLTENVK) driver = DriverDetails::DRIVER_PORTABILITY; DriverDetails::Init(DriverDetails::API_VULKAN, vendor, driver, static_cast(m_device_info.driverVersion), DriverDetails::Family::UNKNOWN, std::move(device_name)); } bool VulkanContext::SupportsExclusiveFullscreen(const WindowSystemInfo& wsi, VkSurfaceKHR surface) { #ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN if (!surface || !vkGetPhysicalDeviceSurfaceCapabilities2KHR || !SupportsDeviceExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME)) { return false; } VkPhysicalDeviceSurfaceInfo2KHR si = {}; si.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR; si.surface = surface; auto platform_info = GetPlatformExclusiveFullscreenInfo(wsi); si.pNext = &platform_info; VkSurfaceCapabilities2KHR caps = {}; caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR; VkSurfaceCapabilitiesFullScreenExclusiveEXT fullscreen_caps = {}; fullscreen_caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_FULL_SCREEN_EXCLUSIVE_EXT; fullscreen_caps.fullScreenExclusiveSupported = VK_TRUE; caps.pNext = &fullscreen_caps; VkResult res = vkGetPhysicalDeviceSurfaceCapabilities2KHR(m_physical_device, &si, &caps); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceCapabilities2KHR failed:"); return false; } return fullscreen_caps.fullScreenExclusiveSupported; #else return false; #endif } #ifdef WIN32 VkSurfaceFullScreenExclusiveWin32InfoEXT VulkanContext::GetPlatformExclusiveFullscreenInfo(const WindowSystemInfo& wsi) { VkSurfaceFullScreenExclusiveWin32InfoEXT info = {}; info.sType = VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_WIN32_INFO_EXT; info.hmonitor = MonitorFromWindow(static_cast(wsi.render_surface), MONITOR_DEFAULTTOPRIMARY); return info; } #endif } // namespace Vulkan