// Copyright (C) 2003-2008 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // This queue solution is temporary. I'll implement something more efficient later. #include #include "Thread.h" #include "Mixer.h" #include "FixedSizeQueue.h" #ifdef _WIN32 #include "DSoundStream.h" #endif namespace { Common::CriticalSection push_sync; // On real hardware, this fifo is much, much smaller. But timing is also tighter than under Windows, so... const int queue_minlength = 1024 * 4; const int queue_maxlength = 1024 * 28; FixedSizeQueue sample_queue; } // namespace volatile bool mixer_HLEready = false; volatile int queue_size = 0; void Mixer(short *buffer, int numSamples, int bits, int rate, int channels) { // silence memset(buffer, 0, numSamples * 2 * sizeof(short)); push_sync.Enter(); int count = 0; while (queue_size > queue_minlength && count < numSamples * 2) { int x = buffer[count]; x += sample_queue.front(); if (x > 32767) x = 32767; if (x < -32767) x = -32767; buffer[count++] = x; sample_queue.pop(); x = buffer[count]; x += sample_queue.front(); if (x > 32767) x = 32767; if (x < -32767) x = -32767; buffer[count++] = x; sample_queue.pop(); queue_size-=2; } push_sync.Leave(); } void Mixer_PushSamples(short *buffer, int num_stereo_samples, int sample_rate) { // static FILE *f; // if (!f) // f = fopen("d:\\hello.raw", "wb"); // fwrite(buffer, num_stereo_samples * 4, 1, f); if (queue_size == 0) { queue_size = queue_minlength; for (int i = 0; i < queue_minlength; i++) sample_queue.push((s16)0); } static int PV1l=0,PV2l=0,PV3l=0,PV4l=0; static int PV1r=0,PV2r=0,PV3r=0,PV4r=0; static int acc=0; #ifdef _WIN32 if (!GetAsyncKeyState(VK_TAB)) { while (queue_size > queue_maxlength / 2) { DSound::DSound_UpdateSound(); Sleep(0); } } else { return; } #else while (queue_size > queue_maxlength) { sleep(0); } #endif //convert into config option? const int mode = 2; push_sync.Enter(); while (num_stereo_samples) { acc += sample_rate; while (num_stereo_samples && (acc >= 48000)) { PV4l=PV3l; PV3l=PV2l; PV2l=PV1l; PV1l=*(buffer++); //32bit processing PV4r=PV3r; PV3r=PV2r; PV2r=PV1r; PV1r=*(buffer++); //32bit processing num_stereo_samples--; acc-=48000; } // defaults to nearest s32 DataL = PV1l; s32 DataR = PV1r; if (mode == 1) //linear { DataL = PV1l + ((PV2l - PV1l)*acc)/48000; DataR = PV1r + ((PV2r - PV1r)*acc)/48000; } else if (mode == 2) //cubic { s32 a0l = PV1l - PV2l - PV4l + PV3l; s32 a0r = PV1r - PV2r - PV4r + PV3r; s32 a1l = PV4l - PV3l - a0l; s32 a1r = PV4r - PV3r - a0r; s32 a2l = PV1l - PV4l; s32 a2r = PV1r - PV4r; s32 a3l = PV2l; s32 a3r = PV2r; s32 t0l = ((a0l )*acc)/48000; s32 t0r = ((a0r )*acc)/48000; s32 t1l = ((t0l+a1l)*acc)/48000; s32 t1r = ((t0r+a1r)*acc)/48000; s32 t2l = ((t1l+a2l)*acc)/48000; s32 t2r = ((t1r+a2r)*acc)/48000; s32 t3l = ((t2l+a3l)); s32 t3r = ((t2r+a3r)); DataL = t3l; DataR = t3r; } sample_queue.push(DataL); sample_queue.push(DataR); queue_size += 2; } push_sync.Leave(); }